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The Agfa Mayneord lecture: MRI of short and ultrashort T2 and

T2* components of tissues, fluids and materials using clinical

systems
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ABSTRACT. A variety of techniques are now available to directly or indirectly detect
signal from tissues, fluids and materials that have short, ultrashort or supershort T2 or
T2* components. There are also methods of developing image contrast between tissues
and fluids in the short T2 or T2* range that can provide visualisation of anatomy, which
has not been previously seen with MRI. Magnetisation transfer methods can now be
applied to previously invisible tissues, providing indirect access to supershort T2

components. Particular methods have been developed to target susceptibility effects
and quantify them after correcting for anatomical distortion. Specific methods have
also been developed to image the effects of magnetic iron oxide particles with positive
contrast. Major advances have been made in techniques designed to correct for loss of
signal and gross image distortion near metal. These methods are likely to substantially
increase the range of application for MRI.
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It is a pleasure to thank the president and members
of the council of the British Institute of Radiology for
the opportunity to honour the memory of Professor
Mayneord, who had a pivotal role in founding medical
physics in the UK [1, 2]. He was prescient in suggesting
in 1945, a time when the use of magnetism in medicine
was in disrepute, that the study of magnetic suscept-
ibility could yield both useful and interesting informa-
tion. This was published in the immediate aftermath of
World War II in an issue of the British Medical Bulletin
celebrating the 50th anniversary of Roentgen’s discovery
of X-rays [3]. It was also a year before the discovery of
nuclear magnetic resonance (NMR), 28 years before the
discovery of MRI, and over 40 years before the general
use of susceptibility-weighted imaging (SWI) [4, 5] and
the observation of the variation in bulk magnetic suscepti-
bility of tendons, ligaments and menisci with orienta-
tion to the static magnetic field [6, 7].

It is also a pleasure to acknowledge the critical role of
Gordon Higson of the Department of Health in helping to
fund the early development of X-ray CT by Sir Godfrey
Houndsfield and others at EMI and in supporting the early
development of MRI partly from royalties derived from
CT [8]. This was a major contribution to the work done by
MR groups based in the UK in the late 1970s and led to
clinical imaging in 1980–1 [9–14]. A particular regret is the
death of Brian Worthington, a close collaborator with both
Bill Moore and Sir Peter Mansfield, and author of the first
MRI study on a series of patients [13]. Worthington wrote

extensively on neuroradiology, obstetrics and gynaecol-
ogy, as well as image perception.

During the first year of clinical MRI, only steady-state
free precession (SSFP), mobile proton density (rm) and T1

weighted clinical images were available. Clinical heavily
T2 weighted spin-echo (SE) images arrived suddenly in
February 1982 and transformed the practice of MRI [15–
17]. These images showed abnormalities with high signal
and contrast, and they rapidly became the mainstay of
clinical diagnosis in the brain. Even with the subsequent
development of new types of sequences, such as fast spin
echo [18], clinical diffusion weighted imaging [19] and
fluid attenuated inversion recovery [20], detection of
signal from longer mean T2 relaxation components still
remains the dominant form of MRI for diagnosis of
parenchymal disease in the brain and much of the rest of
the body.

However, even in 1981, low- or zero-level signals were
recognised in cortical bone by Smith [21] and Edelstein et
al [22]. The appearance was attributed to short mean T2

components in this tissue leading to undetectable signal
levels at the time of data acquisition. The lack of signal
from normal tissue was useful in providing a dark
background against which abnormalities in cortical bone,
with mean T2s sufficiently increased to provide detectable
signal, could be recognised; however, the absence of
signal meant that there was no possibility of measuring
normal values of rm, T1 or T2, nor of studying normal
perfusion. In addition, there was no opportunity for active
contrast manipulation, little or no distinction between
adjacent short T2 tissues and no normal contrast enhance-
ment or effects from molecular imaging agents. As a
result, the study of cortical bone and other MR ‘‘invisible’’
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short T2 tissues, such as tendons, ligaments and menisci,
has been more limited than that of other tissues, such as
brain, liver and muscle, where MR signals are readily
detectable with clinical systems.

In spite of these difficulties, there has been a
proliferation of new approaches to imaging short T2

tissue components, including options for developing
tissue contrast in the short T2 and T2* range, as well as
methods of imaging in the presence of metal. This has
included solutions and partial solutions to technical
problems, some of which have appeared intractable for
20 years or more.

The theme of this paper is clinical MRI of ‘‘dark
matter’’ (i.e. tissues, fluids and materials that show little
or no signal with conventional imaging techniques). It
includes direct and indirect imaging as well as spectro-
scopy. As an initial step, some general principles under-
lying this type of imaging are reviewed.

