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Mapping the Future of Cardiac MR 
Imaging: Case-based Review of T1 
and T2 Mapping Techniques1

Cardiac magnetic resonance (MR) imaging has grown over the past 
several decades into a validated, noninvasive diagnostic imaging 
tool with a pivotal role in cardiac morphologic and functional as-
sessment and tissue characterization. With traditional cardiac MR 
imaging sequences, assessment of various pathologic conditions 
ranging from ischemic and nonischemic cardiomyopathy to cardiac 
involvement in systemic diseases (eg, amyloidosis and sarcoid-
osis) is possible; however, these sequences are most useful in focal 
myocardial disease, and image interpretation relies on subjective 
qualitative analysis of signal intensity. Newer T1 and T2 myocardial 
mapping techniques offer a quantitative assessment of the myocar-
dium (by using T1 and T2 relaxation times), which can be helpful 
in focal disease, and demonstrate special utility in the evaluation 
of diffuse myocardial disease (eg, edema and fibrosis). Altered T1 
and T2 relaxation times in disease states can be compared with 
published ranges of normal relaxation times in healthy patients. In 
conjunction with traditional cardiac MR imaging sequences, T1 
and T2 mapping can limit the interpatient and interstudy variability 
that are common with qualitative analysis and may provide clinical 
markers for long-term follow-up.
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After completing this journal-based SA-
CME activity, participants will be able to:
■■ Discuss the role of myocardial mapping 

as a diagnostic and prognostic tool to 
quantify disease and improve detection 
of diffuse abnormalities.

■■ Describe the basic methods of myocar-
dial T1 and T2 mapping and the advan-
tages and limitations of each technique.

■■ Recognize findings of common cardiac 
diseases on T1 and T2 maps and cor-
relate them with findings on traditional 
cardiac MR images.

See www.rsna.org/education/search/RG.

SA-CME LEARNING OBJECTIVES

Introduction
Clinical application of cardiac magnetic resonance (MR) imaging 
has grown rapidly over the past several decades (1,2), and many clin-
ical and experimental studies have validated cardiac MR imaging as 
a useful noninvasive tool in the diagnosis and management of cardio-
vascular disease (3). Cardiac MR imaging now plays a pivotal role in 
cardiac morphologic and functional assessment and tissue character-
ization, allowing evaluation of various pathologic conditions ranging 
from myocardial infarction and ischemic or nonischemic cardiomy-
opathy to cardiac involvement in systemic diseases such as amyloi-
dosis and sarcoidosis (4). This article discusses the use of myocardial 
mapping as a quantitative adjunct to currently accepted qualitative 
cardiac MR imaging techniques. The benefits, limitations, and ap-
plications of T1 and T2 mapping are reviewed by describing how 
these sequences can be used to characterize various cardiac diseases 
and by comparing images obtained with tissue mapping to those ob-
tained with more commonly performed MR imaging sequences.
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of 940–1000 msec) (18). Whereas qualitative 
sequences rely on the use of arbitrary signal in-
tensity scales for T1 and T2 values that have in-
terpatient and interimage variability, myocardial 
mapping offers the potential to produce images 
that have standardized, reproducible scales simi-
lar to the attenuation values used at computed 
tomography (13).

Mapping sequences employ different tech-
niques (described in the following sections) to 
acquire a series of images at various inversion 
times, from which a T1 recovery curve is derived. 
The result is a T1 map, a parametric image that 
displays the T1 relaxation values pixel by pixel 
(Figs 1, 2). These maps are commonly displayed 
using color to aid in visual interpretation. Re-
gions of interest can be drawn to assess a larger 
area of the myocardium.

Native myocardial T1 relaxation times vary 
by magnetic field strength (3-T magnets result 
in longer native T1 times), equipment manufac-
turer, and the type of mapping sequence used. 
Several recent publications have reported “nor-
mal” T1 ranges for healthy subjects; these ranges 
are discussed later in the article. By providing a 
reproducible standard of T1 and T2 values, myo-
cardial mapping may reduce interpretation vari-
ability and error related to subjective analysis and 
image artifact. Quantitative tissue characteriza-
tion with mapping may also be better suited for 
longitudinal assessment of patients with cardiac 
disease than the arbitrary scale used at traditional 
cardiac MR imaging (19).

Myocardial disease affects the cellular and 
extracellular composition of myocardial tissue, 
thereby altering the native T1 and T2 signals. In 
general, a prolonged native myocardial T1 signal 
is encountered in various disease states that result 
in edema or fibrosis, and in amyloid deposition. 
Shortening of the native T1 relaxation time can 
be seen with siderosis, Anderson-Fabry disease, 
and fat deposition, although these diseases are 
less commonly encountered in routine practice 
(20–23). Examples of specific diseases are dis-
cussed later in this article.

Contrast-enhanced T1 Mapping
The use of gadolinium-based contrast agents 
shortens the native T1 relaxation time of myo-
cardium by several hundred milliseconds. Areas 
with a disproportionate accumulation of contrast 
material (eg, fibrosis) will therefore exhibit shorter 
T1 relaxation times than normal myocardium 
(21–23) when using contrast-enhanced T1 map-
ping sequences. Whereas nonenhanced T1 map 
values are a native property of the myocardium, 
contrast-enhanced T1 map values are variable and 
highly dependent on (a) variable weight-based 

Traditional Quali- 
tative Cardiac MR Imaging 

Until recently, cardiac MR imaging has relied 
primarily on a qualitative characterization of the 
myocardium through visual analysis of signal in-
tensity with various nonenhanced sequences (eg, 
T2 weighting for edema) and use of contrast ma-
terial–enhanced sequences to identify character-
istic enhancement patterns. Typically, gadolinium 
chelates have been the contrast agent of choice. 
Gadolinium accumulates in the abnormally in-
creased extracellular space that is often seen in 
injured or diseased myocardium. By using a con-
trast-enhanced T1-weighted inversion-recovery 
sequence (to null normal myocardium), the sig-
nal difference between normal myocardium and 
focal fibrosis can be significantly increased (2,5). 

