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The diffusion of water molecules inside organic tissues is often anisotropic (1). Namely, if
there are aligned structures in the tissue, the apparent diffusion coefficient (ADC) of water
may vary depending on the orientation along which the diffusion-weighted (DW)
measurements are taken. In the late 1980s, diffusion-weighted imaging (DWI) became
possible by combining MR diffusion measurements with imaging, enabling the mapping of
both diffusion constants and diffusion anisotropy inside the brain and revealing valuable
information about axonal architectures (2-14). In the beginning of the 1990s, the diffusion
tensor model was introduced to describe the degree of anisotropy and the structural
orientation information quantitatively (15,16). This diffusion tensor imaging (DTI) approach
provided a simple and elegant way to model this complex neuroanatomical information
using only six parameters. Since then, we have witnessed a tremendous amount of growth in
this research field, including more sophisticated nontensor models to describe diffusion
properties and to extract finer anatomical information from each voxel. Three-dimensional
(3D) reconstruction technologies for white matter tracts are also developing beyond the
initial deterministic line-propagation models (17-20). As these new reconstruction methods
are an area of very active research, it is important to remember that the theory cannot be
dissociated from practical aspects of the technology. Importantly, DWI is inherently a noise-
sensitive and artifact-prone technique (Fig. 1). Thus, we cannot overemphasize the
importance of image quality assurance and robust image analysis techniques. Last but not
least, data acquisition technologies have also been steadfastly evolving. In this article, we
review the recent advances in these areas since 2000.

DATA ACQUISITION TECHNIQUES AND IMAGING PARAMETERS
Issues Related to Single-Shot Echo-Planar Imaging and the Potential Solutions

DWI is inherently a low-resolution and low-SNR technique. Image quality problems are
further exacerbated by its high sensitivity to physiological motion. DWI is sensitized to
translational motion of water molecules, which is of the order of 5–15 mm assuming typical
measurement times. A small amount of subject motion, even cardiac pulsation, can lead to a
significant amount of signal phase shift or signal loss, which can severely affect image
quality (21-25). To reduce motion sensitivity, single-shot echo-planar imaging (EPI) is
commonly used. However, these single-shot data acquisitions usually suffer from artifacts
and other limitations. The images are distorted due to B0 susceptibility effects and are prone
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to eddy current-induced distortions (Figs. 2 and 3). In addition, T*2 signal decay during the
lengthy echo train leads to severe imaging blurring and limits the spatial resolution.

To reduce these EPI artifacts, techniques are required to shorten the echo train length and
reduce the echo spacing. Parallel imaging and segmented k-space sampling are two widely
used such methods. Parallel imaging was introduced in the late 1990s (26) and is ideally
suited to DWI, as it allows a substantial shortening of both the echo train length and echo
spacing, while retaining the robustness to motion of single-shot EPI. The resulting reduction
of B0-susceptibility artifacts is substantial. With parallel imaging capability now standard on
modern magnetic resonance imaging (MRI) scanners, most DWI studies currently use
parallel imaging as part of a routine protocol. However, the acceleration factor (parallel
imaging factor) is practically limited to 2–4 depending on the number of receiver channels
and coil geometry.

If one requires further reduction of susceptibility-induced distortions and/or higher image
resolution, a multishot segmented scanning scheme needs to be used. In terms of pulse
programming, segmented k-space sampling is straightforward. However, the extreme
motion sensitivity of DWI poses a unique challenge. For each shot, translational motion of
water leads to signal loss (incoherent motion) or phase shifts (bulk motion). When single-
shot imaging is used, phase shifts are irrelevant because the phase information is discarded
by the magnitude calculation. However, if the k-space is acquired over multiple shots, phase
coherence between shots has to be preserved, which cannot be guaranteed if motioninduced
phase shifts occurs. Phase monitoring and post-processing correction are, therefore,
imperative to avoid severe artifacts in multishot DWI (27-34). In the past, phase navigation
techniques have been used for segmented EPI (35), spiral EPI (36), and FSE type scans.
More sophisticated approaches have been proposed including self-navigated blade-type
scans such as PROPELLER (37,38), and more recently vertically segmented EPI (39-41).
One drawback of all segmented scans istheir reduced SNR per scan time compared with
single-shot imaging. Even with single-shot scans and with a relatively low spatial resolution
(2–2.5 mm isotropic voxels), DTI typically requires an acquisition time of ~5 min to obtain
appropriate data. It remains to be seen whether the improved B0 susceptibility distortion and
spatial resolution provided by segmented imaging techniques can provide enough SNR and
robustness to motion within a clinically feasible scan time. If so, this would of course open
up new and exciting opportunities for research studies in which scan time and success rate
are less of an issue.

Another image quality issue related to the usage of the single-shot EPI readout is that of
image distortion due to eddy currents introduced by the rapid switching of the large
diffusion gradient pulses. While this was an important issue in the ‘90s due to limitations in
the gradient systems, this type of distortion is much less problematic on moderns MRI
scanners due to advancements in hardware quality and eddy-current compensation schemes.
Moreover, eddy current effects caused by the DW gradient pulses can be further suppressed
using appropriate pulse sequences, including the use of bipolar gradients (42,43).

Several studies have investigated the impact of cardiac pulsation in detail, which causes
nonlinear motion and local deformations of the brain parenchyma (44,45), and can corrupt
the measured diffusion signal (9,21,22,46,47). The resulting signal drop-outs and residual
misalignments between the DW images will lead to erroneous estimates of the diffusion
tensor (or any other model) and, consequently, of any subsequently derived diffusion
measure of interest. To avoid these pulsatile artifacts, one can trigger the acquisition
sequence to the cardiac cycle, which introduces a dependence of the effective pulse
repetition time on the heart rate of the subject. Triggering can for example be performed
based on the signal obtained from a pulse-oximeter placed on the subject’s forefinger. The
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downside of cardiac gating is that the acquisition typically requires a longer and
unpredictable scan time.

Imaging Parameters for Diffusion Tensor Imaging
Diffusion-weighting by a pair of strong gradient pulses introduces a number of imaging
parameters unique to diffusion imaging. This includes the magnitude (b-value) and
orientations as well as the number of the least DW images (so-called b = 0 images). The
majority of DTI studies nowadays use b-values in the range of 700–1000 s/mm2, leading to
30–50% signal reduction assuming the mean diffusivity of normal white matter is around
0.8 to 1.0 × 10−3 mm2/s. The determination of the optimum b-value (48,49) is complicated
by the involvement of many factors (50), including: SNR (the higher the SNR, the more
accurately signal attenuation can be measured with higher b-values), echo time (the smaller
the b-value, the shorter the achievable echo time), and other factors that are more difficult to
assess such as eddy current and motion artifacts (in general, smaller b-values produce less
artifacts).

Determination of the optimal number and distribution of gradient directions is also not
straightforward. Simulation studies have shown improvements in fractional anisotropy (FA)
estimation (a reduced dependency of the accuracy on the fiber orientation) by increasing the
number of orientations up to 30 orientations, suggesting that as many DW gradient
orientations should be used as time allows (51-53). On modern MR scanners, assuming 50–
65 axial slices (2.0–2.5 mm thickness) and a 5 min scan time, there should be enough time
to acquire about 30–40 imaging volumes. If 5 b = 0 images are acquired, the rest of the time
can be spent sampling as many orientations as possible (25–35 orientations). A related
question is whether for example a 36 direction scheme is better than 3 repeats of a 12
direction scheme (which have equivalent scan times), and if so, by how much? This question
is compounded by various other potentially more dominant sources of inaccuracy such as
physiological noise (motion-induced intensity fluctuations or misregistration) and
instrument imperfection (eddy-currents, stability, etc). In a human study comparing 6, 10,
15, and 30 orientation schemes, the differences in test–retest reproducibility were found to
be relatively minor for studies with scan times shorter than 10 min, provided the orientations
used are well distributed in space (54,55). From a practical point of view, multiple repeat
scans (e.g., 3 × 12 orientations rather than 36 orientations) may provide a better way to
judge the quality of the postprocessing (e.g., coregistration) or existence of motion-
corrupted voxels, by comparing corresponding images across the multiple repeats. It is,
therefore, difficult to conclude that multiple repeated sets of a smaller number of
orientations should not be used. Please note that these discussions are applicable only for
tensor-based approaches, where only six parameters need to be estimated, and the system is,
therefore, overdetermined. For nontensor or multiple-tensor based analyses, the number of
parameters that need to be estimated may be much larger, and the correspondingly larger
minimum number of directions may preclude the acquisition of multiple repeats within a
feasible scan time. These issues will be discussed in more detail in Sections ”Data
Processing and Quality Control” and ”Beyond the tensor model.”