General principles

The protons in rigid crystals or solids typically have
very short T2s due to fixed field effects; however, in
solution, motion of molecules leads to averaging of spin
interactions over time and much longer T2s. This gives
rise to the concept of rm, representing more mobile tissue
components with T2s that are long compared with those
of immobile components. The term ‘‘visible’’ can also be
applied to the longer T2 components since they produce
detectable signal, and ‘‘invisible’’ can be applied to short
T2 components, which do not result in detectable signal.

It is important to distinguish between the T2 of the
tissue or fluid that reflects effects such as dipolar–dipolar
interactions and chemical exchange, and the observed T2

(T2*) of tissues or fluids that also reflects local suscept-
ibility effects, chemical shift and J-coupling, as well as
flow, magic angle and other effects. The dominant effect
among these is often from susceptibility; this results in a
shortening of T2* relative to T2 due to inhomogeneous
magnetic fields within voxels and intravoxel dephasing.

It is often useful to consider relaxivity, R2 or R2*, which

is the reciprocal of T2 or T2*, i.e.
1

T2

or
1

T2�
, rather than the

transverse relaxation times. This is because relaxivities
are additive so that, for example, within a voxel

1

T2�
5

1

T2

+ cDB, or R2* 5 R2 + cDB

Thus, the observed relaxivity is the sum of the tissue
relaxivity and c times the inhomogeneity in B (i.e. DB)
within the voxel. Other relaxivities (owing to chemical
shift, contrast agents, etc.) can be added in the same way.

When there is a majority of short T2/T2* components
in a tissue, fluid or material, it typically appears low-
signal or dark with clinical imaging techniques. A minority
of short T2/T2* components is common in many tissues. In
this situation, signal is usually apparent from longer T2/
T2* components, but little or no contribution to the signal
comes from the short T2/T2* components. All tissues have
some short T2/T2* components from protons in large
molecules, including those in membranes.

The focus in this paper is on tissue and fluids, but
materials may also have short T2/T2*s and/or low or

zero mobile proton densities. This includes relaxation
agents (such as gadolinium chelates) and susceptibility
agents (such as magnetic iron oxide particles, MIOPs).
These materials may produce very large susceptibility
differences in tissues and fluids, and can result in very
short T2*s. Many materials, including most plastics, also
have short T2s. Other materials, such as contrast agents
and metals, may have no significant rm but can produce
strong effects on surrounding tissues.

There is no precise definition of what constitutes a
short echo time (TE) and what is an ultrashort TE (UTE),
and there is argument about how TE should be measured
for tissues with short T2s [23–25]. For simplicity, a short
TE is taken to be less than 10 ms, and an ultrashort one
less than 1 ms. It is also possible to define short T2/T2*s as
less than 10 ms, ultrashort as less than 1 ms and super-
short as less than 0.1 ms. This reflects the fact that, with
older MR systems and conventional SE sequences, tissues
with T2s or T2*s less than 10 ms produced little or no
signal and were ‘‘invisible’’. With more recent systems
and gradient echo sequences, the cut-off is closer to 1 ms.
Ultrashort pulse sequences can often directly detect signal
in the 1–0.1 ms range, but indirect methods are usually
required to image supershort T2 (,0.1 ms) tissues.

MR signals are usually spatially encoded using fre-
quency and phase effects produced by linear applied
gradient fields. Susceptibility effects also include changes
in the local field, and these may result in errors in locating
the position of the signal. In fact, the local susceptibility
differences may be greater than those of the encoding
gradient magnetic field and result in image distortion.
This means that, in addition to shortening of T2 owing to
susceptibility effects, resulting in low signal, image
distortion may be present with both loss of signal and
local ‘‘pile up’’ (i.e. increase in signal where signals from
different regions are incorrectly superimposed on one
another). In general terms, phase encoding tolerates gross
field distortion much better than frequency encoding both
for slice selection and spatial localization.

Quantitation of tissue or fluid T2*s is made difficult by
the addition of other effects; this results in measured
values (T2*s) that include effects from local susceptibility
and other effects. Measurements may also be con-
founded by distortion of the spatial encoding process
by susceptibility effects. It may also be difficult to assign
susceptibility effects to a particular tissue and to distin-
guish them from inhomogeneity in B0. There are also
difficulties in accurate measurement of both T2/T2* values
and the relative proportions of two or more different
components with the signal-to-noise levels attainable in
reasonable times on clinical systems.

Imaging may be regarded as direct when it detects signal
from the tissues, fluid or materials of interest, and indirect
when the signals are detected from other species that are
affected by the short T2/T2* tissues, fluids or materials of
interest. For short T2/T2* tissues, the most common way
of imaging directly is to use a short TE or UTE to detect
short T2/T2* signals before they have decayed to zero or
the noise floor. It is also possible to place highly ordered
collagen-rich tissues at the magic angle to prolong their
T2/T2s* to make the signal detectable. In other situations it
is possible to increase the TE so protons in fat and water,
which are out of phase, can become in phase, and the
combined signal can then become detectable. Likewise,

G M Bydder

1068 The British Journal of Radiology, December 2011



spin echo sequences can be used to increase T2* by
reversing the effects of local field inhomogeneities.

