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ABSTRACT: MR imaging data is sometimes presented in a ‘‘patchwork quilt’’ format

with individual pixels visible as squares of uniform intensity. This phenomenon often

arises by default from an image space convolution (performed implicitly by the graphics

system) used to convert the sparse point sampling of the spatial domain offered by the

discrete Fourier transform (DFT) into a sufficiently dense sampling to allow assignment of

an intensity value to each addressable point on the display device. Typical examples are

fMRI maps, spectroscopic images and zoomed-in views. These square patches are image

structure not present in the object, i.e., artifacts. This form of image display is studied by

both an image analysis method and by Fourier analysis. Image formation by display of

the 2D DFT of an acquired k-space matrix as a 2D pixel array is a poor reconstruction

because it does not ensure a faithful representation of the spatial frequency content

actually present in the data. By analysis of the visual appearance of 2D pixel arrays we

show that there are two principal effects: (a) attenuation of higher spatial frequencies

(i.e., low-pass filtering); (b) introduction of artifactual high frequency image structure.

These effects can lead to very poor performance with an artifact/signal ratio of over 200%

in the corners of 2D k-space. Generated k-space maps demonstrate that both detrimental

effects increase radially in k-space. The simple remedy is to zero-fill (resulting in image

interpolation) until individual pixels become invisible in the displayed image. Alterna-

tively, data modeling may be used. � 2013 Wiley Periodicals, Inc. Concepts Magn Reson

Part 42A: 32–44, 2013.
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INTRODUCTION

The Pixel Problem

Browsing through any recent MRI journal one

quickly encounters images consisting of arrays of

small squares of uniform intensity (‘‘pixels’’), resem-

bling a ‘‘patchwork’’. To illustrate that this is a topi-

cal concern, in a randomly selected recent issue of

Magnetic Resonance in Medicine (printed edition)

small squares are visible in 14 figures (Page numbers
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are 87, 121, 122, 133, 134, 135, 147, 177, 186, 221,

222, 240) (1). Common examples are fMRI activa-

tion maps, parametric maps, spectroscopic metabolite

maps and zoomed-in images. Where do these small

squares come from? These squares exist neither in

the object, nor in the raw Fourier k-space data. They

are not apparent in a spreadsheet tabulation of the 2D

data matrix resulting from 2D Discrete Fourier trans-

form (2D-DFT) of a k-space matrix. The small

squares are in fact features generated for image dis-

play because each point on the monitor screen needs

to be assigned a value. Because these small squares

appear as visible structure within the displayed

image, but do not reflect object structures, there is

really no other choice than to classify them as arti-

facts. We refer to the visibility of these small squares

as ‘‘pixelation artifact,’’ and the analysis of these arti-

facts is the topic of this article. We will establish the

relationship between these patchwork displays and

the spatial frequency content of the display.

These small squares present two types of problem.

First, in a DFT-reconstructed MR image the intensity

assigned to a small square does not equate to the

mean object intensity over the square region. This

might be contrasted with the quite different situation

found with CCD optical detectors, in which the de-

tector does actually integrate signal over small square

regions.

Second, for any given k-space dataset there are, in

any case, many possible reconstructions of these

square-patchworks, because the spatial positioning of

the reconstructed pixel array is arbitrary—it depends

upon the linear phase roll given to the k-space data

along the kx and ky axes before 2D-DFT. There is

nothing in the data to justify the particular choice of

any one 2D patchwork of small squares over any

other. Figure 1 shows four different pixel patchwork

grids, reconstructed from the same k-space data. The

phantom shown is a portion of a Siemens Star phan-

tom which consists of 24 alternating black and white

15� radial wedges in a sunburst pattern and is useful

for non-directional resolution evaluation. Figure 1(a)

demonstrates that for a nonzero-filled image there is

no unique PSF as the imaging system response is not

shift-invariant.

The images shown result from direct DFT of

simulated k-space data. Three different linear phases

were added to the k-space data, each equivalent to

less than a pixel shift in the image domain. This

results in images of significantly different appearance

and illustrates that arbitrary selection of any single

one out of the multitude is problematic and biased.

Equivalently, consider that the registration of the

patchwork pixel grid relative to the object depends

upon the exact positioning of the object relative to

the gradient coils, which is chance, and clearly not

indicative in any way of the object structure, and

therefore should not be reflected in the displayed

image. The solution to these issues is to avoid the

use of patchwork displays at all. We can conclude

that pixels should be small enough to be invisible,

i.e., some form of interpolated display should be

used.