DATA PROCESSING AND QUALITY CONTROL
Although general guidelines exist for optimizing a DTI acquisition protocol in terms of
SNR, b-value, voxel size, diffusion gradient directions, cardiac gating, etc. (56), there are
still large variations in data quality across imaging centers due to, for instance, differences in
scanner hardware, pulse sequences, and available scan times. Despite recent efforts to ensure
high-data quality (e.g., by considering specialized diffusion phantoms to further improve
acquisition settings and optimize postprocessing methods) (57-61), there is currently no
consensus over which approach is preferred for DTI quality assessment.
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Visual Inspection
Detailed slice-by-slice inspection of the DW MRI data to detect potential artifacts can be
extremely time-consuming given the vast amount of acquired data.1 However, by simply
looping through the DW images at a relatively high frame rate (~10 fps), large signal
dropouts and geometric distortions can be spotted instantly in a short amount of time. Subtle
system drifts, which may result in apparent translations (i.e., the “levitation” artifact), may
also be detected by quickly toggling between the views of the first and last acquired DW
image. Perhaps considered trivial, but often overlooked, is to inspect the images in different
“orthogonal” views and not only to look at the image plane that the data were acquired in. In
doing so, interslice and intravolume instabilities (i.e., the “zebra pattern” or “zipper”
artifact), such as relative offsets in slice location or differences in signal intensity, can be
easily observed (see Fig. 4).

Image Misalignment and Pulsation Artifacts
Calculating the standard deviation across the different DW images (SDWI) for each voxel
provides an efficient way to investigate image misalignment artifacts (62,63). In Fig. 5,
SDWI is shown for (Fig. 5a) the raw uncorrected DW images and (Fig. 5b) the same DW
images, but now corrected for subject motion and eddy-current induced geometric
distortions (64). The size and brightness of the rims at brain edges and tissue interfaces in
these SDWI maps reflect the degree of misalignment between the different DW images. If
multiple b = 0 images are available, taking the standard deviation across these images can be
a sensitive approach to locate cardiac pulsation artifacts (see Fig. 6).

Physically Implausible Signals
By definition, FA is bound between 0 and 1. However, FA values larger than 1 can be
obtained if the diffusion tensor contains one (or more) negative eigenvalues. These negative
eigenvalues are typically encountered when there is a non-DW signal that is smaller than
(any of) the DW signals. A binary map that flags such physically implausible signals proves
to be a powerful method to spot additional artifacts (e.g., Gibbs ringing in the b = 0 images)
(Fig. 7).

Model Residuals
A residual can be defined as the difference between a modeled and a measured signal. Large
residuals indicate that the applied model (e.g., the second-rank diffusion tensor) is not able
to characterize the observed signal accurately reflecting either the inadequacy of the model
or the presence of artifactual signal intensities (e.g., Ref. 65). Assuming the latter, a residual
map R can show artifacts that are not always visible on the FA map or the individual DW
images. For the examples shown in Fig. 8, R is defined as the average residual of the
observed signal DWIobs to the modeled signal DWImod, i.e.,

[1]

where the K modeled DW signals, with corresponding B-matrices Bk (k = 1, …,K), are
derived from the fitted diffusion tensor Dfit, and the non-DW image DWI°:

[2]

1A typical DTI acquisition, for instance, can produce a few thousand image slices.
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In general, there are two guidelines: (1) a poor diffusion tensor fit, assumed to be caused by
artifacts, results in higher residuals and (2) a uniformly appearing R map reflects good
image quality data.

In contrast to averaging across the K DW signals for each voxel (see Eq. 1), calculating the
mean residual Rk for each DW image across all N brain voxels ri (i = 1, …,N) can be useful
to identify “problematic” DW images separately (Fig. 9a), i.e.,

[3]

Several diffusion tensor estimation procedures have been developed that take advantage of
the diffusion tensor residuals to detect signal outliers (66-68). As these outliers may
originate from artifactual data, an efficient identification of their location will be useful for
further diffusion quality assessment (see Fig. 9b,c) (69).

Eddy Current Induced Geometric Distortions
When acquiring diffusion MRI data, strong magnetic field gradient pulses are applied to
probe the diffusion along a specific direction. The rapid change in the magnetic field
associated with the ramp-up and ramp-down of such large gradients will generate so-called
“eddy currents” in nearby electrically conductive elements of the MRI scanner (e.g., the
magnet dewar or the gradient coils themselves). These eddy currents will in turn produce
time-dependent magnetic field gradients that will tend to oppose the applied change.
Assuming slow decay of the eddy currents over the signal acquisition period, the unwanted
complementary gradient will modify the sampled trajectory in k-space and, as a result,
geometric distortions will be introduced (Fig. 2). In addition, although not directly visible, a
difference between the prescribed and the actual b-value will occur for each gradient
direction, as it depends on several gradient field properties that are affected by the eddy
currents. Numerous strategies have been developed to correct for eddy-current induced
geometric distortions based on: (1) additional information obtained during acquisition, (2)
postprocessing tools such as image registration techniques, and (3) a combination of the
previous two (42,43,64,65,70-79) (Fig. 10).

ANATOMICAL INFORMATION WITHIN THE FRAMEWORK OF THE TENSOR
MODEL

The simplest model of water diffusion would use a single diffusion constant, which would
assume that the system has isotropic structures. However, it is now well-known that the
diffusion of water within brain white matter tissue is anisotropic. The 3 × 3 tensor model
was proposed as the simplest and most elegant way to characterize such a system, requiring
only six parameters to be estimated. Understandably, the tensor model may oversimplify the
underlying neuroanatomy (see Section “Beyond the tensor model” for more detail). Thus, it
is important to interpret results derived from the tensor model with care. Using only six
parameters to characterize the DW information within a pixel is a significant reduction in
the DW information content (Information reduction I: Tensor model). It is also important to
realize that visualization and quantification, which usually requires the tensor to be further
contracted to a scalar value, constitutes further information reduction (Information reduction
II: scalarization). Such scalar values include metrics for the degree of anisotropy (e.g., FA)
and diffusivity (trace, parallel, and perpendicular diffusivity). Finally, quantification of these
scalar maps will often involve further information reduction (Information reduction III:
quantification and reporting). For example, comparisons across subjects are often performed
by manually drawing several regions of interest, thus ignoring a vast amount of the
remaining information. Voxel-based analyses do not necessarily require so much
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information reduction, but spatial correspondence between images is usually not guaranteed,
and the SNR is often too low to detect abnormalities. For these reasons, a substantial amount
of spatial filtering is often applied, effectively reducing the amount of information. The use
of spatial filtering is also a subject of controversy as it may not mitigate the adverse effect of
structural misalignment between images, and particularly as the voxel-based analyses results
are highly dependent on the amount and type of the filtering (80-82). In addition, although
implicitly assumed to be negligible, it has been shown that choice of registration approach
and atlas/template selection can further affect the outcome of the voxel-based analyses
results (83,84).