The resulting shortening of T1 relaxation times at 
delayed phase imaging enables detection of vari-
ous cardiac diseases that show characteristic pat-
terns on late gadolinium-enhanced (LGE) MR 
images (6). However, identification and charac-
terization of enhancement patterns is subjective 
(4) and susceptible to the inter- and intraob-
server variations common to qualitative analysis. 
Traditional LGE MR images are most useful for 
evaluation of focal diseases, where normal myo-
cardium can be used as a standard of reference 
and a pattern of enhancement can be detected. 
Diffuse fibrosis may go undetected on qualita-
tive images if gadolinium uptake is uniform (7). 
Recent studies have attempted to quantify the 
amount of fibrotic myocardium by using signal 
intensity thresholds (usually set 2–6 standard de-
viations higher than for normal myocardium), but 
these methods are also limited if no normal myo-
cardium is available as a reference (8,9). More-
over, patient and respiratory motion, tachycardia, 
and cardiac arrhythmia can compromise analysis 
of signal intensity and extent of disease (10–12). 
In contrast, myocardial mapping techniques al-
low signal quantification by using standardized, 
reproducible T1 and T2 values (in milliseconds), 
which appears to be more robust than qualitative 
assessment of signal intensity (13–17).

Quantitative Myocardial Mapping

Nonenhanced T1 Mapping
All tissues have inherent T1 (ie, longitudinal or 
spin-lattice) relaxation times that are based on a 
composite of their cellular and interstitial compo-
nents (eg, water, protein, fat, and iron content). 
At a fixed magnetic field strength and in the 
absence of exogenous contrast agent (eg, gado-
linium chelate), the native T1 value of normal 
tissue falls within a predictable range (eg, at 1.5 
T, normal myocardium has a T1 relaxation time 
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mapping is less variable (within the same patient 
and across patients) than contrast-enhanced T1 
mapping because of the variability in the exact 
time of image acquisition with contrast-enhanced 
mapping (18).

contrast agent dosing, (b) the exact time elapsed 
after contrast agent administration before images 
are acquired, (c) renal clearance of the contrast 
agent, and (d) displacement of contrast material 
by the hematocrit (3,24). Thus, nonenhanced T1 

Figure 1.  T1 mapping with a Look-Locker (LL) MR imaging sequence in a healthy 34-year-old man with nor-
mal myocardium. (a) LL (inversion time [TI] scout) image series performed at 1.5 T shows 21 images acquired at 
a fixed location (short-axis, midventricle) at different TIs ranging from 75 msec (top left) to 695 msec (bottom 
right), with a 30-msec increase in TI between images. The images were obtained after administration of gadolin-
ium-based contrast agent. Note the variation in chamber size as images are acquired throughout the cardiac cycle 
without electrocardiographic gating, which is one of the limitations of this technique. (b) T1 map displays a color 
scale of the uniform T1 values of the myocardium. Note that the endocardial and epicardial borders are some-
what indistinct because of motion and misregistration. (Scale is in milliseconds.) (c) Graph of a multiparameter 
curve-fitting analysis of a selected pixel in the interventricular septum shows how each value is used to derive the 
contrast-enhanced T1 value (299 msec) for this pixel.
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Figure 2.  T1 mapping with a modified LL inversion-recovery (MOLLI) MR imaging sequence in a healthy pa-
tient. (a) Images from a nonenhanced MOLLI series at 1.5 T were obtained during one breath hold at the same 
time point in diastole, resulting in less misregistration than with an LL sequence. Inset shows the resultant native T1 
map. (Scale is in milliseconds.) (b) Graph of a curve-fitting analysis for a single pixel in the interventricular septum 
shows a normal nonenhanced T1 value of 936 msec.

T1 Mapping Technique

LL Sequence
Most modern MR imaging units already include 
the ability to perform a sequence that can be used 
for T1 mapping, called the LL sequence (also 
known as the TI scout) (25,26). For routine 
LGE MR images, the patient is initially injected 
with 0.1–0.2 mmol/kg of gadolinium-based con-
trast agent, and, after 6–8 minutes, a series of 
approximately 20 images is acquired at variable 
inversion-recovery times (the LL sequence) (Fig 
1). The supervising technologist or imager uses 
this series to select the inversion time that most ef-
fectively nulls normal myocardial signal (typically 
200–300 msec). At traditional cardiac MR imag-
ing, after the appropriate inversion time is selected, 
the scout images are usually disregarded. However, 
these images can be loaded into postprocessing 
software to create a pixel map of T1 values (a T1 
map) generated by the curve fitting of all images in 
a sequence. The LL sequence is limited by heart 
rate variability and acquisition during different 
phases of the cardiac cycle, a process that has been 
previously detailed (27). Therefore, contouring of 
the epicardial and endocardial boundaries is limited 
by partial volume effects (28).

MOLLI and ShMOLLI Sequences
MOLLI and shortened modified LL inversion-
recovery (ShMOLLI) sequences are newer tech-
niques that have distinct advantages over the LL 
sequence. With the MOLLI sequence, there are two 

changes to the standard LL sequence: (a) data are 
acquired at a fixed point in the cardiac cycle over 
successive heartbeats during a single breath hold 
(approximately 16–20 seconds), and (b) multiple 
LL image acquisitions are performed at different 
inversion times and merged into one dataset to 
facilitate the final analysis (13,18,27) (Fig 2).