Indirect forms of imaging short T2/T2* components
include visualisation of the extent of invisible short T2

tissues when they are surrounded by a longer T2 tissue
with detectable signal. Another indirect method is to
observe the effect of short T2 tissue’s susceptibility or
relaxation on the surrounding or adjacent longer T2

tissues. An example of this is to assess trabecular bone by
the effect this tissue has on adjacent longer T2* of red or
yellow bone marrow. Relaxation agents typically work in
this way, with no signal directly detectable from them,
but the effects detectable through relaxation or suscept-
ibility effects produced on the protons in associated water
or other tissues. A third indirect method is magnetisation
transfer (MT), which typically magnetically saturates
invisible short T2 components and results in a change in
the magnetisation transferred to the longer T2 compo-
nents. This usually results in a shortening of T1 and a
reduction in detectable signal in the detected longer T2

component.
At present, several different approaches are being used

to image short and ultrashort T2 and T2* tissues, fluids and
materials. These may involve both direct and indirect
approaches, as well as situations where the primary
objective is detection or correction of image distortion
owing to susceptibility effects rather than detection of
short T2/T2* signal, although undetectable signals may
become detectable as a consequence of this correction.

N The first approach is direct and regards the problem
as essentially one of imaging short T2 components.
This can be addressed by using a short TE/UTE and/
or a method of increasing T2/T2* so that signal can be
detected from the tissue or fluid. This includes a
variety of techniques. This approach is frequently
associated with methods of reducing or suppressing
the signal from longer T2 components to isolate the
short T2 components and improve conspicuity or
assist with quantitation.

N The second approach is MT that is indirect. This may
be extended to invisible tissues by using short TE
approaches. The definition of free and bound pools
then changes, and there may be increased problems in
isolating MT effects because of direct saturation of the
newly visible pool.

N The third approach has been termed SWI, where
magnitude and/or phase data from a gradient echo
sequence are typically used to recognise loss of signal
from the tissue itself and/or surrounding tissues if the
T2* levels of the tissue are too short to be detectable
with the TE in use. This technique can be direct,
indirect or both. The TE necessary to produce useful
contrast between normal and abnormal tissues in an
organ may result in loss of signal in other areas of the
image where greater susceptibility differences are
present. The basic approach is qualitative and may
involve empirical combinations of magnitude and
phase data. The technique has limitations in situations
where the signal becomes undetectable so that it is not
possible to calculate magnitude or phase data, and in
situations where the image becomes distorted because
of problems in slice selection and/or frequency encoding.
A development from this is quantitative susceptibility

imaging (QSI) or susceptibility SWI mapping (SWIM),
where approaches are used to assess and correct for the
effect of static field perturbations on spatial encoding of
the signal and, therefore, to try to avoid compromising
signal values. This typically requires the solution to a
complex inverse problem, but it is now an area of
considerable interest.

N The fourth is positive contrast or white matter imaging,
which assesses the effect of MIOPs. These particles
typically reduce the signal from tissues as a result of a
decrease in T2 and susceptibility effects. This tends to
produce a loss of signal in the area of the image that is
of most interest. This can be a particular problem when
it occurs in tissues with pre-existing very low signals,
so that the reduction is undetectable; however, it is also
a problem in other areas where the loss of signal may
lead to loss of anatomical detail and poor localisation of
the site of contrast agent accumulation. One approach
to this problem is to correct the field distortion induced
by the MIOPs and allow signal to be detected where
these particles accumulate. Different techniques have
been used, but the observed result may still reflect both
contrast accumulation and field distortions produced
by the agent.

N The fifth group of techniques is targeted at imaging in
the presence of metal. Metals may show very large
susceptibility differences from those of tissues and
can produce very large susceptibility effects, with loss
of signal due to T2* shortening and gross image
distortion. The primary objective in this situation is to
deal with the image distortion and restore image
integrity to a sufficient degree to make the images
clinically useful. In the process, short T2* tissues and
fluids may become detectable.

There is an overlap between these approaches, and
they may be combined. In some situations, it may be
appropriate to ignore the effects of susceptibility differ-
ences in producing image distortion and regard the
problem as one of detecting short T2 signals, whereas
in others, image distortion due to susceptibility is the
primary problem that needs to be addressed.