Another point to note is that there is important in-

formation contained in each data point in the spatial

domain. Consider that (given adequate SNR) a 256 x

256 dataset offers significantly improved image qual-

ity over a 128 x 128 dataset. The difference between

the two being additional high-resolution information,

i.e., details on the pixel-scale. It is apparent that such

Figure 1 A demonstration that Fourier imaging performed with DFT reconstruction without

zero-filling is not shift-invariant. These different pixelated images were all derived from the

same raw data, using a digital Siemens star phantom. Different linear phase rolls in k-space were

used to produce sub-pixel shifts resulting in images which vary significantly. (a) No shift; (b)

shift down half a pixel (c) shift right half a pixel (d) shift down and right half a pixel.
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pixel–pixel variations are valuable and that consider-

ation of visualization procedures is a worthwhile

pursuit.

Zero-Filling

It is useful to include some introductory comments

on zero-filling. It is sometimes stated that adding

zeroes to a dataset (zero-filling) does not add infor-

mation, with the implication that the procedure is

therefore somehow unnecessary, superfluous, or

merely cosmetic. However this is not the case. Infor-

mation content and image display (i.e., a faithful spa-

tial representation leading to reliable visualization)

are different concepts. One might as well argue that

since the DFT does not introduce new information, it

is also superfluous! Or one might present image data

in a 256 � 256 spreadsheet instead of as an intensity

modulated display—after all the information content

is the same! Clearly visualization matters. Zero-fill-

ing exerts its influence through the assumptions made

about missing data—data not acquired, yet neverthe-

less impacting image display.

Interpolation

Considering the fundamental importance of display

in any imaging modality, there is relatively little lit-

erature to be found on the interpolated display of

Fourier-based MRI images. There is, to be sure, an

extensive general literature on image interpolation,

but this is mostly concerned with efficiency and ac-

curacy of various image domain interpolation meth-

ods (2–5). MRI is a type of Fourier imaging, and so

the image domain interpolation literature is not

directly relevant.

In 1D NMR spectroscopy some form of interpola-

tion is always used, even if it is merely joining adja-

cent data points on a graph with straight line seg-

ments. A noninterpolated display (the equivalent of

1D pixels) would have the appearance of a bar graph,

which would certainly look odd. There is an NMR

literature on zero-filling (6, 7). Bartholdi and Ernst

analyze the particular case of zero-fill by a factor of

2 (6). Lindon and Ferrige (7) show that there are sit-

uations in which a zero-fill factor as high as 32 can

be beneficial in resolving overlapping peaks. Our

findings are most in accord with this latter result.

Within the MRI literature there are a number of

reports on the benefits of zero-filling and interpola-

tion in a variety of circumstances (8–17). The most

directly relevant work is by Bernstein et al. in their

discussions of the corners of k-space (14). We focus

exclusively on the case of Fourier imaging and MRI,

but the conclusions may be relevant to other Fourier

imaging modalities.

Spatial Frequency Analysis

We will present an approach analyzing the actual vis-

ual scene presented by a 2D array of finite-sized

squares of uniform intensity (‘‘image pixels’’). The

rationale is that the visual representation on the dis-

play device determines the image interpretation by

an observer. We will also emphasis that there is an

important distinction between the sampled spatial

data output from the 2D-DFT algorithm, on the one

hand, and the visual scene presented to the viewer by

a 2D array of image pixels on the other. The spatial

frequency analysis presented involves the derivation

of k-space maps showing levels of pixelation artifact

and signal loss. These maps can be used to maximize

signal/artifact ratio by informing zero-fill strategies

and the selection of the shape of the sampled k-space

region used in image acquisition and processing.

The maps show that display of the 2D-DFT of an

acquired k-space matrix as a 2D pixel array does not

result in a faithful representation of the spatial fre-

quency content actually present in the data. We will

show that there are two effects: (1) attenuation of

higher spatial frequency image content (i.e., a low-

pass filtering effect); (2) introduction of artifactual

high frequency image structure (‘‘pixelation arti-

fact’’). In some situations the artifact level can

exceed that of the signal. This approach is confirmed

analytically, and verified with a series of test images.

The analysis also shows that the remedy for pixela-

tion artifacts is very simple—just perform sufficient

zero-filling.

METHODS

K-Space Maps of Signal Loss and
Pixelization Artifact

Figures 2(a,b) show two examples of the decomposi-

tion of a 2D patchwork array of finite-sized square

image pixels into signal and artifact images. The pro-

cedure used to perform this decomposition is shown

as a series of steps (A–F) in Fig. 2(c). The purpose of

this analysis procedure is to derive measures of the

signal and artifact content of a pixelated image dis-

play, as a function of spatial frequency. K-space

maps of signal and artifact content are generated

point-by-point. In order to only consider real objects,

a pair of test points: (kx, ky) and (-kx, -ky) with com-

plex conjugate values were used. This whole process
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(A–F) is performed for each pair of k-space coordi-

nates (i.e., for each spatial frequency), with the

resulting signal and artifact levels used to build-up k-

space maps of signal and artifact respectively.

