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ABSTRACT: For the last 15 years, super-resolution (SR) algorithms have successfully been
applied to magnetic resonance imaging (MRI) data to increase the spatial resolution of scans
after acquisition has been performed, thus facilitating the doctors’ diagnosis. The variety of
application and techniques has grown ever since, especially in the MRI modality, showing the
interest of the community to such postacquisition processing. This article presents a review
of the general principle of SR as well as how this principle has been adapted to MRI data.
The main algorithms and the principal acquisition protocols are detailed for both static and
moving subjects. The presented strategies are discussed and compared according to the data
specificities. Later, different ways of measuring the resolution enhancement and quantify the
benefit of SR are detailed. Finally, unexplored perspectives on the application of SR to MRI
data are discussed. © 2012 Wiley Periodicals, Inc. Concepts Magn Reson Part A 40A: 306–325,

2012.
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I. INTRODUCTION

Magnetic resonance imaging (MRI) is today widely
used to assess brain disease, spinal disorder, angiog-
raphy, cardiac function, and musculoskeletal damage.
Although MRI requires a larger acquisition time than
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computed tomography (CT), MRI does not require
the use of ionizing radiation and scans can be per-
formed at any chosen orientation. It features full three-
dimensional (3-D) capabilities, excellent soft-tissue
contrast and high spatial resolution. Furthermore, MRI
allows functional, diffusion and perfusion imaging to
be performed.

In many medical applications, high-resolution 3-D
images are required to facilitate early and accurate diag-
nosis. However, due to acquisition constraints such as
limited acquisition time or moving subjects, a sufficient
sampling density cannot always be reached. Image
processing techniques can be applied to increase the
image resolution a posteriori. In most MRI machines,
a basic interpolation (usually zero-padding) is available
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Figure 1 Left: The two point sources can be resolved
because the FWHM of the PSF is smaller than the point
sources separation. Right: The two points cannot be resolved.

to increase the size of the images. Applying this inter-
polation facilitates the visualization but several artifacts
such as blur and contrast loss are added, while no
new information is introduced into the image. Super-
resolution (SR) techniques offer the possibility to
efficiently improve the resolution of scans, ensuring the
addition of significant new information and increasing
the diagnosis possibilities.

Potential Clinical Applications

Currently available clinical MRI systems are able
to provide sub-centimeter resolution for static scans.
However, small but clinically significant lesions in
joints, brain or pelvis may still be challenging to cor-
rectly visualize or characterize. Some tumors, such
as nasopharyngeal carcinoma, demonstrate a high rate
of perineural invasion, which can appear subtle even
for MRI. MRI-detected cranial nerve involvement has
been shown to be an adverse prognostic factor in
nasopharyngeal carcinoma (1), and improving imag-
ing resolution could improve the sensitivity for the
detection of this important factor and guide delivery
of appropriate radiation doses for treatment.

The increasing use of functional imaging to interro-
gate intratumoral heterogeneity has led to a clinical
need for improved spatial resolution for inherently
low-resolution sequences. Due to the technical abil-
ity to deliver dissimilar radiation doses to different
subvolumes within the tumor target (also termed dose-
painting), there is a clinical need to accurately deter-
mine the regions that may be relatively radio-resistant
and hence require a higher dose to achieve adequate
tumor cell kill (2).

The development of whole body MRI, with (3) or
without hybrid positron emission tomography (4), as
well as the imaging of moving organs such as heart ven-
tricles and upper abdominal visceral organs, has also
increased the requirement for high spatial and tempo-
ral resolution imaging. The application of SR in this
setting could allow more rapid through-put or more
sequences within a reasonably tolerable time frame.

Spatial Resolution Limitations

Strictly speaking, spatial resolution is defined as the
smallest separation of two point sources necessary
for the source to be resolved. The mathematical rela-
tionship between the acquired image I(x, y, z) and
the physical object O(x, y, z) being imaged can be
represented by:

I(x, y, z) = O(x, y, z) � h(x, y, z) [1]

where � represents the convolution operator and
h(x, y, z) is the 3D point spread function (PSF). Figure 1
illustrates the relationship between image resolution
and PSF. It shows that two point sources can be
resolved, if they are separated by a distance greater
than the full width at half maximum (FWHM) of the
PSF.

In MRI, the PSF is usually anisotropic, because
the acquisition process is different for each dimen-
sion. The dimension convention used throughout this
article is presented in Fig. 2. The phase-encoding
and frequency-encoding dimensions are referred as the
in-plane dimensions, and the slice-select (or through-
plane) dimension is referred as through-plane dimen-
sion. The slice-select resolution is strictly linked to the
frequency response of the slice-selective RF pulse. The
PSF in the frequency and phase encoding directions is
mainly affected by three factors: the digital resolution,
data truncation, and relaxation during acquisition (5):

• The digital resolution is obtained by dividing the
field of view (FOV) by the number of data points
acquired in each dimension.

• Data truncation occurs, because only a finite num-
ber of data points can be acquired. The width
of the PSF is then inversely proportional to the
number of samples acquired in the corresponding
dimension.

Figure 2 Illustration of the dimension convention for a
multislice MRI scan.
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• The final factor is the degree of T∗
2 relaxation dur-

ing data acquisition. The higher the degree of T∗
2

relaxation the narrower the PSF.

For an optimal representation of a 3D volume, a 3-D
Dirac delta function PSF is desired, but this theoretical
limit is not reachable in practice. This would require
the application of an infinite RF pulse to increase the
selectivity of the slice selection process and the acqui-
sition of an infinite number of data points. This would
result in a dramatic increase in the overall acquisition
time, which would fall beyond the limit of a realistic
practical application.

Another factor that limits the spatial resolution dur-
ing the acquisition is the presence of moving subjects.
In these situations, typically cardiac imaging, fetal
MRI, functional MRI, or uncooperative patients, scan-
ning times are required to be extremely fast to avoid
motion artifacts. Such speeds can be reached by using
gradient-echo sequences (such as FLASH, FISP, SSFP,
and GRASS) in addition to the reduction of the in-plane
resolution and larger slice thickness. Consequently,
high-resolution images can seldom be acquired in the
presence of motion, justifying the growing interest for
postacquisition resolution improvement methods.

Increasing the Resolution of MR Images

Several approaches can be used to increase the over-
all resolution of MRI scans. Hardware improvements
directly increase the resolution of the acquired images.
For example, increasing the number of coil receiver
channels or increasing the main magnetic field going
through the MRI core, B0 increases the MRI signal.
For a similar SNR value, scanners with a high value
of B0 and a high number of coil receiver channels
will produce images with higher spatial resolution and
contrast (6). Nowadays, most MRI scanners used for
medical purposes have B0 values of 1.5 or 3 T and can
reach typical resolutions of around 1.5 × 1.5 × 4 mm3.
In parallel, ultra-high magnetic field MRI scanners
with B0 = 11.7 T are developed for research pur-
pose and resolutions of 80 × 80 × 200 μm3 have been
reported (7).

