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A procedure is introduced for refabricating any  spatially selective excitation pulse to 
reduce its SAR while preserving its durat ion and  slice profile. Called variable-rate selective 
excitation, the procedure allows for a  variable trade-off of RF amplitude for durat ion at 
each  sample of the pulse. SAR reduction of 50% is possible with only a  mild smearing of 
the Off-resonance tice profile. Experimental slice prO!ikS verify the principle. 0  1988 AC&& 

Press, Inc. 

INTRODUCTION 

The  specific absorption rate (SAR) of a  selective radiofrequency pulse is a  critical 
parameter in a  clinical setting. FDA SAR lim itations restrict the m inimum scan time  
for a  given pulse sequence. The  relatively high SAR of some new and  otherwise desirable 
RF pulses may lim it their clinical use. Moreover, RF amp lifier hardware lim itations 
may preclude the use of high SAR pulses. 

Although there has been  a  great deal of effort toward selective pulse design in the 
past decade, very little has been  done  to ame liorate the SAR of a  given pulse. In fact, 
many of the numerical design techniques introduced recently produce relatively high 
SAR pulses. For example, the optimal control approach (I, 2) computes RF pulses 
that deliver remarkably rectangular slice profiles but deposit a  relatively large amount  
of power. Murdoch (3) reports that incorporating RF inhomogeneity robustness into 
the optimal control algorithm exacerbates the SAR problem even further. The  hy- 
perbolic secant pulse of Silver et al. (4), which inverts a  slice even in the presence of 
substantial RF inhomogeneity, has even higher SAR. 

Coer-Joly reports (5) that pulse-width modu lation can deliver sharp selective ex- 
citation profiles and  noted that the SAR and  peak magn itude of his selective excitation 
pulses were far less than conventional amp litude-modulated pulses. The  essence of 
SAR reduction is clear from this effort: one  needs to distribute the pulse amp litude 
uniformly over the excitation interval. Pulse-width (PW) modu lation is not as flexible 
as one  would like. F irst, hardware changes are required. Second, the pulses designed 
in the literature for AM and  FM transceivers cannot be  incorporated. F inally, PW 
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VARIABLE-RATE SELECTIVE EXCITATION 441 

m ,odulation forces an inherent trade-off between the number of parameters available 
for pulse design and the pulse duration. This is not the case for AM and FM pulses. 

In this paper we do not discuss a pulse design technique. Instead we introduce a 
new technique for pulse refubrication. That is, we propose an algorithm that takes a 
previously designed RF pulse and computes a new pulse and a new (time-varying) 
slice-select gradient waveform. The new pulse performs the selective excitation exactly 
as the original pulse, but at significantly lower SAR and peak amplitude. In a sense, 
we have added a degree of freedom to the PW modulation scheme, namely, the time 
variation of the gradient waveform. 

The new pulse refabrication scheme is called variable-rate selective excitation, ab- 
breviated VERSE. The algorithm is based on the fundamental Larmor relation: a 
magnetization vector will precess at a frequency determined by the strength of the 
local magnetic field. During one sample of a selective excitation pulse, the field is 
determined by the gradient and RF fields. It is obvious that only the net rotation is 
critical rather than the rate of rotation. Hence, one can perform an identical excitation 
twice as long with half the field strength. The key innovation is to allow this trade-off 
of time and amplitude to vary at each sample in the pulse. Since most RF pulses are 
very peaked at the m iddle, one should flatten the amplitude in the m iddle and ex- 
tend the duration of each of its samples, while expediting and, hence, amplifying the 
side lobes. It is this uniform redistribution of the pulse area that affords the decrease 
in SAR. 

We first derive the principle of VERSE, then detail some algorithms that exploit 
the principle for SAR reduction. Off-resonance effects are discussed and implemen- 
tation details are addressed. Experimental results are presented for each algorithm. 