The reduction of the anatomical information to a tensor and then to a scalar value implies
that when changes or differences are found in one of the scalar metrics, it is often difficult to
draw any conclusions about the exact cause at the cellular level. While this can be
considered as a drawback of DTI, the systematic information reduction can also be viewed
as an advantage: with more than 100 billion neurons, an equal number of axons, 100 trillion
synapses, and hundreds of billions of astrocytes, the human brain is a hugely complex
system, the complete characterization of which is currently beyond our ability. If one wants
to characterize its anatomical status and compare it between different populations, a
quantitative method that can systematically reduce the anatomical information into a
manageable size is required, which is exactly what DTI can offer noninvasively and within a
short time-frame.

Figure 11 shows a conceptual diagram of different anatomical factors that could affect
diffusion anisotropy. These factors can be roughly divided into microscopic and
macroscopic factors. From the microscopic point of view, there are various cellular
components that confer diffusion anisotropy such as axons and myelin sheaths, which are
structures in the order of 1–5 μm (85). These structures are often packed and aligned,
forming axonal bundles. These fibers then become components of bigger white matter
structures on a much larger macroscopic scale. While the microscopic factors are necessary
for water to exhibit diffusion anisotropy, they are not sufficient because the macroscopic
factors can override them; heterogeneous fiber orientations within a voxel can lead to
isotropic diffusion properties. If a decrease (or increase) in diffusion anisotropy is observed,
it is difficult to immediately conclude which of these multiple factors accounts for the
change (86).

To retrieve more specific information about the status of the underlying neuroanatomy, the
information reduction (particularly steps I and II) needs to be avoided. For example, when
FA is decreased, there are at least three potential cases in terms of the relative relationship
among eigenvalues: (1) the longest axis of the diffusion ellipsoid (λ1, parallel diffusivity) is
shortened, (2) the shorter axes (λ2 and λ3, perpendicular diffusivity) are elongated, or (3)
both of these happen simultaneously. By contracting the 3 × 3 tensor information to a single
FA value, these three cases become degenerate. By observing each eigenvalue, more
information can potentially be retrieved to infer the cause of the change. Past studies have
shown that myelin loss is correlated with an increase in perpendicular diffusivity, whereas
axonal loss is related more to a decrease in the parallel diffusivity (87,88). However, there is
the possibility that such correlations are specific to the particular disease model used and
may not always hold. For instance, histological correlation studies do not support the inverse
relationship (e.g., axonal loss may lead to a decrease in the parallel diffusivity, but such a
decrease may not necessarily mean axonal loss). Note that this interpretation focuses only on
microscopic contributions, excluding potential macroscopic factors; care must be taken
when interpreting such changes in regions known to contain heterogeneous fiber orientations
(86).
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BEYOND THE TENSOR MODEL
Although attractive in its simplicity, the diffusion tensor model has been shown to be
inadequate in the many regions of the brain that contain so-called “crossing fibers”
(62,89-95), whereby two or more differently oriented fiber bundles are co-located within the
same voxel. The term “crossing fibers” is itself somewhat misleading, as it includes any
situation where multiple fiber orientations contribute to the signal measured for the same
imaging voxel. Therefore, this also applies to configurations that may not initially have been
thought of as “crossing fibers,” for example, fiber bundles that “brush” past each other
within the same imaging voxel, or even curving or “fanning” fibers (Fig. 12). Crossing
fibers are endemic to DWI, due to its coarse resolution (~2 to 3mm) compared with the
white matter structures of interest even the pyramidal tracts are only ~3-mm thick in
subcortical regions (96)]. Indeed, recent studies have shown that a significant proportion of
the white matter contain crossing fibers (97), with the most recent estimating that multiple
fiber orientations can be detected in over 90% of white matter voxels (98) (Fig. 13).

These effects have an obvious impact on the diffusion tensor and any measures derived from
it (101). As the mean ADC is largely unaffected, anisotropy measures such as FA (102) are
particularly sensitive to the presence of crossing fibers (101), as are the axial and radial
diffusivities (86) (Fig. 12). This has important consequences for their interpretation, as they
are commonly regarded as surrogate markers of white matter “integrity.” Given the extent
and profound impact of crossing fiber regions, such interpretations should only be made
with extreme caution.

Crossing fibers are even more problematic for tensor-based tractography methods
(62,90,95,101,103,104): if one corrupt orientation estimate is encountered, the tracking
algorithm may venture off course into an adjacent white matter structure, leading to both
false-positive and false-negatives connections (97). Moreover, the problem is far greater
than might initially be expected: any given white matter tract of interest will traverse a large
number of voxels, any of which might contain crossing fibers. It can readily be appreciated
that the proportion of tracts traversing at least one affected voxel must be much greater than
the proportion of affected voxels. If as much as 90% of white matter voxels are affected
(98), it is unlikely that any tracts will remain unaffected throughout their entire course.

In practice, the orientation produced by the diffusion tensor model is likely to be fairly close
to the largest contributing fiber direction; this is why tensor-based tractography algorithms
can often follow the corticospinal tract through known crossing fibers regions such as the
pons and centrum semiovale (105). The impact of these effects is, therefore, most severe for
nondominant tracts. For example, the lateral projections of the corticospinal tract cross
through regions where the superior longitudinal fasciculus is dominant. The commissural
projections of the corpus callosum cross through the more dominant fibers of the corona
radiata. These and other pathways, such as the acoustic radiations, cannot be delineated
reliably without the ability to resolve crossing fibers (97). Moreover, pathology can turn a
normally dominant tract into a nondominant tract, as has been shown with Wallerian
degeneration in the corticospinal tract (104).

For these reasons, there is increasing interest in using higher order models to capture the
information provided by DWI more fully. An overview of these models is provided here.

q-Space Approaches
Methods based on q-space provide an estimate of the spin propagator (or at least its angular
dependence) by exploiting its Fourier relationship with the DW signal measured as a
function of the q-vector (related to the direction and intensity of the DW gradient pulse)
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(106). The spin propagator corresponds to the spin displacement probability density function
—in others words, it provides the probability that a randomly chosen water molecule within
the volume of interest (i.e., a single voxel) will have a particular displacement over the
diffusion time. As water molecules are more likely to move along fiber orientations, the spin
propagator will have higher probability along these orientations. As there is no explicit need
for a model of diffusion in white matter, these methods are often considered to be “model-
free.”

A common criticism of practical implementations of q-space based methods is the violation
of the Narrow Pulse Approximation. The q-space formalism is only strictly valid if the spins
are approximately static during the application of each DW gradient pulse. For the in vivo
case, this requires DW gradient pulse durations of the order of 1 ms or less (107).
Unfortunately, due to the limited gradient amplitudes available on current clinical systems,
the required diffusion weighting cannot be obtained with such short DW pulse durations.
However, it has been shown that in the presence of longer DW gradient pulses, the spin
displacements obtained reflect the difference between the spin’s time-averaged positions
during each DW gradient pulse (108). In a restricted environment, this will cause an
underestimation of quantitative measurements of displacement (109), but importantly will
not necessarily affect the estimated orientations (91). In fact, recent studies suggest that
using long DW gradient pulses may be beneficial for fiber orientation estimation by
exaggerating the orientation dependence of the DW signal (110,111).

Another concern with the q-space approach is that the spin propagator does not necessarily
reflect the true fiber orientation distribution (112). Fiber orientations are typically extracted
from the spin propagator by identifying the directions along which the probability of
displacement is highest (91,113). Unfortunately, due to the nature of diffusion, these high
probability regions will be relatively broad and overlap significantly. While not necessarily a
problem in itself, it does have consequences for the estimated orientations when using peaks
in the spin propagator: (i) closely aligned fiber orientations will be “blurred” together and
will thus be identified as a single orientation; and (ii) this can lead to a bias in the estimated
fiber orientations (114,115). These issues can be addressed by the introduction of a suitable
model for diffusion in white matter (112,116), although these methods could then no longer
be called “model-free.”