In addition to being shorter than standard 
LL sequences, MOLLI sequences result in less 
myocardial misregistration because images are 
acquired at the same time point in the cardiac 
cycle (18). Motion-correction algorithms have 
been developed to account for slight interbeat 
variability and variation in respiration (29). These 
modifications result in a tighter range of T1 val-
ues that have been observed with MOLLI versus 
with LL sequences (27). ShMOLLI is an even 
shorter variation that uses sequential inversion-
recovery measurements with a single breath hold 
of only nine heartbeats. Although full recovery of 
T1 magnetization is not achieved, the implemen-
tation of conditional interpretation reconstruc-
tion algorithms at imaging can yield accurate 
measurements (19).

Other Sequences under Investigation
Additional cardiac MR imaging sequences, in-
cluding saturation recovery single-shot acquisi-
tion (SASHA) (30) and saturation pulse prepared 
heart-rate-independent inversion recovery (SAP-
PHIRE) sequences (31), are actively being studied 
but are not commonly used in clinical practice and 
are beyond the scope of this article.
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Myocardial Tracing,  
Inversion Time, and Curve Fitting
The T1 map is a single image that represents a 
pixel map of the T1 values generated by curve fit-
ting of all images in a sequence (ie, LL, MOLLI, 
or ShMOLLI). This image may be generated 
automatically at the imaging unit; however, open-
source software is available for analysis and has 
been validated for clinical use (32). Off-line post-
processing of the T1 or T2 map is completed by 
manually or semiautomatically tracing the epicar-
dial and endocardial borders with care to avoid 
the inclusion of epicardial fat and ventricular 
blood pool contamination. An example of a T1 
map with normal values is shown in Figure 3.

T2 Mapping Technique
The T2 relaxation time is altered by the water 
content in tissue. Myocardial edema has been 
described in patients with acute myocardial 
infarction (33), myocarditis (34), stress cardio-
myopathy (34), sarcoidosis (35), and cardiac 
allograft rejection (36). As with traditional T1-
weighted sequences, qualitative T2-weighted im-
aging performed with dark-blood turbo spin-echo 
sequences (37) has several limitations, including 
magnetic field heterogeneity from surface coil 
arrays, stagnant blood flow resulting in increased 
signal intensity (particularly along the subendo-
cardium), and through-plane motion resulting in 
signal loss (15,37).

T2 parametric maps are generated on the basis 
of a similar principle to that used in T1 mapping, 
where a series of images is obtained to calculate a 
T2 decay curve. A T2 preparation pulse is applied 
to impart T2 signal contrast, and a subsequent 
readout is performed by using a steady-state free 
precession (SSFP) sequence that has less sen-
sitivity to turbo spin-echo artifacts (10,15,38). 
T2 mapping techniques have not yet received 
the same focus as T1 mapping techniques; thus, 
a comparison of diagnostic efficacy between the 

two techniques will be better served in future 
investigations.

“Normal” T1 and T2  
Mapping Values and Limitations

Absolute T1 and T2 values for normal left ven-
tricular myocardium vary across MR imaging 
systems and manufacturers. Furthermore, several 
studies have shown that numerous factors can 
affect the native T1 relaxation time, including the 
exact sequence used; the magnetic field strength 
(native T1 values are higher at 3 T than at 1.5 T); 
the image acquisition plane (eg, two-chamber vs 
four-chamber); the region of myocardium being 
sampled; and the patient’s heart rate, age, and sex 
(13,14,27). For example, a study by Piechnik et 
al (39) of 231 healthy individuals showed an av-
erage myocardial T1 relaxation time of 961 msec 
± 26 (1.5 T, ShMOLLI) across all subjects; men 
had an average T1 relaxation time of 947 msec 
± 20 and women had an average T1 time of 974 
msec ± 25. The sex differences in T1 times were 
most prominent in the 2nd–5th decades of life, 
and T1 values decreased with age. Tables 1 and 
2 summarize additional values that have been 
reported in the literature for different imaging 
sequences and magnet strengths.

Extracellular Volume Fraction 
Contrast-enhanced T1 mapping is useful for cal-
culating the extracellular volume fraction (ECV), 
a measure of the proportion of extracellular space 
within the myocardium. The ECV has drawn re-
cent interest in the cardiology community, as it 
has been shown to offer important prognostic in-
formation related to cardiac morbidity and mor-
tality (45). Nonenhanced and contrast-enhanced 
T1 mapping allows evaluation of the proportion 
of gadolinium-based contrast agent in the blood 
pool versus in the myocardium. In conjunc-
tion with the hematocrit value, mapping enables 
quantification of the proportion of extracellular 

Figure 3.  T1 maps obtained 
with a nonenhanced MOLLI 
MR imaging sequence at 
1.5 T in a 49-year-old man 
without cardiac disease show 
normal findings. Note the 
relatively uniform signal in-
tensity throughout the myo-
cardium. Regions of interest 
are drawn freehand to ensure 
that blood pool and epicardial 
fat are excluded. (Scale is in 
milliseconds.)
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(interstitium and extracellular matrix) myocar-
dial volume to cellular (myocyte) volume. An 
increased ECV is a marker of myocardial remod-
eling and is most often due to excessive collagen 
deposition (in the absence of amyloid or edema). 
Recent analyses have shown that the ECV may 
be as important as the left ventricular ejection 
fraction as a marker for cardiac disease severity, 
indicating vulnerable myocardium with decreased 
tolerance to ischemia (24,46). Early studies have 
shown that the ECV is positively correlated with 
worsened mechanical dysfunction, arrhythmia, 

and mortality, particularly in patients with diabe-
tes or a history of myocardial infarction (24,46). 
In a large cohort of 1176 patients who underwent 
cardiac MR imaging, Wong et al (46) found a 
higher average ECV in patients with type II dia-
betes than in those without diabetes (30.2% vs 
28.1%, respectively) and reported that a patient’s 
risk for death or hospitalization for heart failure 
increases as the ECV increases. ECV quantifica-
tion can be used to identify and characterize dif-
fuse fibrosis or subtle myocardial abnormalities 
in what may otherwise be a normal-appearing 