THE VERSE PRINCIPLE 

The fundamental Larmor relation, 

gives the precession frequency of a magnetization vector in the presence of an external 
magnetic induction field, B. During one sample of duration At, from a piecewise- 
constant RF pulse, a magnetization vector precesses an angle 19 = wAt. One could 
achieve the same angle of precession by exciting the spins for twice as long with a 
parallel induction field half as strong, because the precession angle is the product of 
the frequency and duration. This basic fact is depicted in Fig. 1. Note that each time 
sample is independent of the other samples; there is no constraint to reduce each of 
tlhe RF pulse samples equally. Because each of the individual angles of precession is 
unchanged, the product of the rotations will not change, and the selective excitation 
profile will not be altered. This is the fundamental principle of variable-rate selective 
excitation. 

The mathematical equivalent of the heuristic explanation above relies on the Bloch 
equation, which describes the spin mechanics during selective excitation. Let B,(k) 
== B,(k) + iBo(k) represent samples from a piecewise constant complex RF pulse. That 
is, the RF has amplitude B,(k) from time (k - 1)At to kAt. Let G  be the z-gmdimt 
amplitude during the selective excitation. Assuming that relaxation is negligible during 
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FIG. 1. The same rotation can lx accomplished at different speeds. 

the pulse, the magnetization vector at time T = NAt is the ordered product of rotation 
matrices multiplied by the initial magnetization distribution (6): 

M(z, T) = i exp 
k=N (L 

0 Gz -B& 
-Gz 0 B,(k) -rat W, 0). 

B&) --B,(k) 0 I 1 

Define an excitation amplitude-reduction factor a(k). Note that if the kth sample is 
applied for a duration At/a(k), and if all of the excitation fields are multiplied by the 
same factor a(k), then the kth rotation matrix will be unchanged: 

([ 

0 a(k)Gz -&)B&) 
em -a(k)Gz 0 

4k)B&) -&VW) 
&VW g . 

0 1 1 
Comparison of the rotation matrices leads one to conclude that an excitation of du- 
ration At/a(k) and with a new RF pulse a(k)B,(k) and a new time-varying gradient 
waveform a(k)G will elicit the same slice profile as the original pulse at uniform rate. 
The a(k) represent a degree of freedom previously unexploited. 

It is convenient to name this new set of pulse variables. Let b,(k) = a(k)Bl(k) and 
let g(k) = a(k)G. These are the VERSE excitation waveforms. We will call them 
facsimilepulses, since they perform the same function as the original pulse and gradient. 
Finally, define t(k) = At/a(k). Recall that the new excitation waveforms must be parallel 
and each has the same area as the original pulse. These facsimile conditions are sum- 
marized below: 

[ ;c]t(k) = rg]At. 

SAR REDUCTION 

We now demonstrate that VERSE can reduce the SAR for a given RF pulse. First, 
only two rates are employed. Figure 2 shows a sine pulse and its uniform-rate gradient. 
Figure 3 shows a two-speed facsimile RF and gradient pulse pair. Note that the middle 
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FIG. 2. Uniform-rate sine pulse and gradient, 

of the pulse has been slowed down and attenuated. The side lobes have been accelerated 
alnd amplified so that the overall duration of the pulse is unchanged. It should be clear 
that the VERSE pulse has lower SAR than the original sine pulse. Of course, this is 
not a practical example since slew-rate lim itations would preclude the use of this 
particular gradient waveform. 

The SAR formulas derived in this section will be used extensively in the following 
section. For ease of comparison, we consider only equal-duration facsimile pulses. 
Hence, we are concerned with the energy in a particular pulse, rather than its average 

-0.5 -0.3 -0.1 0.1 0.3 
Normalized time 

FIG. 3. Two-speed VERSE RF and gradient pulses. 
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power, which differs only by a constant factor. The energy delivered during a pulse is 
proportional to the integral of squared magnitude of the RF. Hence, 

SAR cc 
s 

= Ib,(t)l%t. 
0 

For a piecewise constant variable-rate RF pulse, 

SAR cc ;: Ib,(k)I*t(k). 
k=I 

PI 

Because the variables must satisfy the facsimile conditions, the SAR equation can be 
cast as a function of one waveform, which we can pick at our convenience. Moreover, 
knowledge of any one of the VERSE waveforms provides complete information for 
computation of the remaining VERSE waveforms. Using the facsimile conditions one 
can show that 

N IBdk)l* SAWI K ,: t(k) 3 

and 

SAM@ 0~ 5 I&Wl*dk), 
k=l 

[41 

where 1 Bl(k)12 is defined to be squared magnitude of the original pulse, B&k) 
+ B&(k). We have also used the symbols g and t to describe the vectors with elements 
g(k) and t(k). 

