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Translational and Rotational Forces on Heart Valve
Prostheses Subjected Ex Vivo to a

4.7-T MR System
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Jeffrey W. Hand, PhD,2 and Kenneth M. Taylor, MD,!

Purpose: To assess the magnetic field interactions on 60
heart valve prostheses subjected to a 4.7 T MR system. It
addresses the question of whether heart valves deemed
safe at 1.5 T may pose safety hazards as patients are ex-
posed to increased static magnetic fields.

Materials and Methods: Ex vivo testing was performed to
evaluate translational and rotational forces on 60 heart
valves using previously described techniques.

Results: Translational forces were detected on 58 heart
valves ranging from 0.5° to 7.5°. Seven valves exhibited
paramagnetic/weakly ferromagnetic behavior, and 51
valves exhibited diamagnetic behavior. Rotational forces
were observed for 46 valves.

Conclusions: Criteria previously used for safety assess-
ment of heart valve prostheses and expressed in terms of
magnetic forces suggest the forces observed in this study
are compatible with the safe use of these valves in magnetic
resonance (MR) systems with static fields up to 4.7 T.

Key Words: heart valves; magnetic resonance imaging;
translational and rotational forces; MRI safety; implants
J. Magn. Reson. Imaging 2002;16:653-659.

© 2002 Wiley-Liss, Inc.

THE USE OF MAGNETIC RESONANCE (MR) imaging
has become commonplace in clinical practice despite
its relatively short history. Anxieties persist, however,
about the interaction between the magnetic field and
biomedical implants and devices and how this can af-
fect the patient. Potentially dangerous magnetic field
interactions can occur when ferromagnetic materials

United Kingdom Heart Valve Registry, Department of Cardiothoracic
Surgery, Hammersmith Hospital, London, UK.

2Department of Medical Physics, University College London, London,
UK.

®Radiological Sciences Unit, Hammersmith Hospital, London, UK.

This work has neither been presented at an ISMRM meeting nor has it
been accepted for presentation at a future meeting.

*Address reprint requests to: M.B.E., United Kingdom Heart Valve Reg-
istry, Department of Cardiothoracic Surgery, Hammersmith Hospital,
Du Cane Road, London W12 ONN UK. E-mail: m.b.edwards@ic.ac.uk

Received February 20, 2002; Accepted July 24, 2002.

DOI 10.1002/jmri.10201
Published online in Wiley InterScience (www.interscience.wiley.com).

© 2002 Wiley-Liss, Inc.

are exposed to the static magnetic field. The resultant
translational (attraction or deflection) and rotational
(torque) forces may lead to the dislodgement of the im-
plant and/or its malfunction (1-6), or to a device be-
coming a projectile (7,8), both of which may result in
injuries to the patient and/or MR personnel, as well as
damage to the device.

Numerous studies have been conducted to evaluate
the safety criteria for exposing patients with biomedical
implants and devices to MR systems and procedures.
Results indicate that few biomedical implants are ab-
solutely contraindicated for MR imaging (2-6). Patients
who have received many types of implants, including
metallic ones, are considered safe to undergo a MR
procedure, as long as the implanted device is non-fer-
romagnetic or, if the magnetic attraction of the implant
is much less than the forces applied in its in vivo appli-
cation (9-15). Safety and compatibility of devices im-
planted in patients exposed to a MR system must take
into consideration the potential for injury to the patient,
damage to or impairment of function of the device,
and/or its impact as a potential source of image arti-
facts. Studies to date have focused mainly on MR sys-
tems with strengths of 1.5 T or less; however, higher
field strength MR systems are being developed, and
there are currently approximately 50 3- to 4-T MR sys-
tems in operational use at research and clinical insti-
tutions (3,16-20).

Higher B, field strength MR systems have the poten-
tial to enhance the clinical use of MR imaging, MR
spectroscopy, and functional MR imaging. However, pa-
tients will potentially be exposed to increased static
magnetic fields, and, as a likely consequence, larger
time varying fields. Implants currently deemed safe in a
1.5-T field, may, for example, pose significant safety
hazards at higher field strengths (18,20-22). It is there-
fore important to test biomedical implants and devices
at higher field strengths than has been done hitherto to
identify and assess magnetic field interactions and to
identify the potential hazards for patients and person-
nel. In this study, we assessed the magnetic field-in-
duced forces on 60 different heart valve prostheses ex-
posed ex vivo to a 4.7-T MR system.
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Magnetic Field Interactions on Heart Valves
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MATERIALS AND METHODS
Heart Valve Prostheses

Sixty heart valve prostheses were investigated and eval-
uated for MR safety. The study included many widely
implanted heart valves (23), 35 of which were mechan-
ical and 25 were either bioprostheses or valves made
from human tissue. Full details of the individual heart
valve prostheses are shown in Table 1.