With the exception of diffusion spectrum imaging (DSI), most q-space methods are based on
the shorter and arguably more efficient high-angular resolution DW imaging (HARDI)
acquisition (see “Data Acquisition” below). However, as data are collected on a spherical
shell in q-space, it is not possible to perform directly the 3D Fourier transform required for
q-space analysis. The problem is made tractable by assuming a particular functional form for
the radial dependence of either the DW signal or of the spin propagator. The various
methods based on both HARDI and q-space differ in the specific assumptions they make in
this respect.

Diffusion Spectrum Imaging—DSI is the direct application of q-space in 3D (91). It
requires data to be acquired on a 3D Cartesian grid in q-space, from which it is trivial to
perform the required 3D Fourier transform. Fiber orientations are identified by reducing the
3D spin propagator to its 2D radial projection, the diffusion orientation density function
(ODF), and finding the peaks of this function. The largest obstacle to its routine use is the
large amount of data required and the correspondingly lengthy acquisition (see “Data
Acquisition” below).

Since the introduction of DSI, a number of variations have been proposed. For instance, the
3D Cartesian q-space framework has been extended to spherical coordinates, to allow direct
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reconstruction from data sampled on multiple shells in q-space (i.e., multiple q-values per
direction) (117). Another approach, generalized DTI parameterizes the spin propagator
using higher order tensors, also allowing the use of a multishell acquisition (118-120). These
variations may offer advantages over DSI, in terms of a simplified acquisition protocol and
improved robustness of reconstruction.

Q-Ball Imaging—Q-ball imaging (QBI) provides an estimate of the diffusion ODF using
the significantly shorter HARDI acquisition (89). It can be shown that the Funk-Radon
transform of the DW signal (i.e., the integral over a great circle in q-space) provides an
approximation to the radial integral of the spin propagator (i.e., the diffusion ODF). As with
DSI, fiber orientations can be extracted from QBI by finding the peaks in the diffusion ODF,
and used to track through crossing fiber regions (121-123). QBI has been shown to be both
fast and capable of producing results similar to DSI with substantially reduced acquisition
times. However, to ensure adequate SNR in the DW images, QBI is typically performed
using low to intermediate q-values; this will introduce significant blurring into the ODF,
since the approximation inherent in QBI isvalid in the limit of large q-values. Although
blurring can be reduced using large q-values, this can only be done at the expense of SNR
and/or scan time.

Persistent Angular Structure MRI—Persistent angular structure MRI (PAS-MRI)
provides an estimate of the so-called PAS of the spin propagator using HARDI data (94).
The underlying principle is that spins are assumed to diffuse by a fixed distance r, with an
angular distribution given by the PAS. With this definition of the radial dependence of the
spin propagator, it becomes possible to perform the 3D Fourier transform required for q-
space analysis. PAS-MRI is also combined with a maximum entropy constraint to improve
the stability of the results. Unfortunately, the current implementation of PAS-MRI is
computationally intensive, limiting its practical use. On the other hand, the entropy
constraint allows PAS-MRI to operate on low b-value data (e.g., b = 1156 s/mm2 in Ref.
94).

The Diffusion Orientation Transform—The diffusion orientation transform also
operates on HARDI data and provides an estimate of the spin propagator evaluated at any
given radius R0 (124). The 3D Fourier transform is made tractable by assuming a mono-
exponential radial dependence for the DW signal. The diffusion orientation transform differs
from most other q-space methods in that the ODF provided is not a radial projection of the
spin propagator, but corresponds to the amplitude of the spin propagator for a chosen
displacement R0. This has the advantage of providing increased separation between the
various fiber orientations when using larger values of R0.

Mixture Models
Methods based on a mixture model rely on explicit models to provide an estimate of the DW
signal arising from each distinct fiber population. The DW signal that would be measured
for a particular combination of fiber orientations is assumed to be given as the weighted sum
of each population’s contribution to the DW signal. Estimating the fiber orientations given
the data then becomes a matter of fitting the model to the measured DW signal.

Mixture models assume that the DW signal measured from a given voxel is simply the linear
sum of the DW signals for each fiber population present within that voxel. This allows the
problem to be expressed as a linear combination, which can be solved using relatively
simple and established methods. This assumption is met as long as there is negligible
exchange of water molecules between the various fiber populations during the diffusion time
(i.e., ~50 ms). Note that this is distinct from exchange between different cellular
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compartments (e.g., intracellular/extracellular). In this context, we are concerned with
exchange between much larger scale bundles of fibers.

This assumption can be justified by the following arguments. First, the typical mean spin
displacement across white matter fibers is of the order of 10 mm or less (85). Significant
exchange can, therefore, only occur over the ~10 mm immediately adjacent to the interface
between fiber bundles. Therefore, exchange effects can only become significant if fibers
from the different bundles interdigitate at the micron scale. Second, there is increasing
evidence that water molecules within the intra-axonal space are to a good approximation
restricted (85), in which case there will be negligible exchange between adjacent axons, and
by extension between different fiber bundles. Although the extra-axonal water may
exchange, its impact will remain small as it occupies only ~20% by volume and is,
moreover, generally assumed to diffuse more rapidly (and hence will be more strongly
attenuated) than the intra-axonal water.

Mixture model methods also typically assume that fiber bundles in the brain share at least
some, if not all of their DWI characteristics, which make it possible to reduce the
complexity of the model and increase the stability of the reconstruction. This can range from
simply assuming axial symmetry of the diffusion signal about the fiber axis (i.e., the
diffusion tensor is prolate for each bundle) to stating that the diffusion signal is effectively
identical for all fiber bundles (i.e., the diffusion tensor has fixed eigenvalues for each
bundles). The latter assumption is commonly made as it leads to much better conditioned
reconstructions and allows the problem to be expressed as a spherical deconvolution (see
below). By extension, this also implies that any observed variations in white matter
anisotropy (as measured by DTI) are due entirely to crossing fiber effects.

Although this assumption may seem naïve given the known variations in axonal diameters,
packing density, and myelination levels, amongst other potential confounding factors (e.g.,
125,126), there are reasons to suggest that it is justified, at least in the context of fiber
orientation estimation. First, these parameters have a relatively weak effect on the
anisotropy: axonal membranes are sufficient to drive anisotropic diffusion (85). Second,
minor changes in parallel diffusivity can only weakly affect the axial DW signal as it is
already strongly attenuated, while changes in perpendicular diffusivity are almost
indistinguishable from changes in the volume fraction of the corresponding bundle (92,127).
In both cases, the estimated orientation will not be affected.

An additional advantage of these methods is the possibility of introducing constraints based
on prior knowledge about the fiber orientation distribution. In particular, the constraint of
positive (or at least non-negative) volume fractions is commonly included, either implicitly
or explicitly (85,90,97,99,128). A maximum entropy constraint can also be used, which
favors a distribution of fiber orientations with few well-defined peaks (129). Such
constraints, where they can be applied, help to improve the conditioning of the problem, and
can provide results that are much more robust to noise.

Multitensor Fitting—Multitensor fitting extends the diffusion tensor model to handle
multiple fiber orientations and typically makes use of HARDI data. In this model, the DW
signal is assumed to originate from a mixture of compartments, each characterized by its
own diffusion tensor. To improve the stability of the method, the shape of each diffusion
tensor is assumed to be prolate and axially symmetric. Its anisotropy is also typically fixed
(90,97,127), although some implementations allow the anisotropy to vary (127,130). An
additional isotropic compartment is sometimes included to account for CSF or gray matter
contamination (97,127,130). Importantly, these methods require an estimate of the number
of fiber orientations to include in the model for each voxel, which is typically achieved by
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some form of model comparison. Some implementations are framed as Bayesian inference
problems, providing the posterior distribution of fiber orientations given the noisy data.
Therefore, they form a natural basis for probabilistic tractography methods that rely on the
availability of such a distribution (97,127,130,131).