SAR-REDUCED PULSES 

There are several SAR-reduction formulations that have proven useful. We discuss 
three of the most promising here. We have chosen to abandon gradient slew-rate 
constraints in order to retain closed-form solutions. This is reasonable because the 
slew-rate constraint can be incorporated after the VERSE pulse is computed with only 
a mild SAR penalty. We discuss this gradient smoothing in the implementation section. 

Minimum-SAR facsimile. In this formulation, we minimize the SAR subject to 
maximum gradient and constant duration constraints. The minimum-SAR optimi- 
zation problem is 

min SAW) = 5 s(k) I Bdk) I * , B k=l 
PI 

subject to 

5 t(k) = NAt 
k=l 

g(k) < Gnax. [71 

WI 
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First, we cast the time constraint equation into gradient variables: 

In Appendix A, we show that the minimum-SAR RF pulse is indeed very close to 
a constant magnitude pulse. We show that unless the VERSE gradient violates the 
maximum gradient constraint, the RF has constant magnitude. If the maximum gra- 
dient constraint is violated at a particular index k, then the optimal (constrained) 
gradient at that index is G,,, and the new RF must be smaller in magnitude than 
the constant. Specifically, we derive the minimum-SAR gradient, 

g(k) = min 

One would hope that the time constraint would give a closed-form solution for the 
constant c. However, it admits only an iterative solution, as one does not know which 
of the g(k) violates the G,, constraint until one has computed c. We use a simple 
algorithm to determine c. First, we assume that none of the gradient values exceeds 
G Illa* Then we calculate cc’) from the time constraint, Eq. [S]: 

-$ ; I&(k)1 = $ 
k=l 

[lOI 

Equation [9] allows us to then check which of the g(k) violates the G, constraint. 
We then adjust those g(k) to Gmax and again use the time constraint equation to 
calculate cc2). This is continued until no new constraint violations occur. Convergence 
is achieved in a few iterations. 

Figure 4 shows to scale a uniform-rate optimal control selective 180” pulse designed 
for spin-echo generation in our lab (2) and its minimum-SAR facsimile. For all pulses 

50.00 ) 
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FIG. 4. Uniform-rate and VERSE minimum-SAR RF waveforms. 
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FIG. 5. Uniform-rate and VERSE minimum-SAR gradient waveforms. 

designed in this paper, the ratio of G-/G was set to 312. We must emphasize that 
lower ratios will afford less SAR reduction. Equivalently, pulse duration can be extended 
variably if one is constrained to G,,/G = 1, but the slice profile will invariably be 
thicker than the minimum possible. 

Figure 5 shows the uniform-rate and VERSE gradient waveforms. Figure 6 is an 
experimental slice profile of the uniform-rate pulse obtained on a 1.5 T General Electric 
Signa system by reading out a spin echo in the slice-select direction. Only the 180” 
pulse was selective. Figure 7 shows the magnitude experimental slice profile for the 
VERSE minimum-SAR facsimile pulse. Figure 8 shows the phase from the experi- 

0.00 - - -- - 
0.0 51.0 102.0 153.0 204.0 25! 5.1 0 

Offset frequency (arbitrary units) 

FIG. 6. Magnitude slice profile for uniform-rate 180” puhe. 
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FIG. 7. Experimental minimum-SAR slice profile: magnitude. 

mental data of Fig. 7. Note that the phase is linear in the slice-select direction and, 
hence, can be refocused with gradients. It is common to achieve 65% SAR reduction 
with this formulation. The SAR reduction depends on the particular pulse and the 
ratio G-/G, with higher ratios improving the SAR reduction. 