Table 1: Select Reported Myocardial T1 Relaxation Times in Healthy Subjects

Magnet Technique
No. of  

Subjects* Age (y)
Native T1 
(msec)†

Contrast- 
enhanced  
T1 (msec) Authors Year

1.5 T LL 14 (8) 38 ± 10.9 1000.4 ± 126 523.3 ± 72.8 Nacif et al (27) 2011
1.5 T MOLLI 15 (9) 33.1 ± 8.5 982 ± 46 NR Messroghli et al (13) 2006

1.5 T MOLLI 10 (7) 35 ± 7 976 ± 46/80 NR Piechnik et al (19) 2010
1.5 T MOLLI 14 (8) 38 ± 10.9 1029.4 ± 56.8 462.4 ± 62.2 Nacif et al (27) 2011
1.5 T MOLLI 13 (7) 38.1 ± 11.1 NR 466 ± 14 Sibley et al (23) 2012
1.5 T ShMOLLI 10 (7) 35 ± 7 966 ± 48/88 NR Piechnik et al (19) 2010
1.5 T ShMOLLI 21 (8) 55 ± 13 944 ± 17 NR Ferreira et al (40) 2012
1.5 T ShMOLLI 45 (32) 42 ± 14 941 ± 18 NR Ferreira et al (41) 2013
1.5 T ShMOLLI 342 (170) 38 ± 15 962 ± 25 NR Piechnik et al (14) 2013
1.5 T ShMOLLI 36 (22) 59 ± 4 958 ± 20 NR Karamitsos et al (42) 2013
3 T MOLLI 10 (7) 35 ± 7 1169 ± 45/73 NR Piechnik et al (19) 2010
3 T MOLLI 24 (8) 29 ± 6 1159.0 ± 39.2 NR Liu et al (21) 2012
3 T MOLLI 60 (30) 48 ± 17 1158.7 411.2 von Knobelsdorff-

Brenkenhoff et al 
(43)

2013

3 T ShMOLLI 10 (7) 35 ± 7 1166 ± 60/91 NR Piechnik et al (19) 2010

Note.—NR = not reported. 
*Number in parentheses indicates number of male subjects. 
†Some values are represented as mean ± standard deviation/mixed standard deviation, as defined by Piechnik 
et al (19). 

Table 2: Select Reported Myocardial T2 Relaxation Times in Healthy Subjects

Magnet Technique
No. of  

Subjects* Age (y) Native T2 (msec) Authors Year

1.5 T SSFP multipoint IR 19 (13) 38 ± 17 50 ± 4 Blume et al (16) 2009
1.5 T Spiral interleaved T2 10 (5) 36 ± 7 54 ± 6.8 Sparrow et al (17) 2009
1.5 T SSFP 14 (NR) NR 52.18 ± 3.4 Giri et al (15) 2009
1.5 T SSFP 21 (13) 28 ± 7 55.5 ± 2.3 Verhaert et al (33) 2011
1.5 T SSFP 10 (NR) NR 53.4 ± 6.1 Giri et al (44) 2012
1.5 T SSFP 14 (NR) NR 51.5 ± 2.0 Crouser et al (35) 2014
3 T SSFP 60 (30) 48 ± 17 45.1 (mean) Von Knobelsdorff- 

Brenkenhoff et al (43)
2013

Note.—IR = inversion-recovery, NR = not reported. 
*Number in parentheses indicates number of male subjects.
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Table 3: Select Reported ECVs in Healthy Subjects

Magnet Technique No. of Subjects* Age (y) ECV Authors Year

1.5 T MOLLI 9 (NR) 20–50 0.217–0.262 Wong et al (24) 2012
1.5 T MOLLI 62 (30) 43.6 ± 17.4 0.254 ± 0.025 Kellman et al (48) 2012
1.5 T MOLLI 30 (15) 45 ± 13 0.255 ± 0.026 Miller et al (49) 2013
1.5 T MOLLI 17 (17) 33 ± 8 0.24 ± 0.02 Florian et al (50) 2014
3.0 T MOLLI 11 (6) 36 ± 13 0.267 ± 0.01 Lee et al (51) 2011
3.0 T LL 9 (3) 45 ± 11 0.24 Mongeon et al (52) 2012

Note.—NR = not reported. 
*Number in parentheses indicates number of male subjects.

cardiac MR imaging study (47). Furthermore, 
because the ECV represents a ratio of T1 signal 
intensities, measurements may be more repro-
ducible across different vendors and different 
acquisition techniques (45).

The ECV is calculated on the basis of nonen-
hanced and contrast-enhanced T1 map values, us-
ing the ratio of the difference in reciprocal values 
for contrast-enhanced and nonenhanced myocar-
dial T1 and contrast-enhanced and nonenhanced 
blood pool T1 as follows (21,24):

( )

( )1 1

1 1
MT1post   MT1pre

BT1post   BT1pre

ECV = (1 – HCT)•





where BT1post = contrast-enhanced blood 
pool T1, BT1pre = nonenhanced blood pool 
T1, HCT = hematocrit, MT1post = contrast-
enhanced myocardial T1, and MT1pre = non-
enhanced myocardial T1. The hematocrit level 
should be measured at the time of the MR im-
aging examination because it can affect gado-
linium displacement from the blood pool. The 
reported range of the ECV in healthy subjects 
is 21%–27%, as noted in the selected studies 
reported in Table 3. Examples of ECV calcula-
tion in healthy and diseased myocardium are 
provided in Figure 4.

All of the images shown were acquired with 
an Avanto 1.5-T MR imaging system (Siemens 
Medical Solutions, Erlangen, Germany). Refer-
ence values for this system have been published 
in several different studies (19,27).