Independently from any hardware improvement,
postacquisition image processing techniques such as
SR can also be applied to increase the resolution of MR
images. They present the advantage to be applicable
on all MRI machines and in many practical situa-
tions, without requiring the purchase of new hardware
equipments. The main advantage of SR methods is to
offer the possibility to reconstruct high-SNR and high-
resolution representations of objects that could only be

acquired at low resolution because of subject motion,
scanning time limitation, or SNR considerations.

Introducing the SR Technique

SR algorithms have first been introduced in the early
1980s and were applied to video processing to increase
the resolution of image sequences (8–11). The idea
behind SR is to combine several distinct low-resolution
observations of the same object to reconstruct a high-
resolution image. In video sequences, a high-resolution
frame at time t0 can be created from consecutive frames
containing the same object if this object has moved by
a subpixel amount as illustrated in Fig. 3 for a simple
translation. When the geometric transformation (trans-
lation, rotation, and deformation) of the objects along
the frames is known or correctly estimated with sub-
pixel accuracy, it is possible to combine low-resolution
images into a high-resolution image that contains addi-
tional frequency content. Retrieving aliased content is
a major advantage for SR over standard interpolation
techniques.

The MRI framework is particularly well adapted to
the application of SR techniques because of the control
one has over the acquisition process. In particular, as
any scanning plane orientation can be chosen, several
distinct low-resolution observations of the subjects can
be acquired even when no subject motion is involved.
Moreover, the resolution of MRI images is often lim-
ited by several factors such as SNR limitations, moving
subjects, and limited scanning times. In such cases,
images with large slice thickness and low in-plane res-
olution are generally acquired which provides a good
basis for SR algorithms to succeed and overcome the
missing of critical information when the Nyquist sam-
pling criterion is not met, that is, when aliasing is
present in the acquired image. Several authors have
demonstrated the benefit of using SR reconstruction
methods compared to direct high-resolution acquisi-
tion. They showed that for a given acquisition time
the SR reconstructed images presented higher SNR
when compared to images directly acquired at the same
resolution (12, 13). This is of great interest for prac-
tical applications, because it offers the possibility to
decrease the acquisition time, which is often a critical
parameter, and reconstruct the high-resolution image a
posteriori.

The application of SR to MRI was first reported in
Ref. 14 in 1997. Since then, a large number of arti-
cles adapting the SR concept from video processing
to multidimensional MRI data have been reported, and
encouraging results have been demonstrated. Several
acquisition protocols have been introduced and suc-
cessfully applied on both static and moving subjects,
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Figure 3 Introducing the SR principle.

and numerous algorithms have been developed and
optimized to fit the MRI data specificities.

Structure and Objective of the Article

SR in the context of MRI and PET has been presented
in a previous review by Greenspan et al. (15). In the
MRI part of the article, the authors discuss the dimen-
sionality of the SR problem and give an overview of the
various algorithms and the application of SR to static
MRI subjects using parallel acquisitions. Our article
extends the previous review by presenting multiori-
entation acquisition protocols to perform SR on static
subjects. It also studies and reviews the application of
SR in the context of moving subjects, which has been a
subject of growing interest in recent years, and provides
the reader with different methodologies to assess and
measure the resolution enhancement. Additionally, this
article discusses the choice of the SR method to guide
the novice reader toward the optimal solution.

In the first part of this article, the feasibility of
SR in both in-plane and through-plane dimensions is
discussed. Necessary conditions for in-plane resolution

enhancement has been a subject of many discussions
in the past and the latest arguments are presented. Then
Section III studies the specificity of MRI data to adapt
the general SR observation model to the MRI case.
The different SR algorithms are then presented and
compared in section “SR Algorithms”. Later, Sections
IV and V provide an overview of acquisition protocols
required for SR to succeed, respectively, in the presence
of static and moving subjects. Finally, different ways of
measuring the improvement of resolution are discussed
in Section VI, and section VII provides some promising
and up-to-date perspectives still to be explored.

II. FEASIBILITY OF SR IN MRI

In video applications, SR algorithms use the motion
between successive frames to create additional infor-
mation. In MRI scans, motion does not occur when
static subjects are scanned: brain MRI, bone MRI, and
so forth. Resolution improvement in these situations
can, however, be reached by acquiring several sub-
pixel shifted scans of the same subject. This section
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discusses the feasibility of SR both for the in-plane
and for through-plane dimensions and the necessary
conditions that apply on the shifts performed.

In-Plane Improvement

The anisotropy of the voxels of multislice MRI scans
have encouraged the majority of authors to apply SR
algorithms to enhance the through-plane resolution.
However, some articles have also studied in-plane res-
olution improvement (16, 17). To achieve in-plane
resolution improvement, several scans with subpixel
shifted FOV in the in-plane directions were acquired.
SR was applied to produce a high-resolution image,
which showed a clear resolution improvement in the
in-plane dimension, and higher SNR.

However, questions were raised in Refs. 18, 19,
20 about the theoretical nature of the in-plane reso-
lution improvement shown in Ref. 16. MRI data are
acquired in the Fourier-encoded frequency domain
(k-space). Consequently, spatial subpixel FOV shifts
in the in-plane dimension correspond to a linear phase
modulation in the k-space, if the FOV and the digi-
tal resolution remain the same throughout the scans.
Under these conditions, the k-space points acquired
are identical for all the scans, and no new frequency
content is acquired. Scheffler (18) stated that similar
results could be obtained by combining the same num-
ber of scans without introducing any shifts. In Ref. 19,
the authors demonstrated that similar in-plane resolu-
tion improvement can be replicated using zero-padding
interpolation. According to them, the improvement in
resolution would only be due to noise reduction that
resulted in a SNR improvement.

However, in a separate study (17), Tieng et al. have
combined images that were initially acquired at the
same sample points in the k-space domain but shifted
numerically afterward. The result of this combina-
tion was compared to the reconstruction obtained from
the same number of images but acquired with shifted
FOVs. Results comparison clearly showed that the
shifted FOVs images contain more high frequencies,
suggesting that new information was indeed introduced
when FOVs were shifted. According to them, shifting
the FOV by changing the demodulation frequency of
the receiver produce low-resolution images that contain
exclusive frequency content.

Although both parties have not converged yet toward
a common view, some points about improving the in-
plane resolution remain clear:

• Combining in-plane FOV shifted images does
improve SNR, which leads to image quality
enhancement especially in the case of noisy data.

• Because only a finite number of in-plane data
samples can be acquired, the in-plane data is
inherently band-limited. This limits the potential
overall in-plane resolution improvement.

• If the object is shifted before the acquisition, new
information (although a very small amount) is
added when several low-resolution images are
combined (21).

In addition, some articles have demonstrated in-
plane resolution improvements under specific condi-
tions. It has been proven in Ref. 22 that using spa-
tially shifted scans performed at different FOVs does
improve in-plane resolution (although experimental
results are not satisfying). In Ref. 23, in-plane resolu-
tion enhancement was performed in the case of parallel
MRI. Images were acquired at the same FOV and res-
olution, but the authors showed that complementary
information of the subject, as they come from different
receiver channels.