Peak-RF Constrained Facsimile. Often the peak-magnitude lim itations on one’s 
RF amplifier constrain the selective pulse one may use. For example, the peak am- 
plitude of a fixed-duration sine pulse increases linearly with the number of sine side 
lobes. This is significant since the number of side lobes affects the quality of the slice 
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FIG. 8. Experimental minimum-SAR slice profile: phase. 
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profile. The minimum-time formulation addresses the peak-magnitude constrained 
problem. This formulation was explored in (7). 

The minimum-time formulation is 

min 5 t(k), t k=l 
1111 

subject to gradient and peak-magnitude constraints: 

I b,(k) I < &ax, WI 

g(k) < Gm. 1131 
Casting the constraints in the variable t(k), 

t(k) > At F , 
mu. 

G 
t(k) > At - 

G ’ max 

1141 

[I51 

The solution to this separable problem is obvious. To minimize the total duration, 
one should use the minimum t(k) sufficient to satisfy the constraints. Hence, 

1161 

Figure 9 shows the minimum-time facsimile pulse for the uniform-rate 180” pulse 
shown in Fig. 4. The maximum RF value was set to roughly half the original peak 
value. Note that throughout the duration of the new pulse, either the gradient or the 

40.00 

Gradient ___________............., ,.................... 

‘, ,’ 
._ 

RF 

-20.00 I- 
-0.5 -0.3 -0.1 0.1 

Normalized time 
0.3 0.5 

FIG. 9. Minimum-time facsimile of 180” pulse. 
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RF is at its maximum value. Figure 10 is the experimental slice profile for the m ini- 
mum-time pulse. 

Parametric optimization. Gradient slew-rate constraints were difficult to incorporate 
into the first two formulations. We now consider a parametric optimization that guar- 
antees smooth gradient waveforms while m inimizing SAR. We assume a parametric 
form for the gradient 

g(k) = f(k P), t171 

wherefis a smooth function of k, and p represents a parameter vector. The problem 
then consists of finding the optimal parameters p. A time constraint is required, re- 
writing Eq. [6] in terms of the gradient, 

To be explicit, the parametric optimization problem is 

min SANP) = l$ f(k p) I &PI I *, 
P k=l 

subject to 

1191 

PO1 

The parameterization should be chosen so that both the maximum gradient amplitude 
and the maximum slew rate are intrinsically constrained. Furthermore, the number 
of parameters should be small. This formulation is amenable to numerical optimization. 

0.0 
d 

51.0 102.0 153.0 204.0 255.0 
Offset frequency (arbitrary units) 

FlG. 10. Experimental slice profile for the minimum-time pulse. 
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Usually a simple plot of the SAR as a function of one free parameter is sufficient for 
optimization. 

An example of parametric SAR minimization employs a Gaussian-shaped gradient 
waveform: 

g(k) = G,,[ 1 - ~e-~~-~‘~~]. PII 
A simple algorithm for SAR minimization was developed. SAR was computed as a 
function of a on (0,l). For each value of a, the corresponding value ofp was computed 
to satisfy the time constraint. The VERSE pulse was then calculated using the optimal 
values of a and p. 

We have used this technique (8) for SAR minimization of Silver’s hyperbolic secant 
pulse (4). Figure 11 shows the original hyperbolic secant pulse, and Fig. 12 shows the 
VERSE minimum-SAR facsimile pulse shown on the same scale. The two gradient 
waveforms are plotted in Fig. 13. The minimum-SAR facsimile pulse has 43% of the 
SAR of the original pulse. The VERSE experimental inversion slice profile is shown 
in Fig. 14. The profile was obtained by reading out a spin echo in the slice-select 
direction following an inversion pulse. The slice width of the selective 90” pulse extends 
beyond the boundaries of the figure. Note that the duration of the VERSE pulse is 
identical to the original, and that the new pulse retains the original hyperbolic secant’s 
remarkable insensitivity to RF inhomogeneity. 