Selected Applications  
of T1 and T2 Mapping

Characteristic patterns of myocardial fibrosis on 
LGE MR images have been described for various 
types of ischemic and nonischemic cardiomy-
opathy (4). The presence of fibrosis or scarring 
(indicative of myocardial remodeling) has been 
shown to be an independent risk factor for overall 

mortality (related to ventricular arrhythmia and 
decompensated heart failure) and the possible 
need for cardiac transplantation (53,54). Quan-
tifying the degree of fibrosis may guide treatment 
with regard to revascularization, device implanta-
tion, and medical therapy. Although endomyo-
cardial biopsy is the most sensitive technique for 
assessing myocardial scarring or fibrosis, a recent 
study by Sibley et al (23) demonstrated that con-
trast-enhanced T1 mapping represents a viable 
noninvasive alternative. Importantly, this study 
showed that even when visible LGE was absent 
on traditional cardiac MR images, shortened T1 
relaxation times at contrast-enhanced myocardial 
mapping were associated with a greater degree 
of histologically confirmed interstitial fibrosis. 
A study by Appelbaum et al (55) shows that 
intermediate-intensity LGE is a better predictor 
of ventricular arrhythmia in hypertrophic car-
diomyopathy than is high-intensity LGE, further 
supporting the use of mapping for quantitation 
of myocardial T1 values for risk stratification. 
Mapping can noninvasively represent a “sample” 
of tissue from the entire myocardium and can 
supplement or potentially replace invasive trans-
venous myocardial biopsy (which usually is lim-
ited to the right ventricular myocardium) (23). At 
a minimum, T1 mapping may help identify the 
most appropriate location for biopsy, if biopsy is 
deemed clinically necessary.

Acute or Chronic Myocardial Infarction
Cellular degradation in acute myocardial infarc-
tion results in increased permeability and enlarge-
ment of the extravascular space and an increased 
volume of distribution for the extracellular con-
trast agent (gadolinium chelate). Additionally, 
gadolinium chelates wash out of infarcted tissue 
more slowly than out of healthy myocardium (3). 
Although delayed enhancement by itself is not 
specific, LGE (subendocardial or transmural) in a 
vascular distribution and in the appropriate clini-
cal context corresponds to myocardial infarction 
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Figure 4.  T1 mapping with ECV calculations in patients with healthy and diseased myocardium. (Scale 
is in milliseconds.) (a) T1 maps show a normal ECV (23.3%) in a healthy 55-year-old man without 
known cardiac disease (hematocrit, 0.42). (b) T1 maps show an abnormal ECV (30.1%) in a 40-year-old 
woman with long-standing type 2 diabetes (hematocrit, 0.40). The patient was admitted for heart failure, 
and her coronary arteries were normal at cardiac catheterization. No evidence of fibrosis was seen at LGE 
MR imaging, but the increased ECV may have important long-term prognostic implications.

(3–5,22,56). Given the increased mortality rate 
for patients with undiagnosed old or chronic myo-
cardial infarction (which may not show Q waves 
at electrocardiography), cardiac MR imaging can 
also be useful for confirmation of myocardial in-
farction in the nonacute setting.

Nonenhanced T1 mapping, combined with 
traditional T1-weighted LGE MR images and 
traditional T2-weighted sequences, is a viable 
method for assessing the acuity, severity, and 
extent of myocardial injury, including the full 
extent of a myocardial infarct as well as the area 
at risk (22,47,57) (Figs 5, 6). Ischemic myocar-
dium shows signal hyperintensity due to edema 
on T2-weighted images. However, qualitative 
analysis of T2-weighted images can be compro-
mised by factors such as signal loss in tachycar-
dia, through-plane motion, and signal intensity 
overestimation in areas of slow-flowing blood 
(15,58). T2 mapping allows quantification of T2 
relaxation times and is unaffected by these fac-
tors (12,15,33,58). Additionally, T2 prolonga-
tion in infarcted segments is seen in the first 48 
hours after myocardial infarction and can persist 
for up to 6 months (59), providing a possible 
longitudinal clinical marker.

Hypertrophic Cardiomyopathy 
Hypertrophic cardiomyopathy is characterized by 
abnormal thickening of the left ventricular wall 
in the absence of dilatation (60). The distribution 
of myocardial thickening varies, ranging from 
involvement of the basal anterior septum (most 
common) to apical involvement or total concen-
tric hypertrophy. Outflow tract obstruction leads 
to systolic anterior motion of the mitral valve. 
Impaired regional contractility, decreased coro-

nary reserve, and ventricular arrhythmias can also 
be seen (61,62).

Traditional cardiac MR imaging plays a valu-
able role in the analysis of ventricular function 
and mitral regurgitation, with contrast-enhanced 
studies revealing patchy delayed enhancement 
in areas of hypertrophy, which are believed to be 
related to microvascular abnormalities leading to 
subclinical myocardial ischemia, which in turn 
leads to microscopic foci of myocardial necrosis 
and subsequent fibrosis (20,63,64). In addition 
to its use in primary diagnosis, myocardial map-
ping may serve at least two other purposes in this 
population: (a) longitudinal quantitative follow-
up of the degree of fibrosis (which may portend 
prognosis and stratification of risk for adverse 
events) and (b) quantitative analysis of scarring 
after transcatheter septal ablation (to indicate 
successful destruction of myocardial tissue) (65). 
A study by Rogers et al (7) showed a similar 
application of T1 mapping in patients with left 
ventricular hypertrophy, compared with subjects 
with a low pretest likelihood of cardiomyopathy, 
measuring native T1 values as a reproducible, 
standardized technique to distinguish healthy 
from diseased myocardium. Contrast-enhanced 
T1 mapping studies in patients with hypertrophic 
cardiomyopathy have also been validated (26). 
Examples of T1 mapping in patients with septal 
and apical hypertrophic cardiomyopathy variants 
are provided in Figures 7 and 8.