Tissue, fluid and material properties

The tissues of the human body can be divided into
those that are ‘‘visible’’ in the sense that they provide
detectable signal with clinical MR systems and those that
are ‘‘invisible’’ because their mean T2s or T2*s are too
short to provide a detectable signal. All tissues have
multicomponent T2s. This means that they contain a
mixture of short and long T2 components. The invisible
tissues have a majority of short T2 components and a
minority of long T2 components. The latter components
typically do not provide enough signal to be detectable
in relation to image noise levels. The ‘‘visible’’ tissues
of the body (such as brain, liver and muscle) have a
majority of long T2 components that produce signal with
conventional techniques. They also have a minority of
short T2 components, which do not contribute signifi-
cantly to the detectable signal.

Within the invisible group of tissues (mean T2,10 ms)
it is possible to differentiate a first group (including
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tendons, ligaments and menisci) with short mean T2s of
approximately 1–10 ms and a second group (including
cortical bone and dentine) with ultrashort mean T2s of 0.1–
1 ms. There is also a third group (including dental enamel,
protons in membranes and molecules, as well as crystal-
line bone) with supershort mean T2s of less than 0.1 ms.
Materials can also be classified in a similar way.

An important factor in this context is the magic angle
effect [26, 27], because it can greatly increase the T2 of
short T2 tissues, such as tendons, ligaments and menisci.
When the orientation of tissues that contain highly

ordered collagen is changed, their T2 varies from a mini-

mum at h 5 0u, where dipolar interactions are greatest, to a
maximum at 3 cos2 h – 1<0 and h 5 55u, where h is the
orientation of the fibres to B0. The increase can be large, for
example from 0.6 ms to 21 ms [26] or from 7 to 23 ms [27]
in the Achilles tendon.

A recently described phenomenon is directional
susceptibility in tendons, whereby their bulk magnetic
susceptibility varies with orientation to B0, with signals
at the water end of the proton spectrum when fibres are
parallel to B0 and at the fat end of the spectrum (lower
frequency) when fibres are perpendicular to B0 [6]. The
difference is relatively large (of the order of three parts
per million).

The rm of tissues also varies markedly; bone has a rm

of 15–20%, and semisolid tissues (such as tendons and
ligaments) have values of 60–70%. rm is generally a more
important factor in generating contrast with short T2

tissues than it is with longer T2 tissues. The low rm for
bone places a limit on the maximum signal that can be
obtained from it. Both the low rm and the short T2* of
cortical bone contribute to its low signal intensity.

The mean T1s of some tissues with a majority of short
T2 components is short, with cortical bone having a
particularly short T1; in fact, less than that of fat [28]. The
relative differences in mean T2 or T2* between normal
and abnormal tissues are often much greater than those
in mean T1.

Relative to air, soft tissues generally show a suscept-
ibility difference of approximately 29 ppm, and bone
and calcified tissue approximately 211 ppm. By compar-
ison, the principal peak of fat resonates at approximately
212 ppm. Paramagnetic materials show small positive
frequency shifts and superparamagnetic materials show
greater positive shifts. Metals (for example titanium),
metal alloys and some types of stainless steel may show
very large positive shifts of 10 s to 1000 s of parts per
million. The changes in field may be considerably greater
than machine gradient fields used to encode MR signals,
and therefore may cause image distortion.

In disease, increases in T2 are frequently seen, but
decreases in T2 may be seen with increased iron content
and in other disease processes. Loss of magic angle effect
may be seen in degeneration and fibrosis.

Acquisition methods for short T2/T2*
components

Some of the techniques now being used to directly de-
tect signal from tissues on clinical systems have been
used in material science and tissue studies using small-
bore high-field spectrometers for many years. The methods

are now in use on clinical systems that are usually lower
performance in terms of B0, gradient strength, slew rate
and peak B1 field (Table 1). The prototype sequence for
imaging short T2 tissues is single-point imaging (SPI),
where a single point in k-space is acquired with a UTE.
This is typically used with three-dimensional (3D) phase
encoding, which tolerates field distortions well, but
unfortunately makes the technique time-consuming even
with optimised k-space sampling [29].

It is possible to acquire several points at a time, which
makes the sequences more time-efficient, but results in
longer TEs for the additional points [30]. There are also free
induction decay (FID)-based techniques, where a radial
line of k-space is acquired from the centre out [31]. This
can be coupled with long T2 water and fat suppression to
selectively image short T2 components as water- and fat-
suppressed proton projection imaging (WASPI) [32]. Other
trajectories in k-space are possible, including a stack of
spirals (SOS) [33] and echo planar imaging (EPI).

A particularly innovative method of imaging short T2

components is to divide the excitation pulse into sub-
pulses and acquire data after each of these pulses. This is
known as sweep imaging with Fourier transformation
(SWIFT) or simultaneous excitation and acquisition
(SEA). The acquired data need to be deconvolved with
the excitation pulse, but the end result is a much more
time-efficient acquisition than with typical 3D acquisi-
tions [34–37]. Other techniques that have only been used
in the pre-clinical phase include methods in which
radiofrequency (rf) absorption is assessed rather than
signal detection [38]. The methods borrow from contin-
uous wave spectroscopy and electron spin resonance,
where electronic T2s are extremely short and may be of
the order of a microsecond.