OFF-RESONANCE EFFECTS 

Ofiet slices. Offset slices are essential for multislice imaging. It is well known that 
a modulated RF pulse produces a slice offset in proportion to the modulation hequency. 
Fortunately, there is an analogous technique for offsetting slices in the variable-rate 
framework. Instead of modulating with exp{ izoyG( T - t)} to offset a slice by ZO, one 
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l3c. 11. Hyperbolic secant complex pulse. 
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FIG. 12. VERSE RF facsimile of the hyperbolic secant. 

needs to modulate with exp( izOy s:g(T)&}. A proof of the shift theorem is included 
in Appendix B. 

SHIFT THEOREM. Zfa pulse, b,(t), and gradient, g(t), excite a slice M(z, 
br(t)exp(iz,,y j-tTg(r)d7} and the same gradient excite the slice M(z - z,, T). 

T), then 

Chemical-shiji efic& B. inhomogeneity and chemical-shift variations in the patient 
have significant effects on slice characteristics for any excitation scheme. With uniform- 
rate excitation, it is well known that a shift in the local field causes a shift in the slice 
profile. The superposition of such shifts in the receiving coil appears as a convolution 
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FIG. 13. Original and VERSE gradient waveforms. 
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FIG. 14. Experimental inversion slice profile obtained with VERSE pdse. 

of the slice profile with the inhomogeneity distribution. In this section we demonstrate 
the effect of chemical shift on the slice profiles generated by variable-rate pulses. This 
effect will be studied in greater depth in a future paper. 

During uniform selective excitation in the presence of an offset frequency AU, the 
z component of the excitation field is AU + yGz. Hence, the slice is offset in position 
by (AU)/(+). During variable-rate selective excitation, the kth sample has z component 
AU + yg(k)z. Hence, the kth contribution from the piecewise constant RF is offset 
in position by (A.w)/(yg(k)). Because this offset varies, the slice profile is smeared as 
well as shifted. Note that the offset is further the weaker the gradient. This is significant 
since most RF pulses are peaked at the center, requiring that the facsimile gradient 
pulse be very weak at the center. This means that the contributions to the slice profile 
from the key central portions of the RF will be spatially offset the most. From this 
perspective, it should be clear that the larger one “dips” into the gradient, then the 
worse is the off-resonance slice smearing. Of course, with no dip in the gradient, one 
sees only the shift effect. 

To supplement this discussion, we include simulation results at a resonance offset 
frequency of 200 Hz. At 1.5 T, this is roughly the chemical shift between water and 
fat. Figures 15 and 16 show the gradient waveforms and the off-resonance inversion 
slice profiles. Only Mdz) is displayed. Note that the more ambitious the rate variation, 
the more smeared is the off-resonance slice profile. Finally, Fig. 17 shows an experi- 
mental spin-echo slice profile obtained with the minimum-SAR pulse described above 
and with the frequency synthesizer off resonance by 200 Hz. 

IMPLEMENTATION DETAILS 

Although the VERSE concept is essentially straightforward, there are a few imple- 
mentation details sufficiently subtle to warrant explication. Since most imaging systems 
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FIG. 15. Gradient waveforms showing degree of rate variation. 

5 

support only uniformly sampled waveforms, some form of interpolation of variable- 
raia pulses to a uniform-rate format is required. We also discuss a technique for lim iting 
the gradient slew rate. 

Interpolation. Implementing a variable-rate excitation waveform on an imaging 
system requires some interpolation to a uniformly sampled pulse. The problem then 
is to find uniform-rate pulses that have similar properties to the variable-rate waveforms. 
We have tried several techniques and discuss cubic spline interpolation and discrete 
raite variation. 
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FIG. 16. Mhz) slice profiles off resonance by 200 Hz. 
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FIG. 17. Experimental minimum-SAR slice profile off resonance by 200 Hz. 