Myocarditis
Myocardial injury in acute myocarditis (often 
caused by infectious agents, frequently viruses) 
leads to interstitial edema, lymphocytic infiltra-
tion, myocyte breakdown, and subsequent necrosis 
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(66). The insidious nature and variety of clinical 
manifestations in acute myocarditis can compli-
cate diagnosis. Patients may present with vague 
symptoms such as fatigue, palpitations, or weak-
ness after an acute bout of fever and angina. Acute 
myocarditis also can manifest as florid heart fail-

ure and may progress to chronic myocarditis and 
dilated cardiomyopathy (67). Thus, early testing 
and accurate diagnosis can positively affect patient 
outcome.

Cardiac MR imaging is the imaging tool of 
choice in diagnosing acute myocarditis (68); 

Figures 5, 6.  (5) T1 mapping in a 34-year-old man who presented with acute ST-elevation myocardial infarction, 
with a 100% left anterior descending occlusion seen at cardiac catheterization. (Scale is in milliseconds.) (a–d) MOLLI 
native T1 mapping short-axis (a) and vertical long-axis (c) images at 1.5 T show an abnormally increased T1 signal in 
the areas of infarction involving the anteroseptal and anterior wall of the left ventricle and extending to the apex. 
The T1 mapping abnormalities correlate with areas of LGE on phase-sensitive inversion-recovery (PSIR) LGE MR 
images obtained at corresponding levels (b, d). (e) T2 map shows increased signal intensity due to increased edema, in 
a similar distribution to the abnormalities seen in a–d. (6) Lateral wall infarction in a 37-year-old woman. Short-axis 
MOLLI (1.5 T) T1 mapping images acquired 26 minutes after gadolinium-based contrast agent administration show 
a focal area of decreased T1 values in the lateral wall of the left ventricle. The absolute T1 value at contrast-enhanced 
mapping is less important than the regional differences between normal and abnormal myocardium because the LGE 
T1 value depends on the amount of contrast agent injected, the time after contrast agent administration when the 
image is acquired, renal function, and the hematocrit. (Scale is in milliseconds.)
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Figure 7.  T1 mapping in a 
55-year-old man with septal 
hypertrophic cardiomyopathy. 
(a) Short-axis nonenhanced 
MOLLI (1.5 T) T1 map dem-
onstrates prolonged T1 values 
in the area of myocardial hy-
pertrophy, with relatively nor-
mal values in the lateral wall. 
(b) T1 map obtained at LGE 
MR imaging shows abnormal 
shortening of the T1 values in 
the hypertrophied segments. 
The extracellular volume for 
the hypertrophied segments 
was abnormally elevated 
(41.7% vs 21.7% for the lateral 
wall) (hematocrit, 0.44). (Scale 
in a and b is in milliseconds.) 
(c) PSIR LGE MR image 
through the same plane shows 
patchy midwall enhancement, 
a finding characteristic of hy-
pertrophic cardiomyopathy.

clinical examination, electrocardiography, and 
laboratory data are often of limited value (69). 
Subepicardial patchy or nodular LGE in con-
junction with an underlying wall-motion abnor-
mality is a classic finding in the initial phase (<7 
days); however, the enhancement pattern usually 
becomes diffuse within 7 days after infection 
(69). Also, in the early phase, correlation with 
T2-weighted images (for edema) and nonen-
hanced and contrast-enhanced images (for hy-
peremia) helps to establish the diagnosis.

Recently, Ferreira et al (41) showed that 
T1 mapping for detection of acute myocarditis 
showed superior diagnostic performance com-
pared with T2 mapping and higher sensitivity 
compared with T2-weighted and LGE MR imag-
ing techniques. In this study, a cutoff T1 value of 
990 msec or higher (with a ShMOLLI sequence 
at 1.5 T) was used for detection of acute edema 
and demonstrated a positive predictive value and 
a negative predictive value of about 90% across 
the board. LGE (specificity, 97%; positive predic-
tive value, 97%) demonstrated lower sensitivity 
(74%) when compared with nonenhanced T1 
mapping. Of note, T1 mapping with LGE im-
proved specificity only slightly (97% compared 
with 91%), at the expense of lower sensitivity 
(70% compared with 90%), which was not better 
than with LGE sequences alone. The improved 
diagnostic ability of T1 mapping was attributed 
to shorter breath holds limiting motion artifact, 
heart rate independence (better for imaging of 
acutely ill patients), and lack of need for a con-
trast agent or reference normal myocardium (bet-
ter for imaging of patients with global edema) 
(41). T2 mapping has also been shown to depict 
myocardial involvement in myocarditis and shows 
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Figure 8.  T1 mapping in a 65-year-old man with apical variant hypertrophic cardiomy-
opathy that was initially detected at electrocardiography. (a) Nonenhanced three-chamber 
MOLLI native T1 map at 1.5 T shows abnormally increased T1 values in the apical segments 
of the left ventricle. (Scale is in milliseconds.) (b) Corresponding LGE MR image in the same 
plane shows enhancement in the same area. (c, d) SSFP MR images obtained in end dias-
tole (c) and end systole (d) show the characteristic “spade” shape of the left ventricular cavity 
(maximum thickness, 16 mm), with obliteration of the apical lumen.

a greater extent of disease involvement when 
compared with qualitative T2-weighted and LGE 
MR imaging sequences (34) (Fig 9).