Magnetisation preparation signal suppression
techniques and pulse sequences

Traditional contrast mechanisms exploiting differ-
ences in rm, chemical shift and other tissue properties
can be used in ways that are already well known from
conventional imaging.

There are also numerous old contrast mechanisms
operating in new ways, as well as new contrast mechan-
isms that are of interest in imaging short/ultrashort T2/
T2* components in tissue. They are typically used in
conjunction with the acquisition techniques mentioned in
the previous section. These provide a wide range of
possible ways of effecting magnetisation. For example,
90u, 180u, fat saturation and magnetisation transfer pulses
can all be used to suppress unwanted long T2 signals and
to produce T2 contrast in the short T2 range. There are
some fairly new potential mechanisms (as far as clinical
imaging is concerned) that involve reductions in dipolar
coupling [39, 40] and double quantum filters [41]. These
techniques are usually used in conjunction with one of the
acquisition methods previously described.

Magnetisation transfer

When used for short T2/T2* tissues, this differs from
conventional clinical approaches because short/UTE
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acquisitions make it possible to study MT in tendons,
ligaments, menisci and cortical bone [42], and tendon
[43]. The definition of the bound (short T2) and free (long
T2) pools may change because previously undetected
signals are included in the free (detectable) pool. Direct
saturation is a greater problem. There may be a greater
degree of magnetisation exchange present in short mean
T2 tissues. The technique provides indirect access to
supershort T2 relaxation components in tissues with T2s
of approximately 5–15 ms, which are not directly acces-
sible with most UTE techniques.

Susceptibility-weighted imaging

SWI has been in use for a considerable amount of time.
It usually exploits reductions in T2* to develop contrast;
the imaging may use both magnitude and phase data [44,
45]. The T2* may be so short that it becomes, in effect, an
indirect form of imaging using the reduction in signal of
adjacent longer T2 components. The applicability of the
technique and related methods can be expanded by
using forms of data collection with short TEs or UTEs
that can detect signal from very short T2* components
[46, 47]. Quantitative methods of imaging susceptibility
changes need to account for errors in spatial encoding,
which may require solutions to complex inverse pro-
blems [48, 49]. To date, the techniques have mainly been
applied to brain imaging. Phase and frequency changes
can be detected in ordered fibrous structures even with
UTE sequences [47].

Positive contrast and white marker imaging

These forms of imaging have been used to describe
particular situations with MIOPs that may not only
reduce T2 and T2*, but produce local field distortions. A
variety of different methods are available. It is possible to
selectively excite only off-resonance spins. It is also
possible to apply an additional gradient so that only the
magnetisation of spins in regions affected by MIOPs
is refocused. The inhomogeneities from the particles
induce echo shifts, and these can be used to calculate and
correct for the field distortion. The images reflect both
tissue MIOP concentration and deviations of the local
magnetic field produced by the particles [50–54].
Techniques using SWIFT [55] and UTE [56–58] have also
been successful for imaging MIOPs.

Imaging in the presence of metal

When forms of metal are implanted in the body, an
extreme situation may arise in which there is very
marked T2* shortening, but the image distortion is so
great that images of regions adjacent to the metal cannot
be interpreted. This has been a longstanding problem.
A variety of solutions have been proposed in the past,
but these have had relatively little clinical impact. The
recent development of multi-acquisition variable-resonance
image combination (MAVRIC) [59] and slice encoding
for metal artefact correction (SEMAC) [60] has resulted in
a remarkable degree of restoration of images that are
grossly degraded by metallic artefact when imaged using

Table 1. Short and ultrashort echo time (TE) imaging techniques

Technique Radiofrequency pulses and gradient k-space trajectory

Single point [29] Non-selective hard pulse with
gradient applied

3D point-by-point

Multipoint [30] Hard pulse with gradient applied 3D partial lines
Several points

UTE [31, 159–161] 2D two half pulses Radial from centre out
BLAST [162] 3D hard pulse FID acquisition
PETRA [163] No gradient applied during

radiofrequencyZTE [164]
BLAST
PETRA
ZTE
WASPI [32] 3D hard pulse with gradient on.