Step A - DFT

The starting point is an empty (NK � NK) 2D k-space

array, which represents the area that would be filled

with acquired data in an imaging experiment. The

array is populated with a single pair of non-zero test

points, as just described, marked with star symbols

[Fig. 2(c)]. Step A is the discrete Fourier transforma-

tion of this (NK � NK) k-space array into the spatial

domain to produce an (NK � NK) image domain

array.

Step B – Pixel Duplication

Step B is an expansion of the (NK � NK) image do-

main data to a larger matrix. Each pixel in the (NK �
NK) image domain array is replaced with E2 daughter

pixels, where E is the linear expansion factor (e.g., E
= 2, 1 pixel ? 4 pixels). This produces a new matrix

Figure 2 Figure (a) shows the separation of a pixelated image of a single spatial frequency into

signal and pixelation artifact components. Figure (b) shows a second example, using part of a

Siemens star phantom, to illustrate that the procedure may be applied to any pixelated image.

Note that the ‘‘signal’’ image is not the ideal reconstruction as it has undergone a low-pass filter-

ing effect. Figure (c) shows in detail how this analysis is achieved and its use to evaluate pixela-

tion artifacts. First, an NK�NK k-space array is populated with two real-valued points, symmetric

with respect to the origin, representing a single spatial frequency for a real object. This array is

transformed to the spatial domain by 2D DFT to produce an NK�NK image (Step A); the data is

then processed so that it is represented on an expanded, higher resolution pixel grid (Step B). So

for an expansion factor of 5 each original pixel is split into 25 smaller pixels. This expanded

grid is then transformed back to k-space by inverse 2D DFT (Step C), where it is split into two

parts representing signal and pixelation artifact respectively (Step D). Finally these two parts are

transformed back to the image domain (Step E) and integrated (Step F). The integrals of the sig-

nal and artifact images represent the values of signal and pixelation artifact.
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of the size (ENK � ENK). The screen area covered by

the E2 new pixels is considered equal to the area of

the originating pixel so that the visual appearance of

the image is not altered in any way. The image do-

main representation has changed, but the visual

appearance has not.

We assume that the screen display pixels are small

enough that they cannot be visually resolved, and so

the visual appearance is determined solely by the

data, not the display device. This is a good assump-

tion, given the advanced state of today’s display

technologies. Note that that this pixel subdivision

procedure is just a step in the analysis procedure

employed in this article. (It is not proposed as an

image processing procedure.)

Step C – Formation of the Extended
k-Space

Step C is the inverse 2D-DFT of the expanded

image to generate k-space domain information.

Because each pixel has been subdivided, and

because smaller structures require higher spatial

frequencies for their representation, it is found

that this new (ENK � ENK) k-space is populated

out to higher k-space coordinates. Thus the con-

tent of this new k-space is different from the orig-

inal (NK � NK) k-space, even though the image

visual appearances are identical. The patchwork

pixel array is not uniquely represented by the

originating spatial data array. The conception of a

1-to-1 relationship between an acquired N2 k-

space dataset and an N2 image is erroneous. The

star markers denote the locations of the original

signal data points. The small central dotted square

represents the size of the original 128 by 128 k-

space.

Step D – K-Space Decomposition

Step D is the decomposition of the (ENK � ENK) k-

space array from step C into two (ENK � ENK)

arrays, one representing the signal, and the other the

artifact. The signal array is created by setting all val-

ues outside the central (NK � NK) square region to

zero. Conversely, the pixelation artifact array is the

complementary array with the central (NK � NK)

region set to zeros. The (NK � NK) square is shown

as a small central square. The justification for this

split is that the central (NK � NK) square contains the

original k-space signal (star symbols). All data out-

side this region is related to pixelation artifact (circle

symbols), i.e., contains information on pixel shape—

which was not present in the acquired k-space.

Step E – DFT to Form HR Images

Step E is the DFT of these two (ENK � ENK) k-space

matrices back into the image domain to form respec-

tively the high-resolution (HR) signal and HR pixela-

tion artifact images (magnitude). ‘‘High resolution’’

simply means that there are now more pixels/mm (a

higher pixel density) than in Step A. After step E are

shown expanded signal and pixelation artifact

images. The original (128 �128) k-space was

expanded by a factor of 20 to (2,560 � 2,560). The

cosine wave structure of the image is set by the

choice of the original two k-space data points which

were located at (32, 32), (-32, -32) for the example

shown in Fig. 2(c). Each square (actually 20x20 pix-

els) was a single pixel before expansion. The signal

image (upper) is an image with a smooth single fre-

quency cosine wave as expected for a single spatial

frequency. However this is still not an ideal image,

as the low-pass filtering effect is still present. The

pixelation artifact image (lower) reveals the shape

and edges of the original pixels and also high fre-

quency harmonics of the signal.