Given that edema detected at T2-weighted 
imaging is susceptible to artifact and myocarditis 
may be a diffuse process, the strength of T2 map-
ping lies in its ability to depict prolonged T2 relax-
ation times in the absence of normal myocardium 
for comparison. An additional example of global 
edema and the potential of T2 mapping is allograft 
rejection in cardiac transplant, where identification 
of rejection in the first 12 months after transplant 
has a major effect on patient survival. Whereas en-
domyocardial biopsy and traditional cardiac MR 
imaging have been used to detect myocardial in-
flammation and edema, T2 mapping may provide 
a noninvasive and quantitative alternative. The 
results of a pilot study by Usman et al (36) suggest 
that T2 mapping of myocardial edema may be use-
ful for monitoring of transplant patients, although 
further study is needed.

Amyloidosis
Primary or secondary amyloidosis is a cause of 
restrictive cardiomyopathy secondary to myocar-

dial infiltration with fibrillar proteins and leads to 
loss of ventricular compliance, diastolic dysfunc-
tion, and reduced systolic function (3). Cardiac 
dysfunction in these patients can cause cardiac 
death shortly after the onset of heart failure, 
thus necessitating early diagnosis of myocardial 
involvement.

Cardiac MR imaging patterns of enhance-
ment in amyloid deposition vary by subtype and 
can be diffuse, heterogeneous, and nonspecific 
in the lack of clinical context; however, the clas-
sic pattern on LGE T1-weighted MR images is 
diffuse left ventricular subendocardial enhance-
ment (4). In cases of diffuse myocardial involve-
ment, the lack of a normal region of myocar-
dium for comparison can make traditional car-
diac MR images difficult to interpret. Given that 
amyloid protein itself causes prolonged T1 relax-
ation (70), Karamitsos et al (42) evaluated the 
utility of nonenhanced T1 mapping (ShMOLLI 
at 1.5 T) in patients with primary amyloid light-
chain (AL) amyloidosis compared with normal 
controls and patients with aortic stenosis. Their 
study showed that among patients with amy-
loidosis with overt cardiac involvement, the T1 
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increases are more pronounced than in patients 
with aortic stenosis, with a similar degree of 
ventricular wall thickening (possibly due to a 
greater proportion of amyloid protein itself or 
greater T1 prolongation by amyloid compared 

with fibrosis). Specifically, they found that a T1 
nonenhanced threshold of 1020 msec resulted in 
92% accuracy for diagnosis of cardiac amyloid. 
Furthermore, nonenhanced T1 relaxation times 
correlated well with markers for systolic and 

Figure 9.  T1 and T2 mapping in an 18-year-old man with myopericarditis. (a, b) Short-axis 
nonenhanced MOLLI T1 (a) and SSFP T2 (b) maps obtained at 1.5 T through the base of 
the left ventricle show prolonged T1 and T2 relaxation times in the lateral wall, corresponding 
to areas of myocardial injury from myocarditis. The patient had a reduced ejection fraction with 
hypokinesis in the lateral and apical walls (not shown). (Scale is in milliseconds.) (c, d) Short-
axis (c) and four-chamber PSIR (d) LGE MR images show typical epipericardial enhancement 
characteristic of myopericarditis that involves the basal lateral and apical regions (arrowheads). 
Note that the T1 map in a shows more extensive signal abnormality (corresponding to the 
extent of myocardial injury) than the delayed contrast-enhanced images.



1606  October Special Issue 2014	 radiographics.rsna.org

diastolic dysfunction, indicating that an elevated 
myocardial T1 value likely reflects the severity of 
cardiac involvement (42) (Fig 10).

More recent analysis by Fontana et al (71) 
demonstrated that native myocardial T1 map-
ping is also effective in the detection of trans-
thyretin amyloidosis and that T1 times, although 
still elevated relative to normal myocardium, 
may not be as high as in the AL subtype. Their 
study of 85 patients with transthyretin amyloi-
dosis showed an average T1 value of 1097 msec 
± 43 (ShMOLLI at 1.5 T), compared with an 
average T1 value of 1130 msec ± 68 in patients 
with AL amyloidosis. This differentiation is clini-
cally relevant because treatment and prognosis 
vary by subtype (72).

Dilated Cardiomyopathy 
When the underlying cause of cardiomyopathy is 
unknown, patients at most centers undergo coro-
nary angiography, and those without significant 
coronary disease are diagnosed with nonischemic 
cardiomyopathy (63). Dilated cardiomyopathy 
is the most common form of nonischemic car-
diomyopathy, and although up to 50% of cases 

are idiopathic, many of the rest can be traced to 
previous infection, alcohol or drug abuse, or drug 
toxicity (4). Determining the underlying cause of 
dilated cardiomyopathy is important, as the exact 
cause may alter therapeutic options and patient 
prognosis.

Cardiac MR imaging has been well docu-
mented as a useful tool for monitoring morpho-
logic and functional parameters in patients with 
cardiomyopathy (1). Cardiac LGE MR imaging 
has value for distinguishing ischemic cardiomy-
opathy from nonischemic cardiomyopathy (63). 
Patchy or diffuse midwall LGE in patients with 
dilated cardiomyopathy is thought to represent 
fibrosis in the setting of chronic myocardial re-
modeling; however, additional value is added by 
demonstration of a lack of subendocardial en-
hancement, which can exclude underlying infarc-
tion as a cause. It also has been shown that the 
degree of myocardial enhancement correlates with 
the severity of underlying functional abnormality 
(73). Cardiac mapping can quantify the degree of 
myocardial T1 abnormality and thus the degree of 
underlying fibrosis, which may have diagnostic and 
prognostic value. A recent study evaluated the use 

Figure 10.  T1 mapping in a 68-year-old woman 
with AL amyloidosis and cardiac involvement 
confirmed at endomyocardial biopsy. (a, b) Nonen-
hanced MOLLI T1 maps at 1.5 T show a relatively 
uniform appearance of the myocardium in a but dif-
fusely abnormal T1 values in b. (Scale is in millisec-
onds.) (c) LGE PSIR MR image in the same plane 
shows decreased signal intensity in the blood pool 
and several areas of subendocardial enhancement 
typical for amyloidosis, but the image is compromised 
by patient respiratory motion, which is less of an is-
sue with MOLLI and ShMOLLI sequences.
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Figure 11.  T1 mapping in a 60-year-old woman with nonischemic dilated cardiomyopathy. The patient 
presented with new-onset heart failure and had normal coronary arteries at angiography. Three-chamber 
nonenhanced MOLLI T1 maps obtained at 1.5 T (a) show mildly elevated diffuse T1 times, despite nor-
mal findings seen on a four-chamber PSIR LGE MR image (b). (Scale in a is in milliseconds.)