Preparation pulses with water
and fat signal suppression

Radial from centre out, FID acquisition

Gradient echo 2D, 3D Radial rephasing gradients
Cones [165] 3D Spiral, from centre out, FID data collection
Spiral [166]
Stack of spirals [33]
Echo planar imaging [167]
Twisted radial projection [168]
bSSFP [116, 169]
bUTE [170]
VIPR-ATR [171]
bUTE
VIPR-ATR
SWIFT, SEA [34–37] 3D radiofrequency sub-pulses Radial, centre out

3D, three-dimensional; 2D, two-dimensional; UTE, ultrashort TE; BLAST, back projection low angle shot; PETRA, pointwise
encoding time reduction with radial acquisition; ZTE, zero TE; WASPI, water- and fat-suppressed proton projection imaging;
FID, free induction decay; bSSFP, balanced steady-state free precession; bUTE, balanced UTE; VIPR-ATR, vastly undersampled
isotropic projection reconstruction-alternating length repetition times; SWIFT, sweep imaging with Fourier transformation;
SEA, simultaneous excitation and acquisition.
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conventional approaches [61]. The use of MAVRIC irradi-
ation and detection of signal at the same off-resonance
frequency can image signals for which the resonant
frequency has been shifted by metal. The results from
different off-resonance frequencies are then combined.
SEMAC uses phase encoding during slice selection to
relocate signals that are improperly located by the slice
selection process. View angle tilting (VAT) [62] is then
used with this technique to correct for errors with in-plane
spatial encoding. Faster versions [63, 64] and a MAVRIC–
SEMAC hybrid [65] have also been implemented; the term
multispectral imaging (MSI) has been applied to these
approaches. UTE alone shows an improvement over
conventional techniques [66], but this technique may be
more effective in combination with MAVRIC [67]. It may
also be used in the form of radial sampling with off-
resonance recognition (RASOR) [68]. There is continued
technical progress in mapping gradient and B1 distortion
[69, 70].

Imaging of boundaries involving short T2/T2*
tissues

Structures of interest in the short T2 range include
thin layers (such as those in entheses, periosteum and the
deep layers of articular cartilage where there are short T2

tissues), susceptibility effects between the soft (or semisolid)
tissues and bone, as well as partial volume effects between
these tissues that are present over curved surfaces. In this
situation, high-resolution 3D isotropic UTE imaging often
has a distinct advantage since it can detect short T2/T2*
signals as well as reduce the impact of susceptibility
differences and partial volume effects. Imaging of ordered
fibrous structures, such as tendons and ligaments, include
some of the above issues, but loss of contrast of the fibre
structure or ‘‘blurred’’ appearance may arise from obliquity
of the fibres relative to the imaging slice. This effect may
simulate changes due to disease. There are also distinctive
artefacts at boundaries from chemical shift effects, including
those associated with radial acquisitions.

Clinical proton applications

There are now two-dimensional (2D) and 3D UTE
sequences available with imaging times of 5–6 min and
clinically acceptable spatial resolutions [33, 71]. In
general, the difficulty of acquiring short/ultrashort T2/
T2* signals means that invisible tissues are imaged at
lower spatial resolution, but with signal levels and con-
trast that are not attainable with conventional techni-
ques. There is a balance necessary to obtain qualitative
and/or quantitative information that is novel with
spatial resolutions that are sufficient to show anatomical
features with acceptable clarity.

Cortical bone

Cortical bone can be demonstrated with high signal
[28]. Its T2 is about 0.4 ms and T1 250–350 ms at 1.5 T,
which is shorter than typical values for fat. Its mobile
proton density is about 15–20%. Detectable signal can be
used for both quantitative and qualitative studies [72–77]
(Figures 1 and 2), as well as for comparison with
spectroscopic studies [78]. UTE measurements of bone
may be of value for attenuation corrections in PET/MRI
[79, 80].

Tendons, ligaments and entheses

With conventional sequences, the signal from tendons,
ligaments and entheses is very low or zero. Entheses are the
attachment sites of tendons, ligaments and capsules to bone.
They typically contain calcified and uncalcified fibrocarti-
lage, which both have short T2s. These tissues have a major
role in dispersing mechanical stress at the junction between
flexible tendons or ligaments and rigid bone.

Tendons and ligaments contain endotenon and endo-
ligament, which have longer T2s than the fibrous
components (although they are still in the short T2

range) and less magic angle effect. Uncalcified fibrocar-
tilage has a longer T2 than the tensile components of

Figure 1. Ultrashort echo time sub-
traction MRI of the skull. The inner
and outer tables are seen in a
manner similar to X-ray computed
tomography displayed with bone
windows.
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tendons, as well as an increase in T2 due to the magic
angle effect, although this may be present over a wider
range of angles and reflects the more dispersed arrange-
ment of the fibres within it.

Tendons and ligaments can be seen readily with UTE
sequences and entheses have been studied in detail [81–
83]. Off-resonance fat suppression pulses reduce the
signal from short T2 fibres (which have a broad linewidth)
more than endotenon or enthesis fibrocartilage (which
have longer T2s and narrower linewidths), and this can
be an effective contrast mechanism. Inversion pulses may
be used to selectively invert and null enthesis fibrocarti-
lage (exploiting its longer T2) and so visualise this tissue
with high contrast. It is also possible to visualise oblique
and transverse fibres in tendons using a combination of
fat-suppressed UTE sequences to reduce short T2 tissue
water components and magic angle imaging to lengthen
the T2 of the fibres at particular angles to B0 (Figure 3).

