
AI IN BRIEF

Over the past several decades, MRI has become the key 
modality for brain imaging due to its excellent soft-

tissue contrast. The main drawback remains relatively long 
image acquisition times. This problem has only been ex-
acerbated by trends toward high resolution and volumet-
ric acquisitions. Scan duration can be decreased through 
undersampling, but substantial undersampling leads to an 
ill-posed linear inverse reconstruction problem that is often 
beyond the capability of common acceleration methods 
such as parallel imaging (1) and compressed sensing (CS) 
(2). The lengthy reconstruction times for parallel imaging 
and CS under moderate acceleration are also not ideal in 
the clinical setting.

Deep learning, a form of supervised machine learning, 
has the potential to mitigate the trade-offs between scan 
quality and acquisition times, either by shortening the ac-
quisition time for a given MRI sequence or by improv-
ing image quality of a given sequence without lengthening 
acquisition time (3–6). Additionally, despite the greater 
adoption of 3-T imaging, 1.5-T scanners, with lower 
signal-to-noise ratio (SNR), remain prevalent in clinical 
practice. Deep learning has the potential to improve im-
age quality at 1.5 T by improving the signal-to-noise per 
unit time without incurring worse susceptibility artifacts 
or increased patient heating that can be seen at higher field 
strengths such as 3 T. For example, use of deep learning–
based denoising and SNR enhancement algorithms has 
already been demonstrated for various structural MRI ap-
plications, including postcontrast MRI with reduced gad-
olinium dose (7), the reconstruction of 7-T–like images 

from 3-T MRI (8), and reconstruction of multicontrast 
MR images (9). A recent study showed that image qual-
ity and quantitative volumetric information at T1 imaging 
is maintained on artificial intelligence (AI)–enhanced fast 
scans when morphologic postprocessing is applied (10). 
However, to our knowledge, little work has been done to 
evaluate this method in clinical practice on multimodal 
MRI studies of clinical patients with lesions.

The purpose of this study was to qualitatively evaluate 
brain MRI quality using a commercially available deep 
learning–based denoising and resolution enhancement 
algorithm to reduce scan time while preserving image 
quality and spatial resolution of small structures of three-
dimensional (3D) T2 fluid-attenuated inversion recovery 
(FLAIR), 3D T1 precontrast, and 3D T1 postcontrast 
images.

Materials and Methods

Image Acquisition and Enhancement
In this prospective study, 32 consecutive patients under-
going clinical brain MRI with a 1.5-T Signa HDxt scan-
ner (GE Healthcare) at the University of Southern  Cali-
fornia San Francisco Medical Center were recruited for 
this study. The study was part of a quality improvement 
project that did not require consent and included the 
minimum number of patients needed to assess quality 
by the institution. Twenty-five patients were undergoing 
posttreatment brain tumor assessment, six patients were 
undergoing workup for headaches, and one patient was 
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Artificial intelligence (AI)–based image enhancement has the potential to reduce scan times while improving signal-to-noise ratio (SNR) and 
maintaining spatial resolution. This study prospectively evaluated AI-based image enhancement in 32 consecutive patients undergoing clinical 
brain MRI. Standard-of-care (SOC) three-dimensional (3D) T1 precontrast, 3D T2 fluid-attenuated inversion recovery, and 3D T1 post-
contrast sequences were performed along with 45% faster versions of these sequences using half the number of phase-encoding steps. Images 
from the faster sequences were processed by a Food and Drug Administration–cleared AI-based image enhancement software for resolution 
enhancement. Four board-certified neuroradiologists scored the SOC and AI-enhanced image series independently on a five-point Likert scale 
for image SNR, anatomic conspicuity, overall image quality, imaging artifacts, and diagnostic confidence. While interrater k was low to fair, the 
AI-enhanced scans were noninferior for all metrics and actually demonstrated a qualitative SNR improvement. Quantitative analyses showed 
that the AI software restored the high spatial resolution of small structures, such as the septum pellucidum. In conclusion, AI-based software 
can achieve noninferior image quality for 3D brain MRI sequences with a 45% scan time reduction, potentially improving the patient experi-
ence and scanner efficiency without sacrificing diagnostic quality.
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3 minutes 10 seconds for 3D T2 FLAIR, respectively. This 
corresponded to reductions of approximately 45% in scan 
time, leading to a total time savings of 5 minutes 12 seconds 
for these three acquisitions. Three of the 32 patients under-
went noncontrast MRI examinations; in these patients, only 
the 3D T1 precontrast and 3D T2 FLAIR sequences were 
performed. Gadoterate meglumine (Dotarem; Guerbet) was 
used as contrast agent and administered using hand injection.

A Food and Drug Administration (FDA)–cleared, commer-
cially available AI-based image enhancement software (Sub-
tleMR version 1.2; Subtle Medical; 510 K clearance K191688) 
was applied to the faster sequences to improve image resolu-
tion. This algorithm is based on a U-Net deep convolutional 
neural network backbone that was previously trained on a 
large number of paired low- and high-resolution images ac-
quired from a variety of vendors, field strengths, and institu-
tions. A new series with the same nominal resolution as the 
SOC sequence was generated after applying the AI-enhanced 
algorithm. Both the SOC images and AI-enhanced processed 
images were evaluated. A total of 186 images (93 each from 
SOC and AI-enhanced, consisting of pairs of 64 T1 precon-
trast, 64 T2 FLAIR, and 58 T1 postcontrast) were included in 
this study.

Subtle Medical provided access to the deep learning soft-
ware product at no cost. Several of the authors of the study 
are Subtle Medical employees and assisted with the statistical 
tests. They did not have control over the patients selected in 
the study, the analysis approach, or the information submitted 
for publication.

Qualitative Analyses
Four board-certified neuroradiologists (D.W.M., J.E.V.M., 
M.J.B., and J.D.R., with 10, 5, 2, and 1 year(s) post–neuro-
radiology fellowship experience, respectively) independently 
evaluated the 186-image series on their personal computers 
using OsiriX, which allows standard window and level ad-
justments, without proctoring. The images were de-identified 
for technique and patient and randomized. Each image series 

undergoing assessment for cognitive dysfunction. In addition 
to the institute’s standard of care (SOC) routine brain tumor 
protocols that included 3D T1 precontrast, 3D T2 FLAIR, 
and 3D T1 postcontrast pulse sequences (with parallel im-
aging factor of two using array spatial sensitivity encoding 
technique [ie, ASSET; GE Healthcare]), a faster version of 
these sequences was performed for all patients, with half of 
the number of phase-encode lines as the SOC scans, result-
ing in reduced in-plane spatial resolution (256 3 128 in-
stead of 256 3 256; full details of the SOC and faster MRI 
acquisition parameters are in Table 1). The fast scans were 
performed immediately after each SOC sequence. The cor-
responding scan times with SOC and faster sequences were 
2 minutes 55 seconds and 1 minute 36 seconds for 3D T1 
pre- and postcontrast studies, and 5 minutes 44 seconds and 

Abbreviations
AI = artificial intelligence, CS = compressed sensing, FDA = Food 
and Drug Administration, FLAIR = fluid-attenuated inversion re-
covery, FWHM = full-width half maximum, SNR = signal-to-noise 
ratio, SOC = standard of care, 3D = three dimensional

Summary
An artificial intelligence–based software for super-resolution was 
prospectively evaluated on three-dimensional brain MRI sequences 
performed for routine clinical patients, showing noninferior image 
quality with a 45% scan time reduction.

Key Points
	n Artificial intelligence (AI)–enhanced scans were noninferior for all 

qualitative metrics including image signal-to-noise ratio (SNR), 
anatomic conspicuity, overall image quality, imaging artifacts, 
and diagnostic confidence and actually demonstrated a qualitative 
SNR improvement.

	n Quantitative analyses demonstrated that AI-enhanced faster low-
resolution images improved spatial resolution of the septum pellu-
cidum compared with original fast-acquisition scans, approaching 
the spatial resolution of the standard-of-care scans.
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Table 1: Imaging Acquisition Parameters

Imaging Parameter

Sequence

3D T1 Precontrast 3D T2 FLAIR 3D T1 Postcontrast

SOC Faster SOC Faster SOC Faster
Acquisition plane Axial Axial Sagittal Sagittal Axial Axial
TR (msec) 8 8 5500 5500 8 8
TE (msec) 3 3 160 160 3 3
Flip angle (degrees) 15 15 90 90 15 15
Section thickness (mm) 1.4 1.4 1.4 1.4 1.4 1.4
Acquisition matrix 256 3 256 256 3 128 256 3 256 256 3 128 256 3 256 256 3 128
Acquisition time (sec) 175 96 344 190 175 96
Time reduction (%) 45.1 44.7 45.1

Note.—Acquisition parameters of the standard of care (SOC) and faster three-dimensional (3D) T1 precontrast, 3D T2 fluid-
attenuated inversion recovery (FLAIR), and 3D T1 postcontrast images. TE = echo time, TR = repetition time.
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This was done for each of the contrast types (3D T2 FLAIR, 
3D T1 precontrast, and 3D T1 postcontrast) for each of the 
pairs of raters.

Quantitative Analyses
To quantitatively demonstrate the increased spatial resolu-
tion between the faster sequence and AI-enhanced images, 
measurements of the apparent full-width half maximum 
(FWHM) of the septum pellucidum in the axial plane were 

was rated on a subjective five-point Likert scale (1 = nondi-
agnostic, 2 = poor, 3 = acceptable, 4 = good, 5 = excellent) 
for the following criteria: (a) image SNR, (b) anatomic con-
spicuity, (c) overall image quality, (d) imaging artifacts, and 
(e) diagnostic confidence. Wilcoxon rank sum tests with a 
0.25-point noninferiority threshold were performed to assess 
whether noninferior image quality was achieved by using the 
AI-enhanced scans when compared with SOC scans. Inter-
reader variability was assessed using the weighted k statistic. 

Figure 1:  Example clinical MRI studies. (A–C) Three example axial three-dimensional (3D) fluid-attenuated inversion recovery 
(FLAIR) (first column), 3D T1 precontrast (second column), and 3D T1 postcontrast (third column) images from standard-of-care 
(SOC) acquisition (first row), low-resolution fast-acquisition (second row), and artificial intelligence (AI)–enhanced (third row) im-
ages in three patients being evaluated for follow-up of diffuse gliomas. (D) Example sagittal 3D T1 precontrast (first column) 3D 
FLAIR (second column), SOC acquisition (first row), low-resolution fast-acquisition (second row), and AI-enhanced (third row) im-
ages in a patient with headaches, determined to have intracranial hypotension.
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tative assessments compared with existing standard duration 
sequences as assessed with multiple image quality metrics by 
four experienced academic neuroradiologists. In addition, spa-
tial resolution of small structures was improved compared with 
the original fast-acquisition scans, approaching spatial resolu-
tion of the SOC scans.

While AI methods have been shown to improve image qual-
ity for a host of different structural MRI applications (7–9), it 
is important to determine whether they generalize beyond an 
individual scanner or practice setting, given that many AI algo-
rithms have shown poorer performance when applied to exter-
nal test sets (12). Furthermore, these cases were collected in a 
prospective consecutive manner, mimicking how the algorithm 
might be used in clinical practice. Using a strict noninferior-
ity threshold of 0.25 point on a five-point Likert scale, none 
of the AI-enhanced sequences were found inferior to the stan-
dard longer sequences. For several of the criteria, particularly for 
perceived image SNR and imaging artifacts, the AI-enhanced 
studies were rated significantly higher. This may be related to 
two factors. First, because the algorithm has trained on a large 

performed by two independent researchers blinded 
to the type of image being assessed. The appar-
ent FWHM measurement was calculated on the 
generated histograms by measuring the difference 
between the two values of the voxel location that 
were half the maximum of the signal intensity. The 
human septum pellucidum is a hair-thin structure 
that is 1 mm or less in width in 54% of patients 
and less than 2 mm in an additional 11%–16% 
of patients (11). Therefore, a lower FWHM is a 
measure of the performance of the super-resolu-
tion algorithm. Paired t tests were used to compare 
septum pellucidum FWHM for SOC, fast, and 
AI-enhanced T1 precontrast images with statisti-
cal significance defined at the a = .05 level.

Results

Qualitative Results
Representative examples of the SOC, faster, and AI-
enhanced images are shown in Figure 1A–1D. The 
average scores for image SNR, anatomic conspicu-
ity, overall image quality, imaging artifacts, and di-
agnostic confidence are shown in Table 2. None of 
the studies were rated as nondiagnostic for any of 
these categories. For both the T1 pre- and postcon-
trast sequences, the AI-enhanced images received 
statistically significantly higher ratings than the 
SOC images for image SNR. For other metrics, the 
T1 postcontrast SOC images were slightly preferred 
to the AI-enhanced images. For the T2 FLAIR im-
ages, the AI-enhanced images received statistically 
significantly higher ratings than the SOC images 
in all criteria except diagnostic confidence. The 
hypothesis that the AI-enhanced fast images were 
noninferior to the standard scan was not rejected (P 
 .05) for any evaluation metric for any of the sequences. The 
k scores among the four readers showed low to fair agreement 
(Table 3).

Quantitative Results
The FWHM of the septum pellucidum on the fast and AI-en-
hanced fast images for 3D T1 precontrast by two independent 
raters were as follows: SOC, 1.65 mm 6 0.25 (standard devia-
tion) and 1.64 mm 6 0.42; fast, 2.58 mm 6 0.24 and 2.70 
mm 6 0.39; AI-enhanced fast, 1.79 mm 6 0.26 and 1.98 mm 
6 0.39, respectively, over 32 cases (P , .001 for comparison 
between fast and AI-enhanced fast; P = .06 and P = .007 for 
comparison between SOC and AI-enhanced). Examples of the 
FWMH measurements are shown in Figure 2.

Discussion
In this study, we qualitatively and quantitatively evaluated an 
FDA-approved super-resolution AI-based image enhancement 
software to accelerate sequences with a 45% scan time reduc-
tion in a realistic clinical setting. We found noninferior quali-

Table 2: Multirater Qualitative Assessments

Rating Criterion for Each 
Sequence

Image Type

SOC AI-enhanced P Value

3D T1 precontrast
  Overall 4.0 6 0.7 4.1 6 0.7 ,.001
  SNR 3.6 6 0.6 4.0 6 0.8 ,.001
  Conspicuity 4.1 6 0.7 4.1 6 0.6 .41
  IQ 3.9 6 0.8 4.0 6 0.8 .20
  Artifact 4.2 6 0.7 4.3 6 0.7 .18
  DC 4.2 6 0.7 4.3 6 0.7 .20
3D T2 FLAIR
  Overall 4.1 6 0.8 4.2 6 0.7 ,.001
  SNR 3.7 6 0.8 4.1 6 0.7 ,.001
  Conspicuity 4.2 6 0.7 4.3 6 0.6 .05
  IQ 4.0 6 0.8 4.1 6 0.8 .04
  Artifact 4.3 6 0.7 4.4 6 0.7 .02
  DC 4.3 6 0.7 4.3 6 0.6 .26
3D T1 postcontrast
  Overall 4.0 6 0.7 3.9 6 0.7 .99
  SNR 3.8 6 0.7 4.0 6 0.6 .02
  Conspicuity 4.2 6 0.6 3.9 6 0.6 .99
  IQ 4.0 6 0.7 3.7 6 0.7 .99
  Artifact 4.0 6 0.7 3.9 6 0.9 .80
  DC 4.2 6 0.7 4.0 6 0.8 .99

Note.—Data are the average 6 standard deviation rater scores of the standard-
of-care (SOC) and artificial intelligence (AI)–enhanced three-dimensional 
(3D) T1 precontrast, 3D T2 fluid-attenuated inversion recovery (FLAIR), and 
3D T1 postcontrast images using a five-point Likert scale (1 = nondiagnostic, 
2 = poor, 3 = acceptable, 4 = good, 5 = excellent) for the following criteria: 
image signal-to-noise ratio (SNR), anatomic conspicuity, overall image quality 
(IQ), imaging artifacts, and diagnostic confidence (DC). Statistical compari-
sons of rater scores were made using paired Wilcoxon rank sum tests.
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number of diverse cases, there is a denoising effect in addition 
to the designed super-resolution. Second, shorter acquisition 
times may reduce the opportunity for patient motion–related 
artifacts. Faster scans may also have a substantial impact on pa-
tient satisfaction and tolerance of MRI, given that up to 30% 
of patients report anxiety during an MRI examination, mostly 
due to claustrophobia (13). We emphasize that no quantitative 
SNR measurements were made, as the algorithm was designed 
to simulate as much as possible the SOC high-resolution images, 
including their SNR profile. The perception of higher SNR for 
the AI-enhanced studies is based solely on subjective evaluation 
by the radiologist readers.

While we believe multireader studies by experienced radiolo-
gists are still the best way to test a new algorithm, given the need 
to synthesize many aspects of image quality into a diagnostic 
assessment, we also performed a quantitative test to demonstrate 
the improved resolution of the AI-enhanced images. The septum 
pellucidum, typically beyond the spatial resolution of most MRI 
sequences (11), provides a good test of true image resolution. 
In our study, we found that applying the AI algorithm to the 
faster sequences led to a reduced apparent thickness as measured 
by the FWHM relative to the fast low-resolution scans, closer 
but slightly lower than the SOC scans. A recent complemen-
tary study found that analyses of AI-enhanced and SOC T1 im-
ages provided equivalent quantitative volumetric information 
(10). These findings support the qualitative evaluation of four 

Table 3: Interrater Agreement

Image Type Reader A Reader B k Score

T1 precontrast Rater 1 Rater 2 0.28
Rater 1 Rater 3 0.26
Rater 1 Rater 4 0.27
Rater 2 Rater 3 0.10
Rater 2 Rater 4 0.16
Rater 3 Rater 4 0.22

T2 FLAIR
Rater 1 Rater 2 0.22
Rater 1 Rater 3 0.47
Rater 1 Rater 4 0.25
Rater 2 Rater 3 0.14
Rater 2 Rater 4 0.04
Rater 3 Rater 4 0.27

T1 postcontrast
Rater 1 Rater 2 −0.03
Rater 1 Rater 3 0.26
Rater 1 Rater 4 0.24
Rater 2 Rater 3 0.09
Rater 2 Rater 4 0.24
Rater 3 Rater 4 0.30

Note.—The k scores for all possible pairs of raters for all three-
dimensional (3D) T1 precontrast, 3D T2 fluid-attenuated inver-
sion recovery (FLAIR), and 3D T1 postcontrast images.

Figure 2:  Septum pellucidum measurements. Example axial three-dimensional T1 precontrast images from standard-of-care (SOC) acquisition (left), low resolution, fast 
acquisition (middle), and artificial intelligence (AI)–enhanced (right) and example histograms of the apparent full-width half maximum of the septum pellucidum in the axial 
plane. Green bar represents site of sampling for the full-width half maximum measurements of the septum pellucidum depicted in each graph.
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experienced neuroradiologists that the images produced by the 
AI method when applied to fast scans are diagnostically equiva-
lent to the standard, longer 3D sequences.

There were several limitations to the current study. The first 
was the relatively small sample size with relatively limited patho-
logic types scanned with the same 1.5-T clinical scanner. Future 
evaluations at multiple sites and in larger patient cohorts should 
be performed. This is especially true for small lesions, as there are 
some concerns that information could be lost in deep learning 
reconstruction (14). However, a recent empirical study found 
that deep learning–based reconstruction methods are quite ro-
bust to minimal perturbations and are good at accurately recov-
ering fine details (15). While there was no subjective difference 
in diagnostic quality observed in this initial prospective study, it 
did not encompass the full spectrum of lesions encountered in 
clinical practice, including smaller and more subtle lesions, thus 
it will be important to evaluate smaller lesions such as sub-3-mm 
brain metastases in future studies. Overall, our results suggest 
that studies involving high-resolution 3D imaging could be sig-
nificantly shortened using AI methods, improving the patient 
experience and scanner efficiency and reducing costs for patients 
and health care networks without sacrificing diagnostic quality.
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