
THE PROBABLE ERROR OF A MEAN

By STUDENT

Introduction

Any experiment may he regarded as forming an individual of a “population”
of experiments which might he performed under the same conditions. A series
of experiments is a sample drawn from this population.

Now any series of experiments is only of value in so far as it enables us to
form a judgment as to the statistical constants of the population to which the
experiments belong. In a greater number of cases the question finally turns on
the value of a mean, either directly, or as the mean difference between the two
quantities.

If the number of experiments be very large, we may have precise information
as to the value of the mean, but if our sample be small, we have two sources of
uncertainty: (1) owing to the “error of random sampling” the mean of our series
of experiments deviates more or less widely from the mean of the population,
and (2) the sample is not sufficiently large to determine what is the law of
distribution of individuals. It is usual, however, to assume a normal distribution,
because, in a very large number of cases, this gives an approximation so close
that a small sample will give no real information as to the manner in which
the population deviates from normality: since some law of distribution must
he assumed it is better to work with a curve whose area and ordinates are
tabled, and whose properties are well known. This assumption is accordingly
made in the present paper, so that its conclusions are not strictly applicable to
populations known not to be normally distributed; yet it appears probable that
the deviation from normality must be very extreme to load to serious error. We
are concerned here solely with the first of these two sources of uncertainty.

The usual method of determining the probability that the mean of the pop-
ulation lies within a given distance of the mean of the sample is to assume a
normal distribution about the mean of the sample with a standard deviation
equal to s/

√
n, where s is the standard deviation of the sample, and to use the

tables of the probability integral.
But, as we decrease the number of experiments, the value of the standard

deviation found from the sample of experiments becomes itself subject to an
increasing error, until judgments reached in this way may become altogether
misleading.

In routine work there are two ways of dealing with this difficulty: (1) an ex-
periment may he repeated many times, until such a long series is obtained that
the standard deviation is determined once and for all with sufficient accuracy.
This value can then he used for subsequent shorter series of similar experiments.
(2) Where experiments are done in duplicate in the natural course of the work,
the mean square of the difference between corresponding pairs is equal to the
standard deviation of the population multiplied by

√
2. We call thus combine
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together several series of experiments for the purpose of determining the stan-
dard deviation. Owing however to secular change, the value obtained is nearly
always too low, successive experiments being positively correlated.

There are other experiments, however, which cannot easily be repeated very
often; in such cases it is sometimes necessary to judge of the certainty of the
results from a very small sample, which itself affords the only indication of the
variability. Some chemical, many biological, and most agricultural and large-
scale experiments belong to this class, which has hitherto been almost outside
the range of statistical inquiry.

Again, although it is well known that the method of using the normal curve
is only trustworthy when the sample is “large”, no one has yet told us very
clearly where the limit between “large” and “small” samples is to be drawn.

The aim of the present paper is to determine the point at which we may use
the tables of the probability integral in judging of the significance of the mean
of a series of experiments, and to furnish alternative tables for use when the
number of experiments is too few.

The paper is divided into the following nine sections:

I. The equation is determined of the curve which represents the frequency dis-
tribution of standard deviations of samples drawn from a normal population.

II. There is shown to be no kind of correlation between the mean and the
standard deviation of such a sample.

III. The equation is determined of the curve representing the frequency distri-
bution of a quantity z, which is obtained by dividing the distance between the
mean of a sample and the mean of the population by the standard deviation of
the sample.

IV. The curve found in I is discussed.

V. The curve found in III is discussed.

VI. The two curves are compared with some actual distributions.

VII. Tables of the curves found in III are given for samples of different size.

VIII and IX. The tables are explained and some instances are given of their use.

X. Conclusions.

Section 1

Samples of n individuals are drawn out of a population distributed normally, to
find an equation which shall represent the frequency of the standard deviations
of these samples.

If s be the standard deviation found from a sample x1x2 . . . xn (all these
being measured from the mean of the population), then

s2 =
S(x21)

n
−
(

S(x1)

n

)2

=
S(x21)

n
− S(x21)

n2
− 2S(x1x2)

n2
.

2



Summing for all samples and dividing by the number of samples we get the
moan value of s2, which we will write s̄2:

s̄2 =
nµ2

n
− nµ2

n2
=
µ2(n− 1)

n
,

where µ2 is the second moment coefficient in the original normal distribution of
x: since x1, x2, etc. are not correlated and the distribution is normal, products

involving odd powers of x1 vanish on summing, so that 2S(x1x2)
n2 is equal to 0.

If M ′
R represent the Rth moment coefficient of the distribution of s2 about

the end of the range where s2 = 0,

M ′
1 = µ2

(n− 1)

n
.

Again

s4 =

{

S(x21)

n
−
(

S(x1)

n

)}2

=

(

S(x21)

n

)2

− 2S(x21)

n

(

S(x1)

n

)2

+

(

S(x1)

n

)4

=
S(x41)

n2
+

2S(x21x
2
2)

n2
− 2S(X4

1 )

n3
− 4S(x21x

2
2)

n3
+
S(x41)

n4

+
6S(x21x

2
2)

n4
+ other terms involving odd powers of x1, etc. which

will vanish on summation.