Step F - Integration

Step F is simply the integration (summation) of all

pixel magnitudes in each output image, resulting in a

single number for each image. These two numbers

are used to populate the k-space maps for signal level

and artifact level respectively. Both signal and arti-

fact maps are normalized by the signal level at the

center of the k-space map.

Test Data Generation

Reconstruction strategies were evaluated using accu-

rate digitally generated k-space test data (Figs. 1 and

2). The phantom was first defined spatially as a set of

spin coordinates on a fine grid (15 � 15 times finer

than the pixel spacing). The k-space content corre-

sponding to each spins was then created using a

direct synthesis procedure, as follows. For a spin in

the center of the image, a constant value was

assigned for k-space. For spins spatially shifted away

from the center of the image, a linear phase shift in

the k-space was added. So if h(x, y), in the image do-

main, and H(u, v), in k-space, are an FT pair, then

the FT pair for off-center spins is:

h x; yð Þej2pðxu0þyv0Þ )
FFT

H u� u0ð Þ; ðv� v0Þ½ � [1]

The k-space data for the entire phantom con-

sists of a summation of the contributions from
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each spin. In this way the test k-space closely

represents the k-space data that would be col-

lected in a real experiment for a continuous

object. This is particularly important for this

study, to avoid any potential confusion between

(nonphysical) sample pixelation effects and recon-

struction pixelation effects.

K-Space Filter Design

To reduce ringing that occurs near sharp image

edges, due to direct DFT of the k-space data, k-

space filtering was used in Fig. 4. The form of

this circular k-space filter was a simple transition

band. For a 128 x 128 k-space, two circles are

defined: an outer circle with a radius of 64, and

an inner circle with a radius of 56. The filter has

values outside of the outer circle set to 0; values

between the two circles as 0.5; and values inside

the inner circle as 1.

Zero-Fill Factor Definition

In all cases, the k-space matrix is assumed to be

square. We define the 1D zero-fill factor (ZF) as:

ZF ¼ # rows in final k-space matrix

# rows in acquired k-space matrix
[2]

For example, for an acquired k-space size of 256 x

256, zero-filled into a final k-space size of 512 x 512,

then ZF = 2.

RESULTS

K-Space Maps

Figure 3 shows results for signal, artifact, and arti-

fact/signal maps. The maps were generated with an

expansion factor of 20, as an approximation to an in-

finite expansion. This is a reasonable assumption

because based on simulation experiments, the artifact

Figure 3 The process illustrated in Fig. 2 was carried-out individually for each spatial fre-

quency representable in the original k-space matrix. Thus for each pair of k-space points a value

for % signal and a value for % artifact is obtained. These values were plotted as the contour

maps shown here. Only one quadrant of the k-space plane is shown. The original 128 � 128 k-

space (containing 2 points, symmetric with respect to the origin) was expanded by a factor of

20. (a) Signal Map: shows the percentage of the signal compared with the center of the k-space.

A radial loss of signal visibility is observed, ranging from 100% signal (no loss) at the center of

k-space to 64.7% signal at (kX, kY) = (NK/2, 0), NK = 128. The signal visibility level falls to its

lowest value of 41.9% at the corner of k-space, (NK/2, NK/2). (b) The k-space artifact map repre-

sents the integrated pixelation artifact. Both this map and the signal map are normalized relative

to the origin of the signal map. The artifact level is zero at the k-space origin, signifying no visi-

ble pixelation for a uniform image. The artifact level increases steadily radially in k-space, with

the worst performance is at the corner of k-space where artifact level is 87.3%. (c) Signal-to-Ar-

tifact Ratio (S/A) Map: is formed by the ratio of the two previous maps. At (NK/4, NK/4) S/A =

69%; at (NK/2, 0) S/A = 110%; at (NK/2, NK/2) S/A = 210%. Overlaid on the S/A map is a k-

space explanation of why zero-filling improves signal to pixelation artifact ratio. Sampled data is

represented by the shaded area. Four different zero-filling levels are illustrated: ZF = 1, 2, 4, 8.

As the level of zero-fill is increased the acquired data resides closer and closer to the origin of

the map, where pixelation artifact levels are lower.
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to signal level converges closely to a constant value

when the expansion factor is .15.

Signal Map

The k-space signal map [Fig. 3(a)] represents the

integrated image intensity of a spatial frequency rela-

tive to the corresponding pair of points in k-space.

The map shows a radial loss of signal visibility, rang-

ing from 100% signal (no loss) at the center of k-

space to 64.7% signal at (kX, kY) = (NK/2, 0). The sig-

nal visibility level falls to its lowest value of 41.9%

at the corner of k-space, (NK/2, NK/2). By employing

ZF = 2 in each spatial dimension the lowest signal

visibility improves to 80% at coordinates (NK/4, NK/

4). This map reveals a low-pass filtering effect inher-

ent in the non zero-filled DFT image reconstruction

process.