Stress (Takotsubo) Cardiomyopathy
Stress cardiomyopathy, also known as takotsubo 
cardiomyopathy or apical ballooning syndrome, 
is a rare form of myocardial stunning that oc-
curs most often in postmenopausal women and 
mimics acute coronary syndrome. It is thought 
to be secondary to the transient release of cat-
echolamines related to a significant stressor 
(physical or emotional) (2,75). Acute dyspnea, 
hypotension, and even cardiogenic shock with 
ischemic electrocardiographic changes and el-
evated cardiac enzymes may be the presenting 
symptoms of this condition (75), although no 
coronary blockage or flow-limiting stenosis is 
seen at angiography.

The role of cardiac MR imaging in takotsubo 
cardiomyopathy is to confirm the presence of typ-
ical wall-motion abnormalities, including midwall 
and apical left ventricle hypokinesis with normal 
basiventricular contraction (apical ballooning), in 
addition to depicting a lack of LGE that would 
be seen with infarction or other entities. T1 and 
T2 mapping can be used to confirm the presence 
of prolonged T1 and T2 relaxation times in the 
hypokinetic regions (34) (Fig 13).

Conclusions
T1 and T2 myocardial mapping offer quantita-
tive techniques to detect changes in myocardial 
composition (as illustrated through the case ex-
amples provided). These techniques can be help-
ful in evaluating focal myocardial disease but are 
especially helpful in cases of diffuse myocardial 
fibrosis or edema, where no normal myocardium 
is present for a qualitative comparison. MOLLI 
and ShMOLLI sequences are useful for rapid, 
reproducible acquisition of T1 mapping values, 

of T1 mapping for differentiation of normal from 
diseased myocardium in patients with hypertro-
phic cardiomyopathy and dilated cardiomyopathy 
(7) (Fig 11).

Sarcoidosis
The formation of noncaseating granulomas in 
the myocardium in sarcoidosis may be clinically 
apparent in only a small percentage of patients; 
however, autopsy series show that 20%–50% of 
patients have myocardial involvement (74). Car-
diac sarcoidosis often results in potentially ma-
lignant arrhythmias, left ventricular dysfunction, 
and development of restrictive cardiomyopathy, 
which make early detection paramount. Typically, 
when cardiac involvement is found, patients un-
dergo steroid therapy or other forms of immuno-
suppressive treatment (1).

The appearance of sarcoidosis at cardiac 
MR imaging largely depends on the timing of 
imaging. In the acute phase, myocardial inflam-
mation or edema manifests as patchy increased 
signal intensity on T2-weighted images. LGE 
MR images in patients with sarcoidosis typically 
show a patchy midmyocardial, subepicardial, or 
epicardial pattern that is not in a vascular distri-
bution (4,63). In chronic disease, nodular foci 
of LGE indicative of fibrosis and scar forma-
tion without corresponding T2-weighted signal 
intensity may be present. A literature search re-
vealed no dedicated studies evaluating T1 map-
ping in sarcoidosis, but a recent publication by 
Crouser et al (35) suggests that detection of car-
diac sarcoidosis may be improved with use of T2 
mapping techniques. An example of T2 mapping 
in a patient with presumed cardiac sarcoidosis is 
shown in Figure 12.
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sequence, as was described earlier. Adoption of 
these sequences by the cardiac imaging commu-
nity may hinge on a more confident understand-
ing of what is considered “normal.”
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Page 1595
Traditional LGE MR images are most useful for evaluation of focal diseases, where normal myocardium 
can be used as a standard of reference and a pattern of enhancement can be detected. Diffuse fibrosis 
may go undetected on qualitative images if gadolinium uptake is uniform.

Page 1595
Whereas qualitative sequences rely on the use of arbitrary signal intensity scales for T1 and T2 values that 
have interpatient and interimage variability, myocardial mapping offers the potential to produce images 
that have standardized, reproducible scales similar to the attenuation values used at computed tomogra-
phy.

Page 1598
The T1 map is a single image that represents a pixel map of the T1 values generated by curve fitting of all 
images in a sequence (ie, LL, MOLLI, or ShMOLLI). This image may be generated automatically at the 
imaging unit; however, open-source software is available for analysis and has been validated for clinical 
use.

Pages 1598–1599
In conjunction with the hematocrit value, mapping enables quantification of the proportion of extracellu-
lar (interstitium and extracellular matrix) myocardial volume to cellular (myocyte) volume. An increased 
ECV is a marker of myocardial remodeling and is most often due to excessive collagen deposition (in the 
absence of amyloid or edema). Recent analyses have shown that the ECV may be as important as the left 
ventricular ejection fraction as a marker for cardiac disease severity, indicating vulnerable myocardium 
with decreased tolerance to ischemia.

Page 1600
Mapping can noninvasively represent a “sample” of tissue from the entire myocardium and can supple-
ment or potentially replace invasive transvenous myocardial biopsy (which usually is limited to the right 
ventricular myocardium). At a minimum, T1 mapping may help identify the most appropriate location 
for biopsy, if biopsy is deemed clinically necessary.