Combined Hindered and Restricted Model of Diffusion—Combined hindered and
restricted model of diffusion (CHARMED) is strongly related to multitensor fitting methods
in that a discrete number of diffusing compartments are included in the model. In this case,
however, the model consists of one extra-axonal compartment (characterized with a single
diffusion tensor), and a number of intra-axonal compartments each corresponding to a
distinct fiber population (characterized using a model of restricted diffusion within
cylinders) (132). This approach requires a more demanding 3D q-space acquisition to
discriminate between the hindered and restricted components of the model.

Spherical Deconvolution—Spherical deconvolution forms the basis of a number of
recently proposed methods. Fundamentally, it extends the multitensor concept by increasing
the number of fiber populations to infinity. In this limit, the summation becomes an integral
over the distribution of fiber orientations, allowing the problem to be expressed as a
spherical convolution (92,93). By assuming a particular convolution kernel (representing the
DW signal for a single fiber orientation), the fiber orientation distribution can be estimated
by performing the spherical deconvolution operation (92). Spherical deconvolution results
obtained using constrained spherical deconvolution (99) are shown in Fig. 14.

The various implementations differ in the assumed convolution kernel, with some methods
assuming a diffusion tensor model (93,133-135), and others measuring it directly from the
data (92,99). They also differ in the constraints placed on the solution, with many
implementations introducing a non-negativity constraint (99,128,129,133), and others
including a maximum entropy term (129).

Apparent Diffusion Coefficient Models
Some methods have been proposed to characterizing the angular dependence of the ADC in
the presence of crossing fibers. These include fitting spherical harmonics to the ADC profile
(95,103), or fitting a generalized diffusion tensor series to the ADC profile (118). However,
ADC-based methods have been shown to be inconsistent in the presence of non-gaussian
diffusion (136) and are, hence, inappropriate to characterize crossing fibers. Moreover, these
methods cannot be used to infer the fiber orientations themselves without significant further
processing (124).

More recently, diffusion kurtosis imaging has been proposed as a way of characterizing non-
gaussian behavior in DWI (137). In its simplest form, it extents the simple linear
relationship between the logarithm of the DW signal and b-value by introducing a quadratic
term. This can be extended to 3D with a rank-4 diffusional kurtosis tensor (138). These
approaches provide promising new measures of tissue microstructure that relate to non-
gaussian diffusion in the brain.

Data processing and Quantification
Given the increased complexity of nontensor models, it is inevitable that the amount of
postprocessing will increase. However, in many cases, computation times can be kept very
short: many algorithms can be expressed as linear matrix operations, and performed in
seconds on modern workstations. These include DSI, QBI, diffusion orientation transform,
and spherical deconvolution. Other algorithms, while requiring more computation, still
provide results within a timeframe of a few minutes for a whole-brain data set (e.g.,
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constrained spherical deconvolution). In other cases, the amount of computation can become
prohibitive (hours or days), and limit the potential of these methods for clinical use.

Most of the methods described above (with the exception of ADC-based methods) aim to
provide improved estimates of fiber orientations. While these are crucial for fiber tracking,
there is a need for scalar measures to quantify features of the white matter that are
insensitive to crossing fibers. Measures of diffusion anisotropy based on the diffusion tensor
model have been used as surro-gate markers of white matter integrity in countless studies,
but these are profoundly affected by crossing fibers. Unfortunately, deriving such crossing-
fiber invariant measures is extremely difficult, as most white matter changes have relatively
subtle effects on the DW signal. Nonetheless, diffusion kurtosis imaging, while still in its
early stages of development, may provide biologically useful measures (137-139), although
it is unclear whether they are entirely unaffected by crossing fibers.

Data Acquisition
Some of the algorithms described above required a 3D q-space acquisition, whereby DW
images are acquired with the DW gradients applied over a range of orientations and
amplitudes. DSI for instance operates on data acquired with q-vectors arranged in a
Cartesian grid, to facilitate the application of the subsequent 3D Fourier transform. The
CHARMED model requires data acquired at multiple q-values per DW orientation, along
multiple orientations. Moreover, these algorithms will require relatively large maximum q-
values, which can only be achieved on clinical systems by increasing the echo time. For
these reasons, the scan times required to acquire data suitable for these types of analyses
tend to be long.

On the other hand, most algorithms make use of data acquired using the HARDI strategy
(90), whereby a relatively large number of DW directions are used with a constant b or q-
value. This allows the acquisition to focus on the angular part of the DW signal and select
the most appropriate diffusion weighting so as to maximize contrast-to-noise per unit of scan
time. The HARDI sequence is, therefore, arguably more efficient than the 3D q-space
acquisition for the purposes of fiber orientation estimation. However, the optimal b-value
and number of directions are both still the subject of ongoing research. This is partly a
consequence of the wide range of algorithms and associated parameters that can be used to
analyze HARDI data, making it difficult to design an experiment that would provide
recommendations applicable to all these algorithms. Nevertheless, a number of recent
studies have shown that b-values in the range 2000–3000 s/mm2 provide the best power to
resolve crossing fibers (50,92,99). The number of DW directions required has also been the
subject of a recent study, suggesting that the minimum number required is at least 28 for low
b-values (b ~ 1000 s/mm2), climbing to 45 for intermediate b-values (b ~ 3000 s/mm2),
although it is recommended to acquire a greater number of images to boost overall SNR
(either as additional DW directions or as multiple repeats of the same DW orientations)
(140,141). Finally, the optimal distribution of orientations for a given number of DW
directions has also been studied extensively (49,141-144)], with a recent study suggesting
that force-minimizing strategies [e.g., electro-static repulsion (49,142)] and icosahedral
schemes perform best in a multifiber setting (141,143).

TRACTOGRAPHY
Anatomical Background of Tractography

Brain white matter consists of axons that connect different regions of the brain. Axons that
share a similar destination tend to form larger bundles, called white matter tracts. There are
many prominent tracts that are large enough to observe visually in human brains. These
major tracts can be clearly delineated by DTI with 2–3 mm image resolution using so-called
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tractography or fiber-tracking algorithms. These operate based on the voxel-wise
information provided by DTI (or other models) to infer connections between adjacent voxels
that may belong to the same tract, thereby reconstructing the white matter architecture in
3D. However, a fundamental question remains to be answered: “What exactly is the
biological information provided by tractography?” This question is further compounded by
the fact that tractography results are used and interpreted in many different ways and the
answer to the question may vary depending on the purpose of the study.

For example, tractography is often used to investigate brain “connectivity,” based on the
premise that the output of tractography algorithms is a true reflection of the corresponding
white matter tracts and the status of their connectivity. A good example is stroke patients
with damage to the corticospinal tracts, whose motor pathways could have compromised
connectivity. In these types of investigations, tractography is used as visual support for the
pathology, as the damaged areas can typically be appreciated just as readily by voxel-wise
information such as color-coded orientation maps. Similarly, questions related to the large-
scale arrangement of white matter tracts, such as “are the corona radiata on the left or right
side of the tumor” or “which tracts are affected by the lesion,” can often be visualized and
answered by color-coded maps as well as 3D by tractography.

However, as the connectivity information we are asking becomes more specific and
microscopic, the interpretation and validity of tractography results both become increasingly
questionable. At the most microscopic level, connectivity is defined by the axon of a single
neuron. Because one axon may have a complicated branching pattern, even if we could
delineate an axon in its entirety, the characterization of its connectivity is already very
challenging. Of course, connectivity at the single-cell level is far too microscopic to be
studied by DTI. On the other hand, region-to-region connection by white matter tracts is a
very difficult notion to define. In fact, the notion of a “tract” is itself often a vague and
subjective concept, as axons can merge and exit at any point along the tract, making it
impossible to define a clear boundary. If we cannot unequivocally define the biological
entity we are trying to delineate, there is no gold standard by which to judge the validity of
tractography, and interpretation becomes difficult.