Artifact Map

The k-space artifact map [Fig. 3(b)] represents the

integrated pixelation artifact. The map is normalized

identically as the signal map, i.e., relative to the ori-

Figure 4 This figure shows that images with higher zero-fill factors have less pixelation artifact

and show better details in the image. A part of the ‘‘Siemens star’’ resolution phantom is shown

in (a–e). The phantom shown in (f–j) is composed of a superposition of three sine-wave bands

and demonstrates the representation of curved contours in the image. Panel (k) is a part of a

brain image. Panels (a) and (f) are grids with a set of spins shown as binary values, (spin exists

= 1, spin does not exist = 0). Details of how to generate k-space raw data based on the spin grid

are in Section ’Test Data Generation’. Since (k) is derived from data collected from an MRI

imaging system, there is no grid to be shown. In (b), (g), and (k), each image is reconstructed

with no zero-fill, and the pixelation artifact is very high. In (c), (h), and (l), ZF = 2; in (d), (i),

and (m), ZF = 4; in (e), (j), and (n), ZF = 8. As zero-fill increases, the true image structure

becomes progressively more visible. Ringing artifacts can be observed where sharp edges exist.
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gin of the signal intensity map. The artifact level is

zero at the k-space origin, signifying that there is no

visible pixelation for a uniform image. The artifact

level increases steadily radially in k-space. The worst

performance is again at the corner of k-space where

artifact level is 87.3%. This indicates that the inten-

sity of these artifactual structures increase as the sig-

nal being represented approaches the pixel size.

Artifact-to-Signal Ratio (A/S) Map

This Artifact/Signal (A/S) [Fig.3(c)] map is formed

by the ratio of the two previous maps, and expressed

as a percentage. The A/S ratio is zero at the origin.

At the corner of the k-space, (NK/2, NK/2), the A/S

ratio is 210%, i.e., artifact is more than twice the sig-

nal amplitude. At the end of the +kX axis, coordinates

(NK/2, 0), the A/S ratio is 110%. If a zero-fill factor

of 2 is used, then the worst A/S ratio improves to

69% at (NK/4, NK/4). This is still poor, implying that

further zero-filling is required.

Levels of Zero-Fill

The k-space maps predict that Artifact/Signal ratio is

minimized by using a circular k-space and a high

level of zero-filling. The use of high levels of zero-

fill (ZF) are illustrated in Fig. 4, which shows image

results for two digitally defined images (using circu-

lar k-space filtering) and one in vivo dataset. The

phantom in Figs. 4(a–e) is the center part of a ‘‘Sie-

mens star’’ phantom. Figure 4(a) is a grid with a set

of spins shown as binary values. Spin exist = 1, spin

does not exist = 0. The structure of the ‘‘star’’ is not

clearly seen for ZF=1 [Fig. 4(b)] because the pixel

size is comparable to the size of the structure. The

15� angled edge is very jagged due to pixel edges.

The jaggedness is progressively reduced for ZF = 2,

4, and 8 [Figs. 4(b–e)]. The higher zero-fill, the less

effect of the pixelation artifact.

In Figs. 4(f–j), a phantom composed of a summa-

tion of three sine-wave bands is defined. This series

demonstrates the image representation of curved

structures for increasing levels of zero-fill. The three

sine-wave bands are progressively clearer for

increased zero-fill. Ringing is visible near sharp

edges of the phantom. This will be addressed and

explained in details in the following section.

In Figs. 4(k–n), a part of an in vivo brain image is

reconstructed (Siemens 3T). There are branch-like

structures in the image which are visible in Fig. 4(n).

The same structure is only shown as blocks of

squares in Fig. 4(k) (ZF = 1).

Truncation and Ringing Artifacts

In MRI, the FT of the k-space sampling function

defines a window function W(x) with which the

object O(x) is convolved to yield the image: I(x) =

W(x)*O(x). The window function W(x) can result in

ringing in I(x) if high spatial frequencies from sharp

edges present in O(x) are truncated. W(x) also funda-

mentally limits the ultimate image resolution.

In Fig. 5 simulated k-space data was obtained by

FT of a digitally defined 4096 object profile, fol-

lowed by k-space truncation to 64 points. Two recon-

Figure 5 1D simulations showing the effect of zero-filling on truncated k-space data. (a) Object

profile (4,096 points), used to generate k-space data. The profile contains two sharp-edged

blocks, one overlaid with a sine function. (b) Profile showing the effects of truncation, using

DFT of 64 k-space points, displayed in ‘‘staircase’’ mode to mimic pixelated image display. (c)

As (b), but zero-fill by factor of 16 prior to DFT, showing much better visualization of object

structure (sine wave). The appearance of the edge ringing (due to k-space windowing) changes

and fine ringing on the baseline becomes resolved.
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structions are shown, without [Fig. 5(b)] and with

zero-filling [Fig. 5(c)]. Ringing is visible in both

cases, demonstrating that zero-filling neither creates

the ringing phenomenon, nor eliminates it. Zero-filling

does however affect the appearance. Figure 5(c)

shows that zero-filling simultaneously results in

clearer visualization of both object structure and fine

details of the edge-ringing. While the former is a clear

benefit, the latter is more equivocal. Some windowing

effects may only become visible as ringing after zero-

filling, as can be seen by comparing the baselines in

the profile in Fig. 5(b) with that in Fig. 5(c).