4.7-T MR System

A 4.7-T super-conducting passively shielded MR sys-
tem (Magnex, Oxford) with a clear bore of 90 cm and
220-ton iron shield was used in the investigation. To
relate the forces exerted on the heart valve prostheses
to the static magnetic field gradient of the MR system,
the gradients were measured using a Bell 640 Incre-
mental Gauss Meter and axial probe. The highest mag-
netic gradient measured was 5 T/m and occurred at a
distance of 40 cm from the portal of the MR system
(approximately 95 cm from the magnet center).

Assessment of Magnetic Field Interactions

A standard technique was used to assess interactions
between the magnetic field and biomedical implants
and devices (4,10,24). The forces giving rise to deflec-
tion and rotation on each of the 60 heart valve prosthe-
ses were assessed using the non-ferromagnetic test rig
shown in Figure 1. The test rig was placed parallel to the
magnetic field and the deflection angle test was con-
ducted at the position inside the shielded 4.7-T MR
system where the spatial gradient of the magnetic field
was determined to be at a maximum. Each heart valve
was suspended at its estimated center by a piece of
light-weight thread 30 cm long. A mirror was positioned
at 45° to a protractor to allow the investigators to accu-
rately read and record the angle of deflection. To avoid
parallax error, the protractor was etched on opaque
glass. The accuracy of the measuring device was * 0.2°.
Each heart valve was returned to the vertical position
twice, and two investigators confirmed the angle of de-
flection for both measurements.

The translational force exerted on materials with sus-
ceptibility x << 1 is given by:

vV 4B
X B,
W 0z

Ftranszi (1)

where V is the volume of the material and the only
significant component of the magnetic field gradient VB
is assumed to be 9B/dz (i.e., 0B/dz > dB/dx or 0B/dy).
The relationship between Fi.,s and 6, the observed an-
gle of deflection of the prosthesis is

F = mg sind (2)

where m is the mass of the prosthesis and g is the
acceleration due to gravity (9.81 meters/ second?). The
sense of deflection is dependent upon whether the pros-
thesis is diamagnetic (negative x) or paramagnetic (pos-
itive x) (25).

Edwards et al.

Further assessment of magnetic field interactions
was conducted to determine the presence of magnetic
field-induced torque. Each heart valve was placed both
parallel and perpendicular to the magnetic field near
the center of the MR system, where the field was ho-
mogenous and had been measured at its maximum (4.7
T), in order to observe any movement in terms of rota-
tion or alignment to the magnetic field. Each valve was
suspended vertically by a lightweight thread attached
to the sewing ring and suspended from the test rig
outside the MR system in such a way that its orienta-
tion was parallel (180°) or perpendicular (90°) to the
long axis of the bore (Fig. 2). The rig was then carefully
moved into the center of the MR system taking care not
to change the orientation of the suspension system.
Two observations were taken for each position and the
following three-point qualitative scale of measurement
was applied; O = zero torque; +1 = alignment or rota-
tion of > 0° to 45° from the starting position; +2 =
alignment or rotation of > 45° to 90° from the starting
position.

Magnetic moments were calculated for the individual
prostheses because they enable the forces on them to
be estimated in any magnet once the field gradients
present have been measured. In addition, the force ex-
erted upon each of the heart valves exposed to the 4.7-T
MR system that experienced a deflection was calculated
in order to compare this with the force of the naturally
beating heart to determine whether a field of 4.7 T has
the potential to dislodge or move the valve in situ.

RESULTS

Table 2 presents the test results for 60 different heart
valve prostheses evaluated for magnetic field interac-
tions arising from a 4.7-T MR system. Only two valves
showed zero interaction with the magnetic field, both in
terms of deflection and torque. All the other heart valves
demonstrated some measure of interaction. Deflection
angles for 59 of the heart valves ranged from 0° to 7.5°.
It was not possible to obtain an angle of deflection for
one valve, the Carbomedics Valve Graftl, due to the
length of the root graft interfering with the freedom of
movement of the valve.