Entheses are selectively involved in the seronegative
spondyloarthropathies, such as ankylosing spondylitis
and psoriatic arthropathy. The differential diagnosis is of
a loss or reduction in fascicular pattern, and includes
normal sesamoid fibrocartilage, partial volume effects
with a loss of fascicular pattern due to partial volume
effects, magic angle effects and disease.

The menisci of the knee

The central region of the adult meniscus has no blood
supply (the white zone), while the more peripheral region
(the red zone) does have one. Healing of tears in the white
zone is often unsatisfactory and the preferred surgical
strategy is usually resection of the torn tissue. Suture
and repair is more successful in the red zone. Distinction
between the two zones has not previously been possible
with MRI using conventional sequences, in spite of repeated

attempts [84]. Using UTE sequences and gadolinium-based
contrast enhancement, the two zones can be distinguished
[79] and provide a basis for surgical planning.

Anatomical descriptions of the meniscus include
circumferential, radial, lamella, vertical and meshwork
fibre groups. With conventional imaging, some radial

(a) (b)

Figure 2. (a) Transverse magnitude and (b) phase images of the forearm with a ultrasound echo time (TE; 212 ms) sequence.
Differences in phase are seen between the cortical bone of the radius and ulnar (arrows) and the surrounding soft tissues, as well
as between muscle and tendon in (b).

Figure 3. Sagittal short echo time image of the Achilles
tendon. Oblique fibres at the magic angle are seen within
the tendon (white arrows). Fibrocartilage of the tendon
enthesis is also seen as a high-signal area (black arrow).
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fibres may be distinguishable from the majority of
circumferential fibres [84], but with UTE and magic angle
imaging, each of these fibre groups can be identified
(Figure 4) [85–90]. It is also possible to distinguish the
internal structure of the meniscus from that of the root
ligaments (Figure 5), and the more central cartilaginous
region from the peripheral, more fibrous region of the
meniscus.

The fibre structure provides a basis for understanding
the biomechanics of the knee and the various patterns of
tears in the meniscus. It also helps in distinguishing
magic angle effects within fibre groups from degenera-
tive changes. Quantitative studies of T1r and T2 may
be informative [91–93]. Quantitative studies including
repair have also been of value [94].

The temporomandibular joint disc shows some of the
characteristics of the meniscus of the knee. Fibre
structure can be seen. Lamella, circumferential antero-
posterior and superoinferior fibres are identifiable
(Figure 6).

Articular cartilage

Articular cartilage has a range of T2s from approxi-
mately 1 to 30–40 ms, from deep to superficial. When
using conventional imaging, the deep radial and
calcified layers, as well as the adjacent subchondral
bone, are invisible. In UTE imaging, the signal is
detectable from the deeper layers of cartilage, allowing

(a) (b)

Figure 5. (a) Longitudinal and (b) transverse short echo time images of the root ligament of the meniscus. Linear high-signal
endoligament and fine transverse fibres are seen in (a). High-signal endoligament extending across the ligament is seen in (b).

(a) (b)

Figure 4. (a) Diagram of the fibre structure of the meniscus from Petersen and Tillmann [172] (with permission), and (b) short
echo time image of the meniscus. In (a) a very thin (30 nm) layer is shown (1) with the lamella (2) and circumferential fibres (3). In
(b) layer (1) is not seen, but the external lamella fibres are seen as high-signal on the surface of the meniscus and extensive radial
fibres are seen within the meniscus.
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more superficial cartilage and subchondral bone to be
distinguished [95–99]. This provides a basis for study of
the junction between the cartilage and bone, which may
be important in the pathogenesis of osteoarthritis.
Complex magic angle effects are seen because of the
fibrous architecture of articular cartilage.

In disease, there may be loss of signal from the deep
layer and increased extent of the short T2 associated with
deep layers. There is electron microscopic evidence of
thinning of the deep layers in osteoarthritis, but pre-
servation in osteomalacia.

Spine

Imaging of the spine includes many visible tissues,
which means attention to date has focused on invisible
structures such as enthuses, the end plate of the disc
[100, 101], and short T2 components in the intervertebral
discs and red bone marrow. Fibrocartilage has also been
demonstrated in the functional entheses of the transverse
ligament of the atlas and the alar ligament. The dorsal
capsules of the facet joints of the lumbar spine are also
subject to cartilagenous metaplasia. Evidence of iron
deposition can be seen in intervertebral discs in
thalassaemia [102]. Sclerotic metastases and cement after
vertebroplasty have been identified [103, 104]. The
structure of the annulus fibrosus can be demonstrated
(Figure 7). The pattern of alternating fibres between
lamellae is well demonstrated.