A detailed discussion of strategies for ringing arti-

fact reduction is beyond our scope here, but we men-

tion briefly some possible approaches: (1) the collec-

tion of more data; (2) filtering of the acquired data; or

(3) modeling to fill-in the missing data. In this work

we used a simple filter to reduce ringing. Techniques

for reducing the effect of ringing have been studied

extensively in the literature (2). A disadvantage of k-

space data weighting filter functions (e.g., Hanning,

Bartlett, Parzen, and Dolph-Chebyshev) is that they

may reduce resolution. Data modeling methods

require some additional information or assumptions.

Figure 6 A graphical explanation of the transformation of acquired k-space data (a) into a pixe-

lated image figure (h). Plots on the left are in the k-space domain, those on the right, the spatial

image domain. In figure (a) the raw k-space data is shown as discrete sampled points over a lim-

ited k-space range (shaded). The first step is DFT resulting in a set of points in the image domain,

figure (b). At this stage in the process there is a set of points, which is usually too sparse to be

suitable for direct graphical display. Figures (d) and (f) represent graphics data processing steps

necessary to obtain the image function shown in (h). Figure (d) shows a function s(x), with explicit

zeros inserted between the data points from (b), Figure (f) shows a pixel function p(x), which

when convolved with s(x) yields the image function shown in figure (h). The k-space representa-

tion of s(x) contains periodic repeats of the acquired data. Multiplication of this by the sinc func-

tion (FT of p(x)) yields the k-space representation of the pixelated image, which contains an atte-

nuated version of the original data in addition to higher frequency artifactual content.
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ANALYSIS

Fourier Transform Analysis

The k-space map generation process (Steps A–F) were

verified using Fourier transform theory (18). Figure 6

illustrates graphically the process for the 1D case.

Original k-space data (representing a single spatial

frequency, k0) is shown as 12 data points in Fig. 6(a),

with the extent of the sampled region shaded (�kmax

. . . + kmax). The DFT of this data is shown in Fig.

6(b) as 12 points in the spatial domain. In the case,

because the cosine is band-limited (i.e., no part of its

k-space representation was truncated by the k-space

window) these data points coincide with the analytical

cosine function (dotted line). However, in MRI it is

common that the acquired k-space data is a truncated

version of the full k-space signal describing the object.

In these cases, because the data points following DFT

are samples of I(x) [i.e., the convolution of the object

with a window function W(x)], S(x) may exhibit ring-

ing at sharp edges. As was shown in Fig. 5, zero-fill-

ing results in a denser sampling of I(x), but does not

modify I(x), so ultimately image resolution is deter-

mined by the k-space window, not by the level of

zero-filling. Once I(x) becomes well-visualized, addi-

tional zero-filling has no further useful effect.

In Fig. 6(d) a function s(x) is shown which con-

sists of zeros inserted between the 12 points of Fig.

6(b). Figure 6(f) shows a pixel function p(x) which

when convolved with s(x) yields the pixelated image

[Fig. 6(h)]. This process represents the data process-

ing performed by the graphics display system when

DFT data is displayed as an image without zero-fill-

ing. By examining the k-space domain representation

of this process [in Figs. 6(c,e,g)] both the low-pass

signal filtering effect (within the shaded region) and

the origin of the k-space content corresponding to

pixelation artifacts (Fig. 2) can be appreciated. In

detail: the DFT of s(x) is S(k) which consists of the

original k-space data plus 4 periodic repeats. The

DFT of p(x) is P(k) which is a sinc function. The

multiplication of S(k) and P(k) yields the k-space rep-

resentation of the pixelated image, which is valid

irrespective of the actual mathematical process used

in any particular display system.

Low-Pass Filtering Effect (1D)

Figures 6(g,h) show how the amplitude of the 1D

image signal is modulated by a sinc function:

signalðx; k0Þ¼
A

2kmax

sinc
pk0

2kmax

� �
cosð2pk0xÞ [3]

This ‘‘signal’’ function is a filtered version of I(x),

i.e. it exhibits both the filtering effect and k-space

windowing effects from W(x). The 2D version of this

function is labeled ‘‘signal’’ in Fig. 2.