Within the mechanical group of valves, only four dis-
played a zero deflection; all other valves deflected by
between 0.5° and 7.5°. The bioprosthetic and human
tissue valves displayed deflections between 0° and 7°,
with the majority of valves deflecting by 2°. The higher
deflections recorded were seen in all the valve groups.
Seven valves were attracted towards the center and
highest field, indicating they were slightly paramag-
netic/weakly ferromagnetic. All other valves deflected
away from the center of the magnet, corresponding to
diamagnetic behavior (Table 2).

Only 12 of the 60 heart valves did not align or rotate
towards the magnetic field. When placed parallel to the
magnetic field, 15 valve prostheses gave measurements

!This valve had been loaned to the study for evaluation. Therefore, the
investigators were unable to trim the root graft for the purposes of the
study.



Magnetic Field Interactions on Heart Valves

Figure 1. Diagram of the 4.7-T MR sys-
tem and device used to measure trans-
lation and rotational forces on pros-
thetic heart valves (side view).

of +1, i.e., aligned/rotated between > 0° and 45°, and
eight valves measured +2 on our scale, i.e., aligned/
rotated between 45° and 90°. Twenty-three heart valve
prostheses placed perpendicular to the magnetic field
rotated by = 45°, and 21 valves by between 45° and 90°
(Table 2). This was true for mechanical, bioprosthetic,
and human tissue valves.

DISCUSSION

MR imaging is used in an increasing number of pa-
tients. Each year, 150,000 heart valves are implanted
worldwide (26). It is probable, therefore, that a number
of patients with heart valve prostheses will be referred
for an MR procedure. MR imaging is considered to be
one of the safest non-invasive imaging modalities. How-
ever, anxieties persist amongst MR personnel about the
potential dangers of performing a MR procedure on a
patient with a biomedical implant or device. Such con-
cerns relate to the possibility of a harmful interaction,
namely translational and rotational forces, between the
magnetic field and the implanted device (1-8). Yet, de-
spite such apprehension, many implantable devices,
including heart valves, are considered safe when im-
planted in a patient about to undergo a MR procedure
when the static magnetic fields are 1.5 T or less
(10,14,15,18,23,24,27-30). However, with the develop-
ment of new systems with higher field strengths, it is
possible that implants found to be diamagnetic or
weakly ferromagnetic at field strengths of 1.5 T or less
will be subjected to sufficiently large translational or
rotational forces to present a potential hazard to the

Figure 2. Diagram showing
orientation of heart valve
prosthesis measuring rota-
tional forces in a 4.7-T MR
system (side view) (a) The
valve annulus is parallel to
the magnetic field. (b) The
valve annulus is perpendicu-
lar to the magnetic field.
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Direction of
magnetic field

+——

patient in these systems. Comparison of these results
with those of a previous study using some of the same
valves exposed to a 1.5-T MR system show a substantial
increase in the translational forces, raising the possi-
bility that further increases in field strength may indeed
pose a threat to patient safety (24).

Translational attraction of a component is dependent
upon the amplitude of the static magnetic field and its
spatial gradient, as well as the object’s dimensions,
mass and orientation, its magnetic susceptibility, and
the amount of fibrosing tissue securing the implant in
place. In this study of 60 heart valves, the translational
force gave rise to deflections that ranged from 0° to 7.5°.
Only five valves did not deflect from the perpendicular.
Although the alloys used in the heart valves tested, i.e.,
titanium, stellite, elgiloy, pyrolitic carbon, etc., are in-
trinsically non-magnetic and have been recommended
alloys to use in the manufacture of biomedical implants
(1), significant magnetic properties can be induced in
such alloys by bending or cutting them, which may
explain the deflections observed even with the porcine
valves.

Forces acting on the object to rotate or align it parallel
to the magnetic field depend on B,?, the object’s dimen-
sions, and its angle relative to the static magnetic field.
Qualitative measures of torque in our study ranged
from O to +2, and most valves displayed some align-
ment or rotation parallel to the magnetic field. However,
it is not anticipated that these rotational forces will
present a hazard or risk to the patient because none of
the valves aligned with the magnetic field with any sub-
stantial torque; they only drifted into alignment.