Cubic spline interpolation (9) fits third-order polynomials through each of the or- 
dered pairs {T(k), b,(k)}, where T(k) is the running sum of the individual t(k): 

T(k) = ;: t(i). WI 
i=l 

The uniform-rate pulse is recovered by uniform sampling of the polynomials. This 
simple technique degrades the slice profile mildly; the degree of degradation depends 
on the smoothness of the variable-rate pulses and the number of samples in the uniform- 
rate pulse. 

The technique of discrete rate variation is motivated by a desire to preserve slice 
fidelity. It is clear that one could obtain a uniform-rate pulse if the t(k) were constrained 
to discrete values, say nA7, by sampling this pulse at AT. Moreover, the uniformly 
sampled pulse will excite an identical slice profile. This fact follows from the ordered 
product solution of the Bloch equation (6); one pulse of duration nAr may be replaced 
by n identical pulses of length Ar. 

Note that the constraint to a discrete set of t(k) will inherently limit the SAR reduction 
possible with VERSE, and that the smaller the T the less the SAR penalty. An obvious 
drawback of this technique then is the inherent trade-off of flexibility for SAR reduction 
and the number of samples needed in the interpolated pulse. We have pursued a viable 
compromise by subsampling a very large array. This technique gives high-fidelity slice 
profiles with only 256 sample values. 

Gradient waveform smoothing. A typical gradient slew-rate limitation is 2 G/cm/s. 
Both the minimum-SAR and minimum-time formulations produce gradient wave- 
forms that violate this gradient constraint. We discuss here a simple smoothing al- 
gorithm that preserves the total duration of the pulse. 

To avoid confusion over rising edge slope and falling edge slope, we define an 
average slew rate 
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Adi) de’ 2 s(i + 1) - g(i) 
At t(z + 1) + t(i) 1231 

Geometrically, this represents the slope of the line joining the midpoints of two piece- 
wise constant gradient pulses. Using the facsimile conditions, 

$@ 
At 

= 2GAt 1Mi + 1) - 1/t(i) 
t(i + 1) + t(i) . 

If .the magnitude of the slew rate exceeds the maximum rate, then t(i + 1) and t(i) 
can be altered to achieve the maximum slew rate while preserving the sum t(i + 1) 
+ t(i). If we define tsum = t(i + 1) + t(i) and the variable T as the smoothed value of 
t(i), then we need to solve the following equation for 7, 

[251 

where 

It is straightforward to show that 

[271 

The positive root must be taken when (Y is positive, that is, when the gradient slope 
is .too steep. The negative root must be taken when a! and, hence, the slope are negative. 
Since the duration of the gradient is preserved pairwise, the total duration is preserved. 
Of course, a new variable-rate RF pulse must be computed with the facsimile conditions 
from the smoothed gradient. We used this slew-rate limitation algorithm for all ex- 
perimental results. 

DISCUSSION 

We have introduced the concept of variable-rate selective excitation and detailed 
an application to SAR reduction of selective pulses. Three algorithms for SAR and 
amplitude reduction were developed. The first offers the minimum-SAR facsimile 
pulse for a specified duration. The second finds the briefest pulse that does not exceed 
a ispecified peak-RF level. Finally, parametric gradients allow for constrained mini- 
mization of SAR with intrinsically smooth gradient waveforms. Experimental results 
for each algorithm were presented. Of the three algorithms, the parametric formulation 
off&s the most robust SAR minimization, since these pulses seem to be the most 
forgiving of gradient-RF timing mismatches. 

More experiments are required to determine the limitations of off-resonance slice 
degradation. It is possible that the natural chemical-shift slice degradation could be 
used to advantage when both spatial and chemical-shift selection are desired. 

Although we have demonstrated VERSE only for 180” pulses and SAR-intensive 
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pulses, the technique is completely general. The emphasis was intended to illustrate 
that some excellent pulses with high SAR should now be reconsidered in a variable- 
rate format. 