For 1D, the maximum attenuation due to the sinc

function arises for the condition k0 = kmax, i.e.

sincðp=2Þ ¼ 2=p ¼ 0:6366. To compare this theoreti-

cal result and the simulation experimental result, the

Pearson correlation coefficient was calculated. A

very close fit was found between the simulated signal

map and the 2D sinc distribution (Pearson Correla-

tion Coefficient = 0.9999). This result is also in exact

agreement with Lindon and Ferrige (7) who in their

discussion of zero-filling in NMR spectroscopy

report that without zero-filling the worse case (a

spectral peak lying midway between data points)

results in a peak height reduction by a factor of

0.637. They report peak height recovery to 0.998

with a zero-filling factor or 16.

1D Pixelation Artifact—Analysis

The pixelation artifact represents the difference

between the original pixelated image and the low-

pass filtered version of I(x), the ‘‘signal’’ function. To

evaluate the pixelation artifact, we can sum the

image domain contributions of all the pixelation arti-

fact terms in Fig. 6(g) to give a 1D version of the

total pixelation artifact:

artifactðx; k0Þ
X1
n¼1

½An cos 2pð2nkmax � k0Þxð Þ

þ A0
n cos 2pð2nkmax þ k0Þxð Þ� ½4�

where:

An ¼
A

4kmax

sinc
p 2nkmax � k0ð Þ

2kmax

� �
[5]

A0
n ¼

A

4kmax

sinc
p 2nkmax þ k0ð Þ

2kmax

� �
[6]

and where n is the ‘‘order’’ of the artifact. The coordi-

nates 2nkmax are shown by vertical dotted lines in

Figs. 6(c,e,g). Thus n = 1 represents the 4 largest arti-

fact peaks, consisting of the pair centered around

+2kmax and the pair centered around �2kmax.

If this whole process, as illustrated in Fig. 6, were

repeated with a truncated MRI dataset, then the

acquired spatial frequencies would undergo the mod-
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ifications as shown (signal attenuation and introduc-

tion of pixelation artifacts), while the loss of data due

to truncation would be manifested by the deviation

of the pixel values from the object signal values (due

to convolution with the window function).

Zero-Fill Improves Artifact to Signal Ratio

The effect of zero-filling is to cause the acquired data

to lie closer to the origin of the k-space maps, where

the artifact-to-signal ratio is lower. This is illustrated

in Fig. 3(c) for 2D k-space. The coverage of acquired

(non-zero) k-space is shown as a shaded area. The ra-

tio of non-zero k-space to the whole k-space is 1/ZF2.

As given in Table 1, the trend is that the more zero-

filling, the smaller both the maximum and average

artifact to signal ratio become. Complete statistics

for both square and circular masks are given in Table

1. The circular mask shows lower pixelation artifact/

signal ratios, especially for the lower zero-fill factors.

DISCUSSION

The Data Not Collected

For N collected data points, the DFT yields just N

points in the image domain, which is very often in

practice too few for adequate image display. This

arises because it is not sensible experimentally to ac-

quire a large amount of additional (and noisy) low or

zero signal data, merely to make up the numbers.

How should the absence of this data be accounted for

in the image reconstruction and display process?

Consider three alternatives for the status of the

un-collected k-space data: (A) assume that the uncol-

lected data is zero (i.e., zero-fill); (B) assume the

form of k-space shown in Fig. 6(g), which is partially

periodic and also has a low-pass filtering effect (i.e.,

no zero-fill); (C) fill in with modeled data. Addition-

ally, the collected data can be treated in one of two

ways prior to DFT: filtered or not. These categoriza-

tions lead to 3x2 = 6 strategies. Our thesis in this pa-

per is that option B (DFT without zero-fill) is a sur-

prisingly bad choice and should almost never be

used. We study the zero-filling option, but do not dis-

count other potentially even better options such as

data modeling. The transition between the acquired

data and a region of zeros can cause ringing artifacts

at edges [Figs. 4(c–e) and (h–j)]. In these cases filter-

ing and/or data modeling may give better results.

However we argue that avoiding zero-filling for this

reason is rarely justified as the pixelation artifacts

present a greater impediment to visualization than

does ringing (Figs. 4 and 5).

The Meaning of k-Space

Fundamentally, the meaning of a pair of k-space data

points is a perfectly smooth sinusoidal image domain

intensity variation, with a magnitude proportional to

the k-space value. This is justified by considering the

source of the k-space data: the MRI imaging process,

which involves a continuous object and continuous

magnetic gradient fields, and assumes that the re-

ceiver sensitivity is uniform over the FOV. A prob-

lem with a non-zero-filled DFT image (considering

the 1D case) is that the highest spatial frequency data

acquired can never be visualized as a smooth sine-

wave, but at best as a square-wave (represented as a

series of pixels with alternating intensities).

The signal map [Fig. 3(a)] is an evaluation of the

observed proportionality between the two domains.