Direction of magnetic field

-
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Table 2
Magnetic Forces Acting on 60 Heart Valves at 4.7 T

Edwards et al.

Magnetic

No. valve Ste (o (Gegiess) (Paralle)  (Perpondioulan® moment o Ny Chear ()
1 ATS Medical Mitral 25 1 0 0 133 X 10°° 6.6 x 1073 4.4-6.9
2 Beall Mitral 29 2 2 2 1026 X 107 51x 1073 5.9-9.2
3  Biocor Aortic 23 0 1 0 0 0 2.9-35
4 Bijork Shiley 60°cc Aortic 27 5 1 1 692 x10°¢ 35x10°° 4.0-4.9
5 Bjork Shiley 60°cc Valve Graft Aortic 25 4 2 2 1011 x 10°° 50x 1073 4.6-5.6
6  Bjork Shiley Conical Disc Mitral 21 3 0 0 454 x 107® 22 x 1073 3.1-4.8
7  Bjork Shiley Conical Disc Mitral 21 3.5 1 1 486 X 10°° 24 x10°8 3.1-4.8
8 Bjork Shiley Spherical Disc Mitral 31 3.5 1 1 871 x 107° 4.4 %1073 6.8-10.6
9 Bjork Shiley Monostrut Aortic 17 4 1 1 482 X 10°© 24 x10°8 1.6-1.9