APPENDIX A. MINIMUM-SAR FACSIMILE 

The minimum-SAR facsimile gradient design equation is 

min SAR(g) = g g(k) 1 B,(k) ( 2 , 
L7 k=l 

subject to maximum gradient and duration constraints: 

g(k) < Gmx, 

kg$=:* 

Using Lagrange multipliers, we define the quantity L(g, X, CL); 

Lb& A, d = ; b(k), A, pk), 
k=l 

where 

&(k), A, /‘k) = l?(k) t B,(k) 1 2 + x + pk(g@) - Km). 

WI 

1291 

1301 

[311 

1321 

The Lagrange multiplier X is unspecified, but the components pk are restricted to be 
nonnegative (IO). If one of the computed gradient values violates the G,, constraint, 
then the constraint is active. This implies that g(k) = G,, and pk > 0. For inactive 
constraints, ,.& = 0, and g(k) is optimized as if it were unconstrained. 

This is a separable problem and is best solved using dual methods. Following Luen- 
berger (IO), we solve for the quantity 

40, cl) = min Us A, 1.4. 1331 
B 

Since the minimization is separable, 

Minimizing over g(k) yields 

g(k) = 
fi 

(I B,(k) I2 + pk)“2 . 

Note that for the inactive constraint case, & = 0 and 

1341 

vi 
g(k) = [B,(k)1 * [361 
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This important result says that the t(k) should be proportional to 1 B,(k) 1, so long as 
the G- constraint is satisfied. Of course this means that the unconstrained optimal 
RF pulse has constant modulus, an intuitively appealing result. For the active case, 
we still need to optimize @(A, IL) over X and P. Substituting g(k) from Eq. [35] into 
L(g, A, P) we obtain 

$J(& P) = ; 26 1 B,(k) 1’ + ~/c)“~ - X/G - kW%ax. 
k=l 

[371 

The derivative with respect to & obtains 

(IB,(k)l’ + ,&)“2 = Gmm’ [381 

Comparison with Eq. [35] verifies that the active g(k) do indeed assume the value 
G max. Hence, 

g(k) = m in 

APPENDIX B. SHIFT THEOREM 

SHIFT THEOREM. Zfa pulse, bI(t), and gradient, g(t), excite a slice M(z, T), then 
b,(t)exp(izoy f g(T)dT} and the same gradient excite the slice M(z - zo, T). 

ProoJ: Let d(t) = b,(t)e iy~Jrg(r)dr We define the profile m(z, T) to be the response . 
to h(t). We prove the theorem by showing that m(z, T) = M(z - zo, T). We assume 
that M(z, 0) = [0, 0, 11’. 

Neglecting relaxation, the Bloch equation for m(z, t) is 

Mz, 0 -= 
dt rhtt)~ + &t)Y + gW%Nz, 0, 

where the skew-symmetric basis matrices are 

x=[w p, 11, Y=E i ;I. +1 ; w] 

The modulated pulse has the in-phase and quadrature components 

l+(t) = cos d(t)b,(t) - sin O(t)b,(t), 

I&(t) = sin fl(t)b,(t) + cos O(t)b,(t), 

where we have defined e(t) = yzo sir g(r)dT. 
The proof relies on a spatially invariant change of coordinates: 

P(z, t) = eZfl’)m(z, t) 

cos 0(t) sin 8(t) 0 
= -sin c?(t) cos d(t) 0 m(z, t). 

0 0 1 3 

1401 

1411 

[421 

[431 

[441 
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P(z, t) is the magnetization vector in a new “rotating frame.” This frame rotates at a 
variable frequency, --yz&). Note that the final slice profiles P(z, T) and m(z, T) are 
identical since e(T) = 0. Using the chain rule and some algebra, one can show that 
the Bloch equation for P(z, t) is 

dp(z, 0 - = ruh(t)~ + h$w + g(t)(z - G3mm 0, dt 

where bl(t) = h(t) + ih$t). This implies P(z, T) = M(z - zo, T). Since P(z, T) 
= m(z, T), we conclude that m(z, T) = M(z - zo, T). 
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