On the other hand, the advantages of tractography are clear: it can delineate white matter
tracts in 3D and non-invasively from less than 10 min of MR data acquisition, which cannot
be achieved by any other modality. It is thus very important to understand these properties
and limitations of tractography, to ensure that they are used wisely to answer biological and/
or clinical hypotheses about brain anatomy.

Deterministic Tractography
Most tractography algorithms in common use rely on line propagation techniques to
delineate white matter pathways (105). This general class of methods is also often referred
to as deterministic streamline fiber tractography (Fig. 15a). These rely on: the identification
of a suitable position from which to initiate the algorithm (the seed point); the propagation
of the track along the estimated fiber orientation; and the termination of the track when
appropriate termination criteria are met. Each of these aspects is described below, starting
with the propagation of the track.

Track Propagation—Tractography algorithms rely on the availability of estimates of the
orientation of the white matter fibers at any location in 3D space within the volume of
interest. The major eigenvector of the diffusion tensor (also referred to as the principal
diffusion direction) is typically assumed to provide a suitable estimate of the fiber
orientation within each imaging voxel (146). The simplest method to obtain an estimate of
this orientation at any location is then to use nearest-neighbor interpolation: the desired
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white matter orientation is approximated as that of the nearest voxel. The algorithm can then
proceed by stepping out from the starting position along the orientation estimated at that
point, by a fixed user-specified step-size. The orientation at the new location is then
estimated, and the next step taken along that direction, until the track is terminated (see
below). This combination of fixed step-size tracking using nearest-neighbor interpolation is
the basis of the original fiber assignment by continuous tracking (FACT) algorithm (18).

Other implementations differ mainly in the choice of interpolation method. Most algorithms
use tri-linear interpolation, whereby the quantity of interest is calculated as a weighted sum
from the 8 voxels nearest to the point of interest (17). Some implementations will perform
tri-linear interpolation on the raw DW signals themselves, and recompute the major
eigenvector based on these data (17). Another approach is to interpolate the elements of the
diffusion tensor themselves (147-152).

Other differences between implementations relate to the propagation algorithm used. The
FACT algorithm mentioned above is in essence a first-order Euler integration procedure,
which is known to overshoot in highly curved regions due to the finite step size (153,154).
The use of fourth-order Runge-Kutta integration has been proposed to minimize these errors
(20). Other propagation methods have been proposed to allow fiber-tracking to proceed
through crossing fiber regions, by “deflecting” the direction of tracking according to the
diffusion tensor, rather than strictly following its major eigenvector (155). This approach has
however been shown to increase the amount of overshoot in highly curved regions (153).

Track Termination—Another important aspect of fiber-tracking algorithms is choosing
when a track should stop propagating. The most common such criterion is to impose a
threshold based on a measure of diffusion anisotropy [typically FA (156)]: if the anisotropy
falls below a certain threshold value (e.g., FA < 0.2), the track is not allowed to propagate
any further (17). There are two main reasons for this choice of criterion: (i) in regions with
low anisotropy, the major eigenvector of the diffusion tensor will tend to be poorly
estimated and sensitive to noise; and (ii) as anisotropy tends to be high in white matter and
low in gray matter, a sudden drop in anisotropy is likely to coincide with the gray/white
matter boundary, where tracts are generally assumed to start and end.

Another common criterion for termination is based on the local curvature of the track: if the
angle between the directions of two subsequent steps is above a certain predefined threshold,
the track is not allowed to propagate any further (e.g., Ref. 20). The motivation for this
criterion is that a sudden change in direction of the track is likely to be caused by artifacts in
the data (e.g., noise). This has the additional benefit of reducing the number of tracks that
“rebound,” turning 180° relatively suddenly and propagating back down toward the seed
point (157).

It is possible to use other criteria or indeed a combination of a number of criteria. For
example, a measure of the coherence of the fiber orientations within the immediate
neighboring voxels can be used, as in Ref. 158. It is also possible to terminate tracks as they
leave a predefined binary mask of the allowed regions (e.g., a mask of the brain; Refs. 113
and 159), or as they enter forbidden regions (e.g., a mask of the CSF; Ref. 160).

Seed Point Selection—The selection of appropriate seed points is typically performed by
the operator, although other methods exist. In most cases, the user is expected to supply a
region of interest, and the algorithm will initiate tracks from all points within this region.
The selection of anatomically appropriate regions is critical, since even relatively small
changes in the position of the seed point can lead to very different results (161).
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An alternative approach to manual seed point or region selection is to use the so-called
“brute-force” approach (17,162,163), whereby tracking is initiated from all voxels in the
brain. This is typically best used in combination with tract-editing methods to identify tracts
of interest (see below). Another interesting method consists of using areas of peak activation
from functional MRI experiments as seed regions for a subsequent fiber-tracking experiment
(160,164-166), allowing for correlation analyses between structural and functional
connectivity.

Combining tractography with cortical activation maps obtained from fMRI in this way is
particularly attractive as it allows the integration of cortical functional information and white
matter connectivity (164,166-169). While this approach is anatomically appealing, there are
practical difficulties due to the need to extent the seed region beyond the cortex into the
adjacent white matter, where the anisotropy is sufficiently high for the tractography
algorithm (164,166,167,170). This issue is further complicated by the complex axonal
structures found at the junction of the cortex and the white matter. Nevertheless, the use of
fMRI activation site as seed regions has the potential to provide more biologically
meaningful tractography results, with the additional benefit of reduced operator dependence
(166).

Tract-Editing—Tract-editing techniques are commonly used to introduce prior anatomical
knowledge to refine fiber-tracking results (17,162,171). In essence, it consists of defining
regions through which the tract of interest is known to pass (these are also referred to as
“waypoints” or “gates”). Tracks that enter these regions are considered anatomically
plausible, and all other tracks are simply discarded. Conversely, it is also possible to define
regions through which the tract is known not to pass and discard any tracks that enter these
regions. While these methods are very powerful for removing spurious findings, they require
expert anatomical knowledge about the tracts of interest. Moreover, the removal of any
tracks not previously hypothesized implies that these techniques are not suited to
exploratory studies, where the connections that may be identified by the fiber-tracking
algorithm may not be known a priori.

Probabilistic Tractography
Noise in the DW measurements will inevitably introduce uncertainty in the estimated fiber
orientations, which may in turn introduce errors in the delineated pathway
(153,154,157,172). These errors can lead to completely different connections being
identified, as a small error at one point in the track can cause the algorithm to enter and
follow a different white matter pathway. Unfortunately, deterministic tractography
algorithms only provide a single estimate of the path of white matter fibers from each
supplied seed point, without any indication of the confidence interval that can be placed
around this estimate. Probabilistic algorithms attempt to address this limitation by providing
their results in the form of a probability distribution, rather than a single “best fit” estimate
(Fig. 15b). It should be emphasized that probabilistic methods are not more “accurate” than
their deterministic counterparts, as they rely on the same underlying model. Many
probabilistic tractography methods are based on deterministic techniques (e.g., Ref. 145),
and hence suffer from the same limitations. As with deterministic approaches, manual
guidance such as ROI-based editing may be needed to ensure the validity of the probabilistic
results. The main benefit of probabilistic approaches, however, is that they can provide an
estimate of the “precision” with which a tract pathway has been reconstructed. It is also
critical to emphasize that the probability values produced by these algorithms are in no way
related to the “connectivity” (e.g., number of axons, etc.) of the corresponding white matter
pathways; they merely reflect the confidence that the particular connection of interest exists
(173).
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Most probabilistic approaches derive from and extend the deterministic streamlines
techniques described above, and therefore share many of their characteristics. The
fundamental difference is the use of white matter orientation estimates that are drawn at
random from the local probability density function (PDF) of fiber orientations. In other
words, at each step of the algorithm, the direction for the next step is no longer unique, but
chosen from a range of likely orientations. Starting from the seed point, the track is
propagated in this way, with each step selected at random. To obtain an estimate of the
distribution of likely connections, a large number of probabilistic tracks are generated from
the same seed point. Brain regions that contain higher densities of the resulting tracks are
then deemed to have a higher probability of connection with the seed point (174,175).
Probabilistic streamlines results are, therefore, often quantified by generating maps of the
number of tracks that traverse each voxel, which can then be analyzed and compared more
readily (174,175).