Through-Plane Improvement

As discussed in the previous paragraph, the in-plane
resolution of multislice scans is much higher than the
through-plane resolution. This explains why most arti-
cles have proposed SR methods to decrease the slice
thickness and reach voxel isotropy. Unlike in the in-
plane dimension, the sampling rate in the through-plane
dimension is usually too low, which causes the slice
selection process to create aliasing. This provides a
good basis for SR algorithms to efficiently reconstruct
high-frequency content in this dimension.

Following the same idea introduced for in-plane res-
olution improvement, several low-resolution volumes
are acquired with the introduction of a known sub-
pixel shift between them. Various acquisition schemes
have been proposed to optimize the enhancement of
the slice-select dimension. They will be detailed in
section IV.

III. GENERAL MODEL AND ALGORITHMS

Each SR algorithm relies on an acquisition model.
Parameters of this model are fundamental, as the high-
resolution image estimation is optimized toward it.
A well-established general form of this model can be
given without any loss of generality on the dimension-
ality of the problem (24). Let {Yk}N

k=1 be a set of low-
resolution observations obtained from the following
imaging model illustrated in Fig. 4:

Yk = DkBkGkX + Vk , k = {1, . . . , N} [2]
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Figure 4 The general acquisition model.

where X is the high-resolution image given at an arbi-
trary reference position kr , Gk is the geometric transfor-
mation from the image Yk to the reference image Ykr , Bk
is the space-variant blur operator modeling the PSF of
the imaging process, Dk is the down-sampling operator,
and Vk is an additive zero mean Gaussian noise. The
SR process aims at inverting the given model to find the
original non-noisy, nonblurry, high-resolution image.
Because the inversion of such a problem is ill-posed,
optimization methods will be employed to estimate the
best solution given the acquisition parameters and the
low-resolution observations.

Without loss of generality, the model in Eq. [2] can
be written as:

Yk = WkX + Vk , k = {1, . . . , N} [3]

where Wk is the global transformation operator that
includes geometric transformation, blur and down-
sampling from the high resolution to the low-resolution
image.

Note that an additive model has been proposed in
Ref. 25 to represent the relation between the high-
resolution and the low-resolution volumes.

Adapting the Model to MRI Data

In the context of video processing, several types of blur,
noise models, and down-sampling operators have been
studied. This section reviews the choice of different
operators in the context of MRI data.

Geometric Transformation. The operator Gk repre-
sents the geometric deformation between the kth frame
and the krth reference frame. Geometric deformation
(often called warping or motion) is fundamental in
the SR process, because it provides different views
of the same object, bringing in additional information.
The deformation has to be of subpixel nature to provide
additional information, which requires a very accurate

deformation estimation. Such a precision is sometimes
difficult to guarantee in practice, and this often makes
registration a bottleneck in the SR process. For this
reason, predetermined motion is often introduced to
improve the quality of the high-resolution reconstruc-
tion. In SR applications involving static subjects, the
motion is artificially created by shifting or rotating the
scan FOV by a known value. Such acquisition protocols
have been widely used and are detailed in Section IV.

However, when the subject itself is moving or
deforming, no FOV shifts are theoretically required to
apply SR, and registration has to be performed. Gener-
ally, it has been shown that due to registration errors,
the presence of unknown motion decreases the poten-
tial resolution enhancement. In practice, predetermined
shifts are also introduced to optimize the efficiency of
the k-space sampling. Such protocols will be reviewed
in Section V.

Modeling the PSF. The operator Bk represents the
amount of blur added during the overall acquisition
process and is often assimilated to the blur introduced
by the imaging system. It is commonly assumed that
the PSF induced by the MRI acquisition process is
space-invariant, which simplifies Bk into B. Although
B is a 2D operator in most video applications, a third
dimension is added to take into account the slice-select
dimension of 3D MRI stacks. In Ref. 26, the authors
have compared the effect of using different shapes of
PSF to conclude that 3D anisotropic PSF lead to the best
results. In most medical applications, the PSF in the
slice-select dimension is defined as the slice excitation
profile.

Most articles dealing with MRI SR suggest that the
PSF is well approximated by a Gaussian function in
the three dimensions (5, 19, 22, 26–30). It is commonly
assumed that in the slice-select dimension, the FWHM
of the PSF should be equal to the slice thickness of the
MRI volume. Moon and Harnak (31) have proposed a
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MRI-compatible phantom that can be used to measure
the in-plane PSF.

Alternative models of blurring have also been pro-
posed. Poot et al. (32) have regrouped the blur step
and the down-sampling step. They proposed to use a
3D separable sampling function instead of a Gauss-
ian function as a representation of the digitalization
process. Rectangular PSF, or box-PSF, which approxi-
mates the slice-select profile by a constant throughout
the slice thickness, has also been studied in Ref. 19.

Down-Sampling Operator. The down-sampling oper-
ator is usually directly deduced from the dimensions
of the required high-resolution volume, except in the
case where slice-spacing is non-null. A solution was
proposed in Ref. 33 where a model of the slice-
select acquisition was introduced and coupled with an
in-painting SR algorithm.

SR Algorithms

The general model given in Eq. [2] can be solved using
different approaches. A complete overview of such
algorithms is given in Ref. 34, but this section reviews
the ones that have been used on MRI data so far. The
choice of which SR algorithm to use is discussed in
Section “Choice of SR Method”.

Back-Projection Approach. Iterative back-projection
(IBP) algorithms were introduced by Irani and Peleg
(9, 11, 35). This approach is based on the previ-
ously defined imaging model of Eq. [2]. A first high-
resolution estimation is performed, X̂, and the imaging
process is applied to obtain a set of low-resolution
images Ŷk that corresponds to the simulation of the real
observed images Yk . An iterative process is introduced
to minimize the following error function:

ε(n) =
√√√√ N∑

k=1

(
Yk − Ŷ (n)

k

)2
[4]

where n is the current estimation and N the total number
of observations. The current estimation is updated by
the following procedure:

X̂(n+1)(x) = X̂(n)(x) +
∑

y∈∪kΔk,x

(
Yk(y) − Ŷ (n)

k (y)
)
× hBP

xy

[5]

where y and x denotes, respectively, low-resolution and
high-resolution pixels, hBP is the back-projection ker-
nel, and Δkx is the set {y ∈ Yk | y is influenced by x}.
The back-projection kernel weights the contribution of

the low-resolution pixels y to update the current esti-
mation. Different choices of hBP are discussed Ref. 11,
in which the authors point out that hBP = hPSF is
generally a good choice regarding stability and noise
addition.

In practice, there are several possible solutions to
this problem between which the algorithm might oscil-
late. The initialization has no influence on the stability
and on the speed of the convergence but might influ-
ence the solution that is reached first. Irani and Peleg
(11) recommend the average image of low-resolution
images as a reasonable initial guess.

This method has been used in MRI SR because
of its simplicity (16, 26, 33, 36). However, due to
the ill-posed nature of the inverse problem, the solu-
tion reached might not be unique. To overcome this
issue, prior knowledge about the solution can be intro-
duced to stabilize the inversion of the equation. Such
approaches, referred as regularized approaches, are
covered in the next section.

Deterministic Regularized Approach. Using a pri-
ori information about the solution can turn the model
described previously in Eq. [3] into a well-posed prob-
lem. Typically a smoothness constraint is applied on
the solution, to limit the apparition of unexpected
high-frequencies, focusing on the restoration of the
low-frequency contents of the image. In the case of
a constrained least-square regularization, the optimal
solution X minimizes the following Lagrangian:

X̂R = argmin

[
N∑

k=1

||Yk − WkX̂||2 + γ||CX̂||2
]

[6]

The notations of Eq. [3] are used, C represents a high-
pass filter, and γ is called the Lagrange multiplier
or regularization parameter. It balances the trade-off
between the data fidelity term and the a priori knowl-
edge term. Considering the problem as a convex opti-
mization, gradient descent algorithms can be applied
to converge toward the optimal solution. The iterative
scheme can then be written as:

X̂n+1
R = X̂n

R + β

(
N∑

k=1

WT
k (Yk − WkX̂n

R) − γCTCX̂n
R

)

[7]

where β is the step size in the gradient direction. If
the chosen regularization term is a convex function,
this equation converges toward a unique solution. The
choice of C as a high-pass filter leads inexorably to edge
alterations in the final solution, which is why alternative
regularizers have been studied in the context of MRI
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to preserve the frequency content of the reconstructed
image.

In Ref. 25, the regularization term consists of mini-
mizing the first derivative of the image in the through-
plane dimension, using a Hubert function (quadratic
function). In a related approach, Poot et al. (32) min-
imize the sum of the square of the second derivative
of the reconstructed image. In Ref. 37, the regular-
ization is based on the total variation operator, which
was introduced in Ref. 38, and which is often used
for its denoising and edge preserving properties. In
Ref. 39, two regularization terms were used. The first
one is a directional version of the total variation con-
straint (DBTV), and the second one, the Tri-modal
regularizer, is designed to benefit from a priori knowl-
edge on intensities of brain MRI. In Ref. 40, SR is
applied on diffusion brain MRI to detect fiber orienta-
tion and volume fraction. The quadratic regularization
terms are defined according to a physical model and
penalize high differences in volume fractions of neigh-
boring voxels, while favoring the anisotropy in the fibre
orientations of neighboring voxels.

An interesting approach is described in Ref. 41,
where nonlocal regularizers are used, in contrast to
pixel-based approaches. Nonlocal methods model the
many regularities and geometries seen in local patterns
of training data or input images to develop explicit mod-
els. The same authors in Ref. 42 introduced another
nonlocal regularizer to enhance the resolution of a T2-
weighted MRI volume. The intermodality regularizer
uses prior knowledge from a reference high-resolution
T1-weighted volume of the same subject, to constraint
the reconstruction of the high-resolution T2-weighted
volume into a realistic solution.

Statistical Regularized Approach. Stochastic regu-
larization is more flexible to include a priori knowledge
than deterministic models. Bayesian estimation meth-
ods are used when the a posteriori probability density
function (PDF) of the original image can be estab-
lished. The maximum likelihood (ML) estimator of the
high-resolution volume XML maximizes the a poste-
riori PDF: P(X|Yk) with respect to X, based on the
observations Yk .

XML = argmax [P(X|Yk)] [8]

ML estimators have been used on MRI brain data
in Ref. 43, to reconstruct volumetric images from
multiple-scan slice acquisitions.

Prior knowledge on X can be included to the
model by applying Bayes theorem to Eq. [8]. This
model is referred as the maximum a posteriori (MAP)
method. It follows from Eq. [9] that XMAP can be

expressed as a sum of the likelihood term and the prior
term:

XMAP = argmax [ln(P(Yk|X)) + ln(P(X))] [9]

As P(X) represents a priori constraints on X, it plays
the role of regularizer. Various image priors can be
used to estimate P(X). Markov random field (MRF)
priors that provide a powerful method for image
prior modeling are adopted in Refs. 44, 45, 46. The
potential function of the MRF usually depends on
the derivatives of the image that evaluates the cost
caused by the irregularities of the solution. Gholipour
et al. (29, 30) presented a simpler expression of P(X)

that involves a quadratic exponential function such
as:

P(X) = exp(−XTQX) [10]

where Q = CT C, and C is the gradient magnitude
operator.

Finally, to model the likelihood term of Eq. [9],
P(Yk|X), a Gaussian distribution with zero mean and
standard deviation of σk is often used to represent the
noise residual (error samples).

P(Yk|X) =
∏

i

1

σk
√

2π
exp

(
− (Ŷk(i) − Yk(i))2

2σ2
k

)

[11]

Estimated observation samples Ŷk are obtained based
on X̂ by reversing the observation model of Eq. [2].
If the error between frames is assumed to be indepen-
dent, the optimization problem can be expressed more
compactly as:

X̂MAP = argmin

[
N∑

k=1

||Yk − WkX̂||2 + γΦ(X̂)

]

[12]

where γ is the weighting regularization parameter, and
Φ is the function that expresses the prior term P(X). In
this configuration, the data fidelity term of Eq. [12] is
similar to the one of Eq. [6], and the only difference is
the choice of the prior term.

MAP offers flexibility and robustness regarding
noise modelling. Assuming that the noise follows a
Gaussian distribution and that the error between frames
is independent, the MAP becomes similar to the deter-
ministic regularization scheme if the same regularizer
is used. If the prior constraint is a convex function,
the MAP process converges toward a unique solution
when, for example, a gradient descent algorithm is
applied on Eq. [12].
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Projection Onto Convex Sets. Incorporating a pri-
ori knowledge into the solution can be interpreted as
restricting the solution to be a member of a closed con-
vex set Ci that is defined as a set of vectors which
satisfies a particular property (47). If the constraint
sets have a nonempty intersection, then a solution that
belongs to the intersection set: Cs = ∩N

i−1Ci, which
is also a convex set, can be found by iteratively alter-
nating projections onto these convex sets. The central
theorem of projection onto convex sets (POCS) is as
follows:

X(k+1) = PmPm−1 . . . P2P1X(k) [13]

where X(0) is an arbitrary starting point that converges
weakly to a feasible solution that lies in Cs. The cen-
tral problem in POCS is to synthesize the projectors
Pi(i = 1, . . . , m) that project an arbitrary signal X onto
the closed, convex sets, Ci. As stated in Ref. 48 and
resumed in Ref. 34, and based on the observation model
of Eq. [3], a constraint set is represented by:

Ci = {X : |e(X)| ≤ δ0} [14]

where e(X) = Yk − WkX̂ is the model error, and δ0
is a bound reflecting the statistical confidence, with
which the actual image is a member of the set Ci. The
projection of an arbitrary image onto Ci can be defined
as:

X̂n+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X̂n + (e(X̂)−δk)Wk∑
p,q W2

k (p,q)
, if e(X̂) > δk

X̂n, if |e(X̂)| ≤ δk

X̂n + (e(X̂)+δk)Wk∑
p,q W2

k (p,q)
, if e(X̂) < −δk

[15]

Generally, POCS method gives better results, when the
data is noisy, dynamic, inconsistent, and/or overde-
termined, because it relies on strong spatial domain
assumptions. It has been quite extensively used in the
MRI context (23, 49–51). POCS has been coupled with
wavelet coefficient estimation in Ref. 27 and showed
to be efficient when applied on temporal sequences. In
Ref. 52, POCS has been used in a frequency based SR
algorithm in the context of PROPELLER data fusion.
According to Ref. 34, these methods have the disadvan-
tages of nonuniqueness of solution, slow convergence,
and high computational cost.

Choice of SR Method

The goal of this section is to aid the reader to choose
the method that fits his problem. Up to now, few stud-
ies have been done to compare the performance SR
methods. Plenge et al. (12) quantitatively and qualita-
tively compare isotropic reconstructions obtained six

Table 1 Summary of the Presented Methods.

IBP Regul-SR MAP POCS

Convergence speed + + + –
Uniqueness of solution – + + –
Inclusion of spatial priors – + + +
Noise modeling – – + +

different SR methods based on IBP, algebraic recon-
struction, and regularized approaches. The resulting
high-resolution volumes are compared to a reference
volume, which was directly acquired at the same
isotropic resolution. Resolution metrics as well as SNR
values are used to asses the quality of the reconstructed
volumes of phantom and real data. All tested SR
approaches were able to reconstruct volumes with sig-
nificantly higher SNR the volume directly acquired at
high resolution for a fixed acquisition time, but no par-
ticular method significantly outperformed the others. It
was also pointed out in this study that the performance
of each SR method depends on the nature of the data
on which it is applied, making it hard to establish a
robust and realistic ranking of the different algorithms.
Following this statement, it would be of great utility to
study the robustness of each algorithm to various arti-
facts that usually corrupt real data (acquisition noise,
motion blur, and registration errors) to choose the SR
algorithm in accordance with the nature and partic-
ularities of the data. But to our knowledge, no such
studies have been performed to date in the context of
MRI.

Generally speaking, each SR algorithm has specific
characteristics that can help the user choose the one that
fits his data. Each situation has particular constraints
(computational time limitations, prior knowledge about
the desired solution, prior knowledge about the noise)
that can lead the user to favor one algorithms instead
of others. We summarize in Table 1 some properties of
the different SR algorithms that have been presented
in this article. It can be seen from Table 1 that if no
prior information is available on the noise characteris-
tics, and if the widely used Gaussian model is admitted
for the MAP formulation, the MAP and Regul-SR for-
mulations will lead to similar performance, if the same
regularizer is used. In this situation, the choice of the
model parameters (PSF and geometric deformation)
will have a much greater impact on the result than
the choice of the algorithm itself. Unlike Regul-SR,
MAP and POCS can model new noise priors, and POCS
becomes an interesting alternative if the computational
time is not an issue. Also note that the uniqueness of
solution for both Regul-SR and MAP is valid only in the
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Figure 5 Three shifted parallel scans in the through-plane
direction.

case where convex regularizers are used. However, this
is not guaranteed for the POCS and IBP approaches that
can be problematic in terms of result reproducibility.

Finally, it is important to note that the choice of the
minimization method will also influence the speed of
the SR process and even sometimes the solution itself
(53). Although the steepest gradient descent algorithm
is widely used because of its simplicity, other methods
including, but not restricted to, the conjugate gradi-
ents (54) and preconditioned gradients (55) can also be
applied to solve the SR problem and can improve the
overall convergence rate.

IV. SR OF STATIC SUBJECTS

The first applications of SR on MRI were performed
on static subjects. Because SR requires different views

from the same scene to add new information, move-
ments have to be created artificially by changing the
scan FOV or by manually shifting the subject itself.
These approaches have been used to increase both in-
plane and through-plane resolutions multislice MRI. In
Section II, difficulties and limitations of in-plane res-
olution improvement have been described. Therefore,
this section only addresses different protocols that have
been suggested to enhance the through-plane resolution
of multislice MRI scans.

Parallel Stacks Acquisition

In the early stages of SR applied to MRI, an inno-
vative approach was proposed in Ref. 19. It consists
of acquiring several sets of multislice scans, shifted
in the through-plane dimension by a known subpixel
distance. The different sets are then combined using
a SR reconstruction algorithm to create one high-
resolution multislice set with isotropic voxel size.
Figure 5 illustrates the shifted acquisition model for
three low-resolution scans. Various applications of par-
allel scans SR reconstruction can be found in Refs. 25,
22, 56, 39, and 26.

To reach isotropic reconstruction, this approach
requires a minimum N low-resolution scans with N =
Rt
Ri

, where Rt and Ri are, respectively, the through-
plane and in-plane resolutions. If the ratio between Rt
and Ri is large, the total acquisition time of N scans
can become prohibitive in practice. A high-resolution
isotropic reconstruction using parallel scans is pre-
sented in axial view in Fig. 6(b), originally from the
work of Shilling et al. (56). It clearly shows that the
parallel scan reconstruction contains more details than
the isotropic reconstruction obtained from a single scan
that is interpolated in the slice-selection dimension
shown in Fig. 6(a). The original scan resolution was

Figure 6 Comparison of three isotropic reconstructions. Slice-select direction is from left to right. a: Basic interpolation; b:
parallel scans; and c: Rotated scans. (From Shilling et al., IEEE International Conference on Image Processing, 2008, 2240–2243,
©IEEE, reproduction by permission.)
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Figure 7 Example of three voxels obtained with orthogonal
scans. Each voxel is elongated in the slice-select direction.

0.6 × 0.6 × 3.6 mm3, and the slice shift increments
were 0.6 mm between each scan. Six low-resolution
scans were acquired to reach isotropic reconstruction,
that is, 0.6 × 0.6 × 0.6 mm3.

Multi-Orientation Scans

Multiorientation scan combination has been studied for
a long time notably in the context of cardiac imag-
ing (57, 58) but has only recently been addressed
under a SR framework. Like parallel scan reconstruc-
tion, it aims at creating isotropic voxels from several
anisotropic scans. However, the acquisition planes are
rotated in the frequency and/or phase encoding direc-
tions instead of being shifted, resulting in a more
efficient sampling of the k-space. Theoretically, only
two orthogonal stacks are required to ensure isotropic
reconstruction. In the case of parallel stack recon-
struction, the number of scans required depends on
the through-plane to in-plane resolution ratio. Conse-
quently, combinations of multiorientation scans offers
a better trade-off regarding acquisition time versus
resolution enhancement. An illustration of the combi-
nation of orthogonal scans is presented in Fig. 7. It can
be seen that each volume has only one low-resolution
axe (in the slice-select direction), which is compensated
by the acquisition of the other volumes. Applications
of such combinations can be found in Refs. 33, 29.

Following the same concept, an alternative combi-
nation of volume consists of rotating the acquisition
plane around one commonly encoded axis (50, 51) as
illustrated in Fig. 8. However, this approach requires
the acquisition of more than two scans to ensure a suf-
ficient sampling of the k-space and to allow isotropic
reconstruction. But if scanning time is not an issue,
a sufficient number of volumes can be acquired and
combined to reconstruct an isotropic volume. For

example, Poot et al. (32) have combined up to 36
volumes to reconstruct a high-resolution isotropic vol-
ume. The optimal number of combined low-resolution
images has been discussed in Ref. 59 in the context
of 2D SR and in Ref. 12 in the context of MRI. Both
studies show that the resolution is improved until a
certain number of low-resolution images is reached,
suggesting that it is not always a good strategy to
increase the low-resolution input number. So far, no
theoretical bound has been found, and the optimal
number of low-resolution inputs is still application
dependent.

Both parallel and rotated scans approaches have
shown to perform well to add information in the slice-
select direction. Orthogonal scan combination has the
advantage of minimizing the redundancy between each
acquired volumes, which is particularly useful when
only a limited number of volumes can be acquired. An
example of the superiority of rotated scans versus par-
allel scans is shown in Fig. 6c. The same number of
scans are used for parallel scan and rotated scan com-
bination. The angle increment between rotated scans is
30◦. Shilling et al. (56) have discussed the advantages
of multiorientation scans compared to parallel scans in
(56). They showed using various metrics that spatial
frequencies are better retrieved, when multiorientation
stacks are used. The combination of multiorientation
shows a better ability to attenuate the partial volume
effect that occurs in the slice-select dimension. This
is verified by visual inspection of Fig. 6 that clearly
shows an improvement in terms of sharpness and detail
recovery, when rotated scans are used.

Figure 8 Example of three rotated scans with a common
encoded axis (z).
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V. SR ON MOVING SUBJECTS

To perform SR on static subjects, motion is artificially
created by shifting or rotating the scanning plane by
a known value. This section studies the application of
SR methods for moving subjects where motion comes
from the subject itself and is, therefore, not controlled.
Two types of motion can be identified, namely, rigid
and deformable motion. So far, mostly rigid motion
have been studied, but recently a few applications on
deformable motion have also been reported.

Rigid Motion

Rigid motion typically occurs when the scanned sub-
ject cannot remain still during imaging. This is notably
the case for awake neonates, involuntary moving adult
subjects, and fetuses. To avoid motion artifacts, acqui-
sition times must be kept as short as possible. This often
results in a general decrease in the in-plane resolution
and an increase in slice thickness (voxel anisotropy).
Consequently, the need for postacquisition resolution
enhancement techniques is of great importance in the
presence of motion. Motion estimation via registration
methods becomes a key step in the SR process and is a
major factor influencing the quality of the reconstruc-
tion. This section reviews different approaches that
have been suggested to apply SR on moving subjects
with rigid motion.

In-Plane Resolution Improvement. Hsu et al. (27)
applied SR on a 2D sequence of cardiac images to
improve the in-plane resolution. In the presence of
motion, in-plane resolution enhancement is possible,
as motion ensures that two consecutive acquisitions
contain distinct information about the subject (refer to
Section II for in-plane resolution improvement issues).
They ignored the deformable nature of the heart and
performed affine registration to compute the motion
among three successive frames. The SR results pre-
sented sharpness improvement when compared to a
cubic-spline interpolation.

Another in-plane resolution enhancement method
using SR methods based on PROPELLER acquisi-
tion has been studied in Ref. 52 based on the work
of Pipe (60). It consists of registering partial k-space
acquisitions of different orientations and fusion of the
registered images into a high-resolution reconstruction.
It has not been, to our knowledge, extended to 3D MRI
volumes and slice thickness reduction.

Through-Plane Improvement. 3D representation
via 2D multislice acquisition is an issue in the presence

of motion, as two consecutive slices can be nonconsis-
tent when looking at the orthogonal planes, as shown in
Figs. 9(a–c). Different MRI acquisition protocols have
been suggested to handle interslice inconsistency due
to motion.

Jiang et al. (61) used single-slice snapshot imag-
ing to freeze the motion of fetal subjects. Sequential
shifted acquisition was performed to cover the entire
subject and ensure a sufficient sampling density. Ret-
rospective alignment of slices inside the volume was
performed using a six degree-of-freedom rigid registra-
tion and referred as slice-to-volume alignment. Then,
a data fusion algorithm based on B-spline scattered
data interpolation (SDI) was applied to produce a self-
consistent 3D volume of fetal brains. The same authors
have also applied this concept to increase the resolution
of diffusion tensor images of inutero fetal brain data in
Ref. 62.

Rousseau et al. (63) had previously proposed a sim-
ilar method. The acquisition procedure was, however,
different, as they acquired three orthogonal volumes as
detailed in Section “Multiorientation Scans”. Slice-to-
volume registration was applied independently for each
volume. The three volumes were then registered to each
other before applying the reconstruction algorithm to
obtain the high-resolution volume. A similar method
was detailed in Ref. 64. An interesting optimization
of the slice-to-volume registration algorithm has been
proposed in Ref. (65) to avoid the time consuming
systematic registration of every 2D slice.

A mathematical framework that justifies the opti-
mality of the reconstructed volume given the acquired
MRI data has been developed by Gholipour et al. (43).
The same authors have proved the superiority of a SR
MAP approach compared to a standard SDI in Ref. 29.
An example of reconstruction of a high-resolution vol-
ume of a fetal brain from the work of Gholipour et al.
is presented in Fig. 9. Slice thickness is set at 6 mm
to keep short scanning times and avoid motion arti-
facts and to preserve a correct SNR. Three orthogonal
planes were acquired, for a total number of 60 slices,
and combined to produce the high-resolution output.
The reconstructed volume reflects the continuity of
the brain anatomy in all three planes. Such continuity
could not be observed in the acquired volumes, because
they were corrupted by partial volume effect, large
slice thickness, and motion artifacts. The SR result was
shown to be superior in terms of sharpness than the
standard SDI, when the same number of input slices
were used.

Recently, Super-Resolution Reconstruction (SRR)
was applied on diffusion weighted imaging in Ref. 13.
They acquired three 3D orthogonal volumes at a res-
olution of 1.25 × 1.25 × 2.5 mm3 and addressed the
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Figure 9 Illustration of motion artifacts when the slice is acquired in the axial plane (a–c). The high-resolution (HR) volume
obtained after slice-to-volume registration and SR reconstruction is shown in (d–f). Orginal (a: axial; b: coronal; and c: sagittal)
and HR (d: axial; e: coronal; and f: sagittal). (From Gholipour et al. IEEE Trans Med Imaging, 2010, 29, 1739–1758, ©IEEE,
reproduction by permission.)

problem of patient motion by aligning the volumes
in both space and q-space. Distortion during acqui-
sition was considered and combined with a MAP
SR framework to produce an isotropic output volume
of resolution 1.25 × 1.25 × 1.25 mm3. Interestingly,
the reconstructed volume presented higher SNR than
the volume directly acquired at the same isotropic
resolution with an equivalent acquisition time.

Deformable Motion

SR has seldom been applied to subjects that present
deformable motion. The main reason for this is the
difficulty for deformable registration methods to guar-
antee sub-pixel accuracy. However, Rahman et al. have
applied SR in the context of cardiac imaging to improve
the resolution of the left ventricle in (44) and (46) which
deforms with time. More recently, Woo et al. have
focused on improving the resolution of tongue MRI

data in (66). In both studies, isotropic reconstruction
was considered.

In the work of Rahman et al., each slice had to be
acquired with coarse resolutions because of the high-
frequency heart beats (1.5×1.5×8 mm3) using a gated
acquisition technique to synchronize the slice acqui-
sition at the same phase of the cardiac cycle. Three
orthogonal scans were acquired using a non-specified
sequence. A deformable registration algorithm using
the Demons algorithm described in (67) was first per-
formed to match the several orthogonal acquisitions.
The registered volumes were then fused using a SR
MAP algorithm to produce the isotropic volume. The
effects of using rigid registration instead of deformable
registration were studied and showed that despite the
registration errors, the deformable registration algo-
rithm still produced superior quality reconstruction.
The authors also compared the effect of using either
two or three orthogonal volumes for SR reconstruction.
Interestingly, using three volumes degraded the output

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmra



SUPER-RESOLUTION IN MAGNETIC RESONANCE IMAGING 319

volume quality. According to the authors, the additional
information brought by the third volume was masked
by the accumulation of registration errors.

The article focusing on tongue data presented dif-
ferent characteristics because the scanned subjects
could remain still for 1.5 to 3 minutes in order to
acquire volumes at a significantly higher resolution of
0.94 × 0.94 × 3 mm3. Rigid registration followed by a
local deformable registration using the Demons algo-
rithm as well as histogram matching were performed to
fit the three orthogonal volumes in the same sampling
space. The isotropic result obtained with a MAP SR
method using a Markov random field based regularizer
showed convincing detail enhancement.

Comparing these two studies emphasizes the critical
role of registration in the SR process. It suggests that
deformable registration is not always able to deliver
accurate sub-pixel motion information. The perfor-
mance of deformable registration is likely to differ
with regards to the input volume resolution, the nature
and amplitude of the motion, or the ratio between in-
plane and through-plane resolutions. The registration
inability to accurately estimate the subject deforma-
tion in some situations is a current limitation to the
applicability of SR on deformable subjects.

VI. MEASURING THE RESOLUTION
IMPROVEMENT

It is clearly a real challenge to measure quantitatively
the resolution enhancement of SR applied on real MRI
images, because in most cases the high-resolution refer-
ence image is not available. Visual inspection is widely
used when obvious details are added by the SR method.
Evaluation by doctors is also a precious input to judge
the benefit of proposed approaches. However, this does
not allow the performance of different methods to be
objectively quantified and is not convenient when large
datasets must be evaluated. Unfortunately, there are no
standard procedures to measure or compare the res-
olution of reconstructed SR images. In addition, the
performance of SR algorithms is highly dependent on
the data on which it is applied. This part reviews some
quantitative evaluation methods that have been used in
the literature, which could form a starting point for a
further common resolution evaluation procedure.

Sigmoid Fitting

This technique aims at measuring the edge width,
or transition width, using a least-square fitting to a
sigmoid function of the form:

s(x) = 1

1 + exp(−a(x − c))
[16]

The parameter a is inversely proportional to the edge
width, and c corresponds to the edge centre location.
Once the optimal curve fitting is obtained, a measure of
rise length is computed and defined as the width from
10 to 90% of the edge height. It is easily shown that the
edge width in pixels is defined by:

width = 4.4

a
[17]

A significant drop in the edge width can be interpreted
as a gain in resolution, as object borders are spread over
a lower number of pixels, which makes them easier to
resolve. Sigmoid fitting has been used to measure res-
olution improvement in the following works: Refs. 25,
36, and 39. However, it can be noted that the sigmoid
fitting measure is sensible to some edge artifacts such
as overshoots as shown in Ref. 12. This suggests that
this approach cannot be used alone as a measure of
spatial resolution.

Metrics

Most objective metrics that can be found in the liter-
ature require a reference image to compute the error
between the reference image and the SR result. This
limits the use of metrics as a performance evaluation
tool, because the high-resolution reference image is
seldom available in clinical studies. Even when a refer-
ence image is available, metrics still need to be handled
with care. MRI presents inhomogeneity in the contrast
and pixel intensities produced, which makes it deli-
cate to apply intensity based metrics such as PSNR, or
mean absolute error. To avoid this problem, Gholipour
et al. (43) have suggested the use of mutual informa-
tion to compare their reconstructed volume with the
high-resolution reference.

Validation Using Further Application

An interesting way to validate the detail improvement
is to show the benefit of applying SR on a quantifiable
application. Yeshurun et al. (16) have improved fiber
tract mapping using SR. Other articles have demon-
strated the improvement of segmentation results using
SR in Refs. 37 and 46. Metrics such as the Dice sim-
ilarity coefficient can be computed to evaluate the
SR-based segmentation based on a manual reference
segmentation.

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmra



320 VAN REETH ET AL.

Phantoms

The main advantage of using phantoms is the pos-
sibility to control the characteristics of the scanned
subject, providing a ground truth reference toward
which the SR reconstruction should converge. In the
context of isotropic reconstruction, isotropic high-
resolution scans are often performed and compared to
the isotropic reconstruction obtained from anisotropic
sets. Phantoms are often used as a proof of concept for
the proposed method, but they do not ensure the validity
of the observed resolution improvement when the algo-
rithm is applied on real data. Resolution improvement
shown using phantom data is a necessary condition, but
not sufficient, to conclude on a resolution gain on real
MRI data. Phantoms have been used to compare and
measure the performances of different SR algorithms
in Refs. 12 and 68.

Several phantoms have been proposed to prove and
quantify an eventual resolution gain. Greenspan et al.
(36) have proposed a comb-like phantom that presents
equally spaced teeth in the slice-select direction that
is enhanced by the proposed SR algorithm. Carmi et
al. (22) suggested a similar set-up in but with different
known spacing between the plastic frames to quantify
more precisely the resolution gain. Mayer and Virseay
(21) designed a phantom composed of an orthogo-
nal plastic grid, to measure the feasibility of in-plane
resolution improvement. Finally, an experimental pro-
cedure for 3D PSF estimation has been developed in
Ref. 31 and can be used to evaluate SR algorithm per-
formances using the PSF estimation as a resolution
reference measure.

Simulation-Based Evaluation

Realistic physical phantoms representing real organs
can be very challenging to build. This is the reason why
MRI-simulated phantom have been developed. The
BrainWeb simulated database described in Refs. 69,
70, 71, is one of them. This database contains realis-
tic 3D MRI brain data based on real scans, according
to user-generated simulated MRI acquisition parame-
ters including slice thickness, FOV, receiver bandwidth,
number of signal averages, scan matrix size, pulse
sequence (SE, IR, FLASH, spoiled FLASH, FISP, and
CE-FAST/PSIF), and pulse sequence parameters (TR,
TE, and flip angle). The chosen parameters realistically
affect the image properties such as contrast, noise, and
partial volume effect. The control one has over these
parameters facilitates the development and the accurate
evaluation of various postprocessing algorithms like
SR, denoising, and segmentation. In the context of SR,
high-resolution images can be generated and used as a

reference and compared to the reconstructed SR results.
Several authors have used this tool to evaluate their
algorithm performance, for example, in Ref. 39 and
45. Finally, as simulated data are fully reproducible by
any user, the performance of different image process-
ing algorithms can be objectively compared. However,
the validity of a model-based comparison is only as
good as the model is close to real data.

VII. CONCLUSIONS AND PERSPECTIVES

This article has covered the possibility to use SR tech-
niques in the context of 2D and 3D MRI data. The
dimensionality and feasibility of the problem have
been addressed in Section II. It showed that in-plane
resolution improvement is possible under certain cir-
cumstances, although the resolution gain is limited due
to the inherent signal band limitation. SR was shown to
be far more efficient when applied in the through-plane
direction to reduce voxel anisotropy where aliasing
was more likely to appear. The interest of SR in MRI
lies in the fact that such spatial resolutions and such
SNR could not be reached with a single 3D acquisi-
tion. Typically, SR is useful in situations where the
acquired resolution is not sufficient to correctly charac-
terize small but clinically significant structures (joints,
tumors, pelvis, or brain structures). For example, the
spatial resolution of images produced by low spa-
tial resolution sequences such as diffusion weighted
imaging have been successfully enhanced.

The main SR algorithms that have been used on MRI
data and their respective specificities were presented.
Despite the fact that the choice of the SR method is
highly dependant on the application, a brief summary
of their advantages was given. Then, different acqui-
sition protocols that were applied on static subjects
were discussed. It was shown that better reconstruc-
tion was obtained when multiorientation scans rather
than parallel scans were combined. SR results have
been compared to linear interpolation methods such
as zero-padding interpolation, cubic-spline, or SDI.
Edge sharpness superiority and detail addition were
observed in the SR results that were confirmed by
several objective metrics.

In the presence of motion, registration becomes a
key step in the SR procedure. Successful SR recon-
struction was obtained in the case of rigid motion,
but the performances on deformable subjects were not
always as successful due to the accumulation of reg-
istration errors. Deformable registration accuracy is a
current limitation to the success of SR methods in this
context. Finally, several ways of measuring the res-
olution gain are summarized in Section VI and can
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be considered as an essential complement to visual
inspection. As a conclusion, this section covers several
aspects of SR applied to MRI that in our view present
interesting perspectives.

Evaluation of SR Algorithm Robustness

SR algorithm comparisons have been done in Ref. 12
on phantom and real data. No particular method outper-
formed the others in terms of both resolution enhance-
ment and SNR improvement, and the authors pointed
out the performance of each method was highly appli-
cation dependent. A useful complementary study could
consist of evaluating the robustness of each algorithm
to various artifacts that usually corrupt real MRI data
(acquisition noise, motion blur, and registration errors)
to facilitate the choice of the SR algorithm in accor-
dance with the nature and particularities of the data.
As SR results are particularly sensitive to registration
errors, it could be interesting to study the development
of algorithms that take into account motion estimation
errors. To our knowledge, no such studies have been
performed so far in the context of volumetric MRI data
and could be of great use.

Temporal Resolution Improvement

While the temporal aspect of SR has been extensively
studied and successfully applied in video applications,
it has seldom been addressed in the context of MRI.
Temporal resolution improvement could be useful to
have a better understanding of dynamic phenomena.
For example, it could improve the tracking of moving
organs such as moving structures of the heart, upper
abdominal visceral organs like the liver, or moving
tumors to optimize radiotherapy treatment. The addi-
tion of the temporal dimension would not affect the SR
framework, as it has been established so far, but the
increasing computational complexity of the problem
would have to be handled.

Explicit Registration Methods

The inability to guarantee perfect registration is clearly
a bottleneck for the application of SR algorithms.
To overcome this issue, methods of SR without
explicit motion estimation have recently been stud-
ied in Refs. 72 and 73 and showed promising results
to improve the resolution of video sequences. They
implicitly used the motion information to reconstruct
high temporal and spatial resolution image sequences
with improved SNR. Using this approach might reduce
the registration errors impact on the high-resolution
MRI volumes. However, the dramatic increase in the

computational cost that will occur when the method
is extended to 3D MRI scans might be challenging to
overcome. The extension of this method to volumet-
ric MRI data of subjects presenting deformable motion
remains to be explored.

Optimization of SR Parameters

In the context of 3D isotropic reconstruction, the influ-
ence of various SR parameters have been studied.
Plenge et al. (12) have studied the evolution of the
resolution enhancement and SNR improvement when
the number of low-resolution inputs is increased. The
authors showed that SR performance does not necessar-
ily increase when more low-resolution scans are added
and could even decrease in some cases. Although no
theoretical bound has been determined so far, similar
trends are likely to be observed in other situations.
Other SR parameters have not been evaluated and
could benefit from further investigation. One partic-
ular parameter that has not been studied in the context
of isotropic SR reconstruction is the optimal ratio
between through-plane and in-plane resolutions for
a given voxel volume (or a fixed acquisition time).
On one hand, highly anisotropic voxels introduce par-
tial volume effect that might degrade the overall SR
performance. On the other hand, more isotropic vox-
els might limit the potential resolution enhancement.
Finding the optimal voxel anisotropy would ensure to
reach the optimal resolution enhancement, when the
high-resolution volume is reconstructed.

Resolution Enhancement Limits

In 2D, limits of SR in terms of resolution improvement
have been studied by Lin and Shum (59) for both prac-
tical and synthetic situations. They stated that in the
case of translational motion, the resolution improve-
ment limit was 1.6 for real data and 5.7 for synthetic
data (note that these results have been discussed in
Refs. 74 and 75). They also mention that these theoret-
ical limits might increase in the presence of other types
of motion. Following this idea, Robinson and Milanfar
(76) stated that a single bound cannot be generalized
for any SR scenario. The resolution improvement limit
was shown to be a complex relationship between mea-
surement SNR, number of observations, nature of the
motion, image content, and the imaging system PSF.
The authors particularly pointed out the performance
superiority in the case of known motion compared to
the case of estimated motion. Generally, the more a
priori information is incorporated into the problem, the
better the resolution improvement. Such studies have
only been performed for rigid motion of 2D images
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only, so theoretical limits still have to be determined
for volumetric data and for various types of motion. In
practice, such a limit would help to determine the size
of anatomical structures that could possibly be resolved
using SR approaches, depending on the resolution of
the acquired low-resolution scans.
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