Central nervous system

There are significant short T2 components in many
tissues of the body with longer mean T2s, including brain,
spinal cord and peripheral nerve. These components can
be specifically detected using UTE and other acquisition
methods coupled with techniques that suppress long T2

signals [105–107]. It is possible to specifically image short
T2 components in myelin and use these to map white
matter and identify disease [108–113].

Lung and heart

Imaging of the lung was the first application of UTE
imaging [31]. More recent studies have identified
emphysema, cystic fibrosis and other conditions [114–120].

Fibrosis has been identified in the heart [121].

Liver

The liver contains a relatively high proportion of short
T2 components. The T2*s of these may be prolonged in
fibrosis [122]. Fibrosis in this situation is often of a
relatively open structure and includes free water.

Pelvis

UTE sequences have found application in studying the
effects of cryosurgery in carcinoma of the prostate [123].
Freezing of tissues results in a substantial reduction in
T2* [124].

Atherosclerotic plaque

Short T2 components and calcification have been
identified and characterised in atherosclerotic plaque
[125–127].

Other proton applications

Contrast enhancement with gadolinium chelates may
be seen within previously invisible tissues using UTE
sequences [128], as well as with MIOPs [50–58]. Dental
imaging has successfully identified caries [129–131].
Mummified tissue has also been studied [132].

Other nuclei

Sodium imaging has a long history, with the principal
applications in the brain [133–138], heart [139], kidney
[140, 141] and musculoskeletal system [142–144]. Phos-
phorus imaging has also been performed with UTE
sequences [145, 146]. Oxygen-17 studies have been per-
formed in the brain [135, 137], and fluorine studies have
begun [147].

Quantitative approaches

Quantitation may include specific MR properties,
particularly T2 and T2* [148–152], the properties of the
remaining signal after long T2 components are sup-
pressed and the ratio of short T2 to long T2 components.
There are other features (such as the magic angle effect
and dipolar contrast) that can be characterised [153, 154],
as well as susceptibility effects (Figure 8).

Figure 6. Sagittal short echo time image of the temporo-
mandibular disc at different relations to B0 (arrows). The
intermediate zone is low-signal in the upper image with
anteroposterior and lamella fibres parallel to B0, and high-
signal when these fibres are at the magic angle (lower image).
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(e)

(a) (b)

(c) (d)

Figure 7. (a) Diagram of the annulus of the intervertebral disc from Bogduk [173] (with permission), (b) axial image of the L5/S1
disc, (c) photograph of a segment of an annulus of the disc, (d) the corresponding fibre structure seen with a short echo time (TE)
sequence and (e) oblique coronal views of adjacent lamella. The lamella structure of the disc is shown in (a) with alternating
layers of fibres at angle h to the plane of the disc. An L5/S1 disc is shown in (b) with the white rectangle showing a section of the
annulus as seen in (c). A short TE image (d) shows high signal from some lamellae and extracellular matrix, and low signal from
other lamellae, following a generally alternating pattern. (e) Arrows show the fibre directions in alternate lamella at h525u to
the plane of the disc.
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There are issues regarding measuring T2 and T2* in the
correct range, characterising different T2 components
(e.g. long and short), including their relative propor-
tions, and dealing with artefacts from various sources.
Quantitation may be confounded by slice selection,
problems with eddy currents and by contamination of
short T2 components with long T2 components that are
present in higher concentration.

Artefacts

Short time-constant eddy currents and gradient timing
errors may result in artefacts and errors in measurement
that can be corrected [155–158].

Conclusion

Imaging of short T2 and T2* components is an
expanding area of application for MRI, which has seen
a convergence of methods primarily targeted at tissues
with short T2 components, SWI, MIOP imaging and
metal artefact control. The methods have borrowed from
solid-state imaging, spectroscopy (including continuous
wave methods), electron spin resonance and MR micro-
scopy. The much lower technical performance of clinical
systems compared with small-bore spectrometers is a
major limitation, but innovative methods for overcoming
this problem are now being developed.

The tissues of interest have mainly been in the
musculoskeletal system, but all tissues of the body have
some short T2 components, and study of these may prove
to be of diagnostic importance. Some techniques, such as
imaging in the presence of metal (Figure 8), are likely
to be immediately useful in the clinical domain, while
others will probably require validation and comparative
assessment to establish their role. Quantitative approaches
may be useful given the large fractional changes in short
T2 and T2* components that may be seen in disease. The
techniques used for imaging often require high-gradient
performance with control of short-term eddy currents to
a level not previously thought necessary in clinical MR

systems. In spite of these and other technical difficulties,
application of the study for short T2 and T2* tissues
appears to be an area of MRI that will be of considerable
importance in the near future.
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