The map shows that by displaying DFT data as uni-

form intensity pixels without use of zero-filling, the

proportionality is surprisingly poor, with higher spa-

Table 1 Tabulation of Maximum and Average Pixelation Artifact/Signal Ratio for Circular and Square k-Space
Masks, for a Range of Zero-Fill Factors

Shape of k-Space Region Populated With Data

Square Mask Circular Mask

ZF (1D) 1 2 4 8 16 1 2 4 8 16

Fraction of k-space matrix

populated with zeroes

0 0.75 0.938 0.984 0.996 0.215 0.804 0.951 0.988 0.997

Artifact to signal ratio MAX 208% 69% 28% 13% 8% 111% 43% 20% 10% 5%

AVG 79.9% 32.1% 15.3% 7.8% 4.2% 51.1% 21.9% 10.7% 5.5% 2.9%

Maximum signal loss 58.1% 18.9% 5.0% 1.2% 0.2% 35.3% 9.9% 2.5% 0.7% 0.2%

Maximum artifact level 87.3% 56.4% 26.9% 13.2% 6.5% 71.7% 39.0% 19.8% 10.0% 5.3%

A mask corresponds to the region of k-space populated with acquired data, and is determined by the acquired data and any k-space

masking applied. In all cases the k-space matrix is assumed to be square. In the case of the circular mask, the circle is inscribed within the

acquired k-space region. The circular mask shows lower pixelation artifact/signal ratios, especially for the lower zero-fill factors.
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tial frequencies experiencing greater attenuation, to a

maximum signal loss of 41.9% at the corners of 2D

k-space. In other words, the image is low-pass fil-

tered and resolution is lost. This built-in sinc filtering

behavior of the DFT is a strong effect, but does not

seem to be sufficiently appreciated in the MRI litera-

ture.

The very poor performance in the corners of the

k-space maps is consistent with the conclusion in the

work of Bernstein et al. (14) that the data in the cor-

ners of k-space introduce artifact to the image when

no zero-filling or filtering is applied.

Pixel Function

Another perspective on this is to consider the pixel

function. In Fig. 6(f) the pixel function is square,

resulting in multiplication of the P(k) function with a

sinc, with poor results. Ideally the pixel function

should be a narrow sinc, resulting in multiplication

of P(k) with a square function—which would per-

fectly pick out the signal with no attenuation and

reject all pixelation artifact. This ideal sinc interpola-

tion procedure is approximated by zero-filling by a

large factor. So, in other words, the convolution step

using a square pixel function is precisely backwards!

Zero-Filling

How much zero-filling should be performed? The

commonly used zero-fill factor of two is insufficient

as it results in a large artifact/signal ratio (65%) at

the corner of a square k-space. Minimum values on

ZF can be set by specifying a maximum acceptable

artifact/signal ratio (Table 1). For example, for a

maximum acceptable A/S ratio of 10%, ZF = 8 and a

circular mask is required. For A/S less than 5%, ZF =

16 is required. Figure 4 shows that a lot of structure

can be extracted from relatively few pixels, which

implies that quite high zoom factors can be profitably

used, and thus also correspondingly high ZF levels.

Shape of k-Space

What do these results say about the shape of k-space?

The pixelation artifact/signal map is radial in k-

space, so on this basis, a circular k-space would be

preferable over a square one. However, as higher lev-

els of zero-filling are applied, the shape of k-space

has progressively less effect on pixelation artifacts

(Table 1). The k-space shape is not insignificant, but

the level of zero-fill is a more dominant effect.

Another effect however is that a noncircular k-

space exhibits a directionally dependent spatial reso-

lution. In the absence of any prior knowledge of the

object structure, a circular k-space is the unbiased

choice. However, if a higher resolution is desirable in

a certain direction, then this direction can be profit-

ably aligned with the corners of a square k-space.

This becomes a real issue when an object has aniso-

tropic high resolution structure, such as a bar resolu-

tion phantom.

CONCLUSIONS

A pixel visible in an image as a small square

patch is by definition an artifact because such

patches do not exist in the object. Since there is

nothing in the acquired k-space Fourier data

requiring such a display mode, it is a mistake to

display the DFT of an acquired data matrix as a

2D patchwork array of small squares. The prob-

lems that arise with such pixelated displays are an

image with both surprisingly large visual attenua-

tion of higher spatial frequencies (58.1% in 2D)

and also introduction of artifactual pixel structure.

The solution is straightforward: zero-fill until the

pixels are no longer visible.

A second conclusion is that zero-filling (or per-

haps data modeling of missing data) is always neces-

sary. To visualize the important high resolution

object structure, which is present in the variation

between adjacent image domain data points (obtained

by DFT from k-space data), the image should be

zoomed sufficiently for this ‘‘pixel-level’’ structure to

be visible. However this will result in the patchwork

effect unless zero-filling is performed. So to simulta-

neously view high resolution information—but with-

out visualizing pixel artifacts—zero-filling is neces-

sary. The results support the use of a circular k-

space.
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