10 Bjork Shiley Monostrut Mitral 25 5 2 2 755 X 107° 3.8x107° 4.4-6.9

11 Bjork Shiley Monostrut Mitral 23 5 1 1 980 X 10°° 49x10°8 3.7-5.8

12 Bjork Shiley Monostrut Mitral 33 4 0 2 1359 X 107® 6.8 X 1073 7.7-12.0

13 Carbomedics Aortic 21 0 1 1 0 0 2.4-29

14 Carbomedics Aortic 23 0.5 1 1 50 x 107 25x 1074 2.9-35

15  Carbomedics Mitral 31 0.5 2 2 102 X 10°° 51 x10°% 6.8-10.6

16 Carbomedics Mitral 29 0.5 0 2 92x10°® 46x10°* 5.9-9.2

17 Carbomedics Valve Graft Aortic 34 - 2 2 - - 6.4-7.7

18 Carpentier Edwards Aortic 31 3 0 0 642 X 107° 32x 1078 5.3-6.4

19 Carpentier Edwards Pericardial Mitral 33 7 1 1 1508 x 10°° 75x 1073 7.7-12.0

20 Carpentier Edwards Supra-annular ~ Mitral 31 25 2 0 634 X 107° 32x107° 6.8-10.6

21 Durafic Aortic 33 6° 0 2 611 X 10°© 31x10°3 6.0-7.3

22 Durafic Mitral 23 2¢ 0 1 279 X 107° 1.4x1073 5.0-7.7

23  Duromedics Aortic 27 0.5 0 2 265 X 10°° 1.3x10°3 5.3-6.5

24 Duromedics Mitral 29 1 0 1 87 X 107° 4.4 x1074 5.9-9.2

25 Hancock Pericardial Mitral 25 1 0 0 166 X 10°° 8.3 x 104 4.4-6.9

26 Hancock Modified Orifice Aortic 21 1 2 0 139 X 107° 7.0x 1074 2429

27  Hancock Modified Orifice Il Aortic 25 1 0 0 174 X 107° 8.7 x 1074 3.4-4.2

28 Intact Aortic 19 2 0 0 218 X 107° 1.1 x1073 2.0-24

29 Intact Mitral 25 2 0 1 41 x10°® 21x1074 4.4-6.9

30 lonescu Shiley Aortic 23 1.5 0 1 286 X 107° 1.4x1073 3.9-4.7

31 Jyros Aortic 26 6.5° 0 2 1171 X 10°° 59x 1073 3.7-45

32  Jyros Mitral 30 7.5° 0 2 1839 X 107° 9.3x 1072 3.4-9.9

33  Labcor Aortic 21 2 1 1 245 x 10°© 1.2x10°3 2.4-29

34 Labcor Mitral 25 25 0 0 441 x 10°° 22x107° 4.4-6.9

35 Liotta Aortic 23 2 1 0 338 X 10°° 1.7 X 1074 2.9-35

36  Medtronic Aortic 23 1 1 2 98x10°¢ 49x10°* 2.9-35

37  Medtronic Mitral 23 2 0 2 279 X 10°© 1.4x10°3 3.7-5.8

38 Medtronic Mitral 29 1 0 2 191 X 107° 9.6 x 1074 5.9-9.2

39 Mira Mitral 27 0 0 0 0 0 5.2-8.0

40 Mitroflow Aortic 25 2 1 1 246 X 107° 1.2x 1073 3.4-4.2

41 Mitroflow Aortic 25 2 2 2 221 X 10°© 1.1 x10°3 3.4-4.2

42 Mitroflow Mitral 29 2 0 2 287 X 107° 1.4x1073 5.9-9.2

43 Mitroflow Synergy Aortic 21 3 0 0 217 x10°®  1.1x10°% 2.4-2.9

44 Mosaic Aortic 29 2 2 1 634 X 107° 32x 1078 4.6-5.6

45 Omniscience Mitral 25 0 0 2 0 0 4.4-6.9

46  On-X Aortic 19 3 0 0 327 x10°¢ 16x10°° 2.0-2.4

47  On-X Mitral  31-33 3 0 0 776 X 10°© 39x10°° 6.8-12.0

48 Smellof Cutter Aortic 21 0 0 2 496 X 107° 25x 1073 2429

49 Sorin Pericarbon (stented) Mitral 33 1.5 1 1 393 X 10°© 20x 1078 7.7-12.0

50 St Jude Mechanical Aortic 21 3 0 2 264 X 107° 1.3x 1073 2429

51 St Jude Mechanical Mitral 27 3.5 0 2 505 x 10°© 25x1073 6.9-10.7

52 Starr Edwards Mitral 32 0 0 0 0 0 7.2-11.3

53  Starr Edwards Mitral 32 6.5° 0 0 2642 x 10°® 132 x10°° 7.2-11.3

54 Starr Edwards Mitral 26 4¢ 0 1 1008 X 107° 50x 1072 6.4-9.9

55  Tascon Aortic 23 6° 0 1 1813 X 10°° 9.1 x 1073 3.9-4.7

56  Ultracor Aortic 23 1 0 2 109 x 107¢  55x 1074 2.9-35

57  Ultracor Mitral 25 1 0 1 134 x 10°° 6.7 x 1074 4.4-6.9

58  Wessex Aortic 31 2 1 1 494 x10°¢ 25x10°° 5.3-6.4

59  Wessex Mitral 25 2 0 1 379 X 10°© 1.9x10°3 4.4-6.9

60  Xenofic Aortic 23 2 0 1 457 X107 23 x10°° 2.9-35

@Parallel to the magnetic field.
bPerpendicular to the magnetic field.
°These valves were attracted towards the centre of the magnet, all other valves deflected away from the center of the magnet.

An implant or device is considered unsafe to undergo
a MR procedure if it is known to be ferromagnetic,
and/or if ex vivo testing has identified it to deflect at an
angle = 45° (31) and if the magnetic force on the im-

plant is a significant fraction of that applied in the
normal in vivo application of the device (9-11). Table 2
shows that all the heart valves fell well within the cur-
rent safety limits, and the resultant magnetic forces
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exerted on each heart valve prosthesis was significantly
smaller than the mechanical forces of the beating heart.
Moreover, heart valves are secured by multiple sutures
and become endothelialized after six weeks, serving to
retain the prosthesis in place during exposure to the
MR environment (9,29). Based on these criteria, all 60
heart valve prostheses listed in Table 1 would be con-
sidered safe to undergo a MR procedure at 4.7 T or less.

Although this study has not investigated the potential
hazards of either time-varying gradient magnetic fields
or the radiofrequency (RF) excitation fields at 4.7 T, the
authors believe heating of components (1,9,12,32-33)
due to the latter is not expected to be dependent on
magnetic field strength, provided RF peak power re-
quirements are not substantially increased. However,
higher field strength magnets may require higher RF
and gradient fields, and, therefore, the appropriate al-
lowances must be made for increased potential RF
heating.

Sixty heart valve prostheses were evaluated for MR
safety by studying magnetic forces exerted on them
within the bore of a 4.7-T system. Criteria previously
used for safety assessment of biomedical implants and
devices and expressed in terms of magnetic forces sug-
gest that the forces observed in this study are all com-
patible with the safe use of these valves in MR systems
with static fields up to 4.7 T.
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