A key aspect of these methods is the accurate characterization of the fiber orientation PDF.
It should provide an estimate of the fiber orientation and its associated uncertainty given the
data and the noise contained therein, and it should be possible to evaluate it at any location
within the dataset. A number of methods have been proposed to estimate the fiber
orientation PDF, including estimating the uncertainty based on a heuristic function of the
shape of the diffusion tensor (175,176), using “bootstrap” methods (23,145,172,177), and
Bayesian inference methods (174,178).

Other probabilistic methods have also been proposed, including: the use of fast marching
algorithms (179), front evolution methods (176), random-walk models (180), and graph-
theoretic approaches (181). These methods are conceptually similar to the probabilistic
streamlines algorithms described above, in that they aim to provide a more distributed map
reflecting the probability of connection, and differ mainly in the techniques used to
propagate the tracks.

When compared with deterministic approaches, probabilistic approaches have the additional
advantage that they are not restricted by the rule of one tract per seed. If we select two
arbitrary brain regions at random, it is unlikely that a connection will be identified between
them using deterministic approaches. Deterministic approaches are, therefore, often used to
study the status of known prominent tracts following established ROI-drawing protocols. On
the other hand, the probabilistic approach can identify connections to much wider regions
from one seed pixel (in fact, between any two regions of the brain), a feature that makes the
probabilistic method far more flexible.

However, an important consideration for probabilistic tractography is the correct
interpretation of the results, particularly of the probability values generated by counting the
number of tracks through each voxel. First, there is a clear distance effect in the results,
simply due to the fact that voxels located close to the seed region are more likely to be
reached by the algorithm than voxels located more remotely. It is, therefore, common to find
short, anatomically implausible tracks with higher probability values than more distant,
biologically relevant connections. Second, the results are inherently dependent on the data
acquisition protocol. Ideally, the fiber orientation PDF should provide an estimate of the
uncertainty in the fiber orientation given the data and the assumed model. This uncertainty
will be less for higher quality data (e.g., higher SNR, larger number of DW directions, etc.),
leading to improved precision in the tracking results, and a reduction in the spread of the
results. Conversely, this leads to a greater density of tracks reaching the connected region,
and hence to a greater inferred probability of connection. Finally, in cases where the tract of
interest branches off to multiple destinations, there will be a corresponding reduction in the
proportion of tracks reaching any one of these destinations. Each destination will, therefore,
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be assigned a lower probability value than might otherwise be expected. For these reasons, it
is important to bear in mind that the probability values produced by probabilistic
tractography algorithms should in no way be interpreted as a measure of the degree of
anatomical connectivity (173). As stated previously, they merely reflect the “precision” with
which a particular pathway can be reconstructed, given the data and the particular model
assumed by the algorithm.

Tractography with Nontensor Analysis
As mentioned previously, the diffusion tensor model is unable to characterize crossing fiber
voxels, and the need to use more sophisticated models, particularly for tractography, is
increasingly recognized. Many of the algorithms proposed to date are extensions of the
previous algorithms described above, with the white matter orientation estimates obtained
using appropriate nontensor models. There is, however, some conceptual differences that
deserve to be highlighted. First, in voxels where more than a single fiber orientation has
been identified, a decision needs to be made as to which direction the algorithm should
propagate along. In many cases, the direction closest to the current direction of tracking is
selected (97,100,113,116,122,123,182-184), whereas in other cases the algorithm may
“branch” and investigate both directions (116,121,185). A further consideration when using
nontensor analyses is that even if the fiber orientations where known precisely, there may be
many equally likely configurations of fiber bundles that match these orientations (e.g.,
crossing vs. kissing, curving vs. fanning, etc.) (186). The tractography problem is thus still a
very significant challenge, even when using so-phisticated higher order models.

The majority of the algorithms proposed are extensions of the streamlines approach, either
in a deterministic of probabilistic setting (97,100,113,116,123,182-185). Other techniques
have also been proposed to propagate the tracks, including flow-based methods (121),
graph-theoretic approaches (187), or random-walk techniques (116).

Deterministic approaches typically identify fiber orientations by finding the peaks of the
diffusion ODF as identified by DSI (97,100,113,116,123,182-185), QBI (107,185), spherical
deconvolution (107), or PAS-MRI (182). In some of these algorithms, the line between the
deterministic and probabilistic approaches is blurred by the fact that all possible branches
are followed, producing a more “distributed” characterization of the connectivity (107,185).

Probabilistic algorithms, on the other hand, attempt to account for imaging noise as well as
crossing fibers, by allowing some spread around the estimated orientations. As for the tensor
case, an important aspect of these methods is the availability of a fiber orientation PDF, in
this case allowing for the presence of multiple orientations. Such a PDF can be obtained in a
number of way, including using empirically determined functions of the estimated fiber
orientations or ODF (107,121,182), Bayesian inference methods (97), and “bootstrap”
methods (100,123,183). Figure 16 shows results obtained using such an algorithm in
conjunction with fiber orientation distribution data (Fig. 14) computed using constrained
spherical deconvolution (99).

Recently, a number of tractography algorithms have been proposed based on a more
“global” approach to the problem (188-190). Essentially, these algorithms attempt to find
the configuration of fibers that best explain the observed data. They hence do not rely on a
preprocessing step to extract the fiber orientations, but rather operate directly on the
acquired DWI data. On the other hand, they do rely on a model to compute the expected DW
signal intensities for a given arrangement of fiber orientations (current implementations use
a simple mixture model—see above). These approaches have the potential to provide more
robust results than current “local” streamlines methods, by incorporating additional
information from neighboring voxels. Unfortunately, these approaches are currently
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extremely computer-intensive, limiting their immediate use in clinical environments. They
do nonetheless have the potential to improve the robustness of fiber-tracking results, and
processing times are likely to be reduced significantly in the coming years as these
techniques mature.

CONCLUSIONS AND FUTURE OUTLOOK
DWI provides a unique way of probing tissue microstructure in vivo and noninvasively and
is by far the most promising tool for studying white matter and its organization in living
humans. It is, however, a difficult technique to apply correctly due to its unique imaging
artifacts, the often very intricate interactions between microstructure and signal, the
sophistication of the reconstruction algorithms used, and the shear complexity of white
matter itself. For these reasons, DWI is currently a very active field of research, both in
terms of technical development, and of its application to the study of the brain and its
disorders. As the methods evolve and mature, we expect that DWI will provide new and
unforeseen insights into long-standing problems that would otherwise be impossible to
study.
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FIG. 1.
Examples of typical artifacts: (i) signal/slice dropouts, (ii) eddy-current induced geometric
distortions, (iii) systematic vibration artifacts, and (iv) ghosting (insufficient/incorrect fat-
suppression).
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FIG. 2.
Three examples of DW images with shears, stretches, and translations induced by eddy
currents in the frequency-encoded left-right (LR) direction (a), the phase-encoded anterior–
posterior (AP) direction (b), and the slice-select encoded inferior–superior (IS) direction (c),
respectively. For each example, the undistorted B0 image (i) is shown with lines overlaid in
red indicating brain edges and boundaries of the lateral ventricles. The mismatches of these
prominent contours when overlaid on the distorted DW images, shown in (ii) and (iii), now
become obvious (see also the enlarged regions corresponding with the arrowheads). Notice
the difference in polarity of the eddy current induced gradient between (ii) and (iii) for each
example. The images in (c) are shown in a sagittal view to highlight the linearly varying
image translation as a function of slice position. Note that this distortion, induced by eddy
currents along the IS orientation, may be considered as a shear in the AP-IS plane.
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FIG. 3.
Static geometric deformations in the phase-encoded direction by B0 field inhomogeneities
(or susceptibility-induced off-resonance fields). The deformations are clearly visible when
fused rigidly with a structural T1 weighted image (the enlarged region shows the
misalignment of the genu of the corpus between the color-encoded FA image and the T1
map).
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FIG. 4.
A DW image shown in three orthogonal views. The interslice instabilities (encircled) in this
axially interleaved acquisition might not be seen on the axial slices, but are very prominent
on the sagittal and coronal through-plane views.
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FIG. 5.
To assess subject motion, or more generally, misalignment between the DW images,
computing the standard deviation across the DW images SDWI is an efficient and more
quantitative approach than inspection of the DW images on a slice-by-slice basis. The bright
rim in the SDWI map shown in (a) is not present after correction for subject motion and eddy
current induced geometric distortions (b) (see arrowheads).
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FIG. 6.
In the b = 0 images (i.e., the non-DWIs), unreliable regions in terms of signal variability
(most likely due to pulsation artifacts) can be visualized readily by taking the standard
deviation across the b = 0 images (Sb = 0). For the example shown here, six b = 0 images
were acquired. Notice the high variability near the medial parts of the brainstem,
cerebellum, and the lateral ventricles.
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FIG. 7.
Examples of “physically implausible signals” (i.e., voxels where the B0 intensity is lower
than the DW intensities) that contaminate the fractional anisotropy (FA) values. When
comparing the locations of the corrupted voxels (in red) between the middle and the left
image, these FA values are typically overestimated. A more detailed investigation revealed
the presence of negative eigenvalues, which were caused by ill-conditioned diffusion tensor
estimations. The corresponding B0 images on the right contain the artifacts (Gibbs-ringing)
that formed the basis of these error accumulations: parallel to the interface between the CSF
and the surrounding white matter, artificially low intensity rims can be observed (see
arrowheads), which is typically seen in images with a relatively small acquisition matrix.
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FIG. 8.
Three examples that showcase the high sensitivity of diffusion tensor residual maps (R) to
detect artifacts. a: The experienced DTI user will immediately spot the phantom
commissural pathways that connect left and right occipital lobes on the directionally color-
encoded fractional anisotropy (FA) maps (encircled). If one is unfamiliar with the rich
(colorful) information contained in these images, however, or when pathology is involved,
the corresponding R map is a useful tool to differentiate between low and high quality
regions. In this example, the artifact is clearly visible on the R map as well. By contrast, in
(b) and (c), the artifacts, i.e., ghosting due to insufficient fat suppression and RF interference
(i)–(iii)/slice dropout (iv), respectively, are not visible on the FA maps and can hardly be
seen on the individual DW images themselves.
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FIG. 9.
a: Diffusion tensor residuals calculated for each DW image (averaged across all brain voxels
—see Eq. 3, with the error bars representing the inter-quartile range). In the example shown,
five diffusion volumes were “heavily” corrupted as indicated by the higher residuals
(encircled). b: A more quantitative feel of the significance of high residual values is
obtained by calculating the “statistical” outliers of these tensor residuals. The percentage of
outliers per DW image may then serve as a marker to identify artifacts. c: To increase the
specificity of detecting artifacts, the same procedure can be applied to each slice separately
and along the different (coronal, axial, and sagittal) image views. In this way, a summary
statistic of data quality can be shown for each slice and for all the DW gradient directions
simultaneously in a single matrix. Retrospective identification of “problematic” slices is
then facilitated by the “hot spots” (see enlarged region).
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FIG. 10.
a: Directionally color-encoded fractional anisotropy (FA) maps before (i) and after (ii)
correcting for subject motion and eddy current-induced geometric distortions. The bright rim
(see enlarged region), clearly visible in (i), is practically nonexistent in the corrected image
(ii). In this example, geometric distortions and subject motion in the DW images are
corrected for simultaneously. As a result, the orientation of the diffusion gradients should be
adjusted to take potential head rotations into account. In (b), the difference in orientation of
the estimated first eigenvector between the uncorrected (i) and the corrected (ii) gradient
directions is shown in a region of the genu. To fully appreciate the effect of neglecting this
processing step, the glyph representations of the first eigenvectors are shown in (iii) (blue:
uncorrected; yellow: corrected), focusing on the mid-sagittal region, which corresponds with
the black rectangle in (i) and (ii). Although the errors shown in (iii) seem small and,
therefore, perhaps deemed insignificant, the tractography results in (c) clearly show the
deviation in the reconstructed fiber tract pathways when subject motion and eddy current-
induced geometric distortions are not taken into account.
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FIG. 11.
Various anatomical factors that could influence the diffusion anisotropy measurement by
DTI and their approximate scale.
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FIG. 12.
Simulated configurations of complex fiber bundle architecture at the length scale of a single
voxel (61). Note that any tract organization different from a single straight fiber population
is typically referred to as “crossing fibers,” including (i) bending (e.g., uncinate fasciculus)
and (ii) fanning (e.g., pyramidal projections) fiber bundles. Interdigitating fibers, as shown
in (iii), might occur in the region of the centrum semiovale, where the lateral projections of
the corpus callosum intersect with the corticospinal tract among others. By contrast, the
configuration shown in (iv) reflects adjacent fiber bundles, such as the cingulum bundle and
the body of the corpus callosum, which—by definition of the partial volume effect—are
captured within a single voxel.
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FIG. 13.
The number of distinct fiber orientations detected within each voxel (98), overlaid on the
corresponding anatomical T1-weighted image. Each voxel within the mask is colored
according to the number of orientations detected (red: single orientation; green: two
orientations; blue: more than two orientations). These results were produced from data
obtained from a healthy volunteer, consisting of 15 repeats of 30 DW directions, acquired at
b = 1000 s/mm2, analyzed using constrained spherical deconvolution (99) within a
“bootstrap” framework (100). Image courtesy of Ben Jeurissen.
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FIG. 14.
Fiber orientation distributions for each voxel, for a coronal section showing the lateral
projections of the corpus callosum (left-right: red lobes) crossing through the fibers of the
corona radiata (inferior–superior: blue lobes) and of the superior longitudinal fasciculus
(anterior–posterior: green lobes). Results produced from data obtained from a healthy
volunteer, consisting of 60 DW directions acquired at b = 3000 s/mm2 (9 min scan time),
analyzed using constrained spherical deconvolution (99).
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FIG. 15.
Conceptual example of (a) deterministic (Ref. 20) and (b) probabilistic (Ref. 145)
streamline tractography based on the diffusion tensor model. The white lines in (a) represent
fiber tract pathways that were reconstructed by following the principal diffusion directions
(see the glyphs shown in the blue region of interest) in consecutive steps, initiated
bidirectionally at the indicated locations (i.e., “seed points”). For each of the pathways in
(a), there is no information available about the precision/dispersion that is associated with
their tract propagation. By contrast, the set of multiple (1000) lines shown in (b) provides a
feel for the degree of uncertainty related to the tract reconstruction initiated from the single
seed point. Note that the same underlying tractography algorithm (Ref. 20) was used for
both examples, but in (b), each tract pathway was calculated from a “different” diffusion
tensor data set that was created with the wild-bootstrap approach (Ref. 145).
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FIG. 16.
Whole-brain nontensor probabilistic tractography results displayed as a coronal 2-mm-thick
section. Each track is colored according to its direction of travel (red: left–right; green:
anterior–posterior; blue: inferior–superior). 100,000 tracks were produced by seeding at
random throughout the brain, with a probabilistic streamlines algorithm using fiber
orientation distributions estimated using constrained spherical deconvolution (99), based on
the same data as shown in Fig. 8. Note in particular the extensive regions of crossing fibers
in the pons and periventricular areas.
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