Now S(x41) has n terms, butS(x21x
2
2) has 1

2n(n − 1), hence summing for all
samples and dividing by the number of samples, we get

M ′
2 =

µ4

n
+ µ2

2

(n− 1)

n
− 2µ4

n2
− 2µ2

2

(n− 1)

n2
+
µ4

n3
+ 3µ2

2

(n− 1)

n3

= µ4n
3{n2 − 2n+ 1}+ µ2

2

n3
(n− 1){n2 − 2n+ 3}.

Now since the distribution of x is normal, µ4 = 3µ2
2, hence

M ′
2 = µ2

2

(n− 1)

n3
{3n− 3 + n2 − 2n+ 3} = µ2

2

(n− 1)(n+ 1)

n2
.

In a similar tedious way I find

M ′
3 = µ3

2

(n− 1)(n+ 1)(n+ 3)

n3

and

M ′
4 = µ4

2

(n− 1)(n+ 1)(n+ 3)(n+ 5)

n4
.
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The law of formation of these moment coefficients appears to be a simple
one, but I have not seen my way to a general proof.

If now MR be the Rth moment coefficient of s2 about its mean, we have

M2 = µ2
2

(n− 1)

n3
{(n+ 1)− (n− 1)} = 2µ2

2

(n− 1)

n2
.

M3 = µ3
2

{

(n− 1)(n+ 1)(n+ 3)

n3
− 3(n− 1)

n
.
(2(n− 1)

n2
− (n− 1)3

n3

}

= µ3
2

(n− 1)

n3
{n2 + 4n+ 3− 6n+ 6− n2 + 2n− 1} = 8µ3

2

(n− 1)

n3
,

M4 =
µ4
2

n4
{

(n− 1)(n+ 1)(n+ 3)(n+ 5)− 32(n− 1)2 − 12(n− 1)3 − (n− 1)4
}

=
µ4
2(n− 1)

n4
{n3 + 9n2 + 23n+ 15− 32n+ 32

− 12n2 + 24n− 12− n3 + 3n2 − 3n+ 1}

=
12µ4

2(n− 1)(n+ 3)

n4
.

Hence

β1 =
M2

3

M3
2

=
8

n− 1
, β2 =

M4

M2
2

=
3(n+ 3)

n− 1)
,

∴ 2β2 − 3β1 − 6 =
1

n− 1
{6(n+ 3)− 24− 6(n− 1)} = 0.

Consequently a curve of Prof. Pearson’s Type III may he expected to fit the
distribution of s2.

The equation referred to an origin at the zero end of the curve will be

y = Cxpe−γx,

where

γ = 2
M2

M3
=

4µ2
2(n− 1)n3

8n2µ2
2(n− 1)

=
n

2µ2

and

p =
4

β1
− 1 =

n− 1

2
− 1 =

n− 3

2
.

Consequently the equation becomes

y = Cx
n−3
2 e−

nx
2µ2 ,

which will give the distribution of s2.

The area of this curve is C
∫∞
0
x

n−3
2 e−

nx
2µ2 dx = I (say). The first moment

coefficient about the end of the range will therefore be

C
∫∞
0
x

n−1
2 e−

nx
2µ2 dx

I
=

[

C −2µ2

n x
n−1
2 e−

nx
2µ2

]x=∞

x=0

I
+
C
∫∞
0

n−1
n µ2x

n−3
2 e−

nx
2µ2 dx

I
.
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The first part vanishes at each limit and the second is equal to

n−1
n µ2I

I
=
n− 1

n
µ2.

and we see that the higher moment coefficients will he formed by multiplying
successively by n+1

n µ2,
n+3
n µ2 etc., just as appeared to he the law of formation

of M ′
2, M

′
3, M

′
4, etc.

Hence it is probable that the curve found represents the theoretical distri-
bution of s2; so that although we have no actual proof we shall assume it to do
so in what follows.

The distribution of s may he found from this, since the frequency of s is
equal to that of s2 and all that we must do is to compress the base line suitably.

Now if y1 = φ(s2) be the frequency curve of s2

and y2 = ψ(s) be the frequency curve of s,
then

y1d(s
2) = y2ds,

y2ds = 2y1sds,

∴ y2 = 2sy1.

Hence

y2 = 2Cs(s2)
n−3
2 e−

ns2

2µ2 .

is the distribution of s.
This reduces to

y2 = 2Csn−2e−
ns2

2σ2 .

Hence y = Axn−2e−
s2

2µ2 will give the frequency distribution of standard
deviations of samples of n, taken out of a population distributed normally with
standard deviation σ2. The constant A may he found by equating the area of
the curve as follows:

Area = A

∫ ∞

0

xn−2e−
nx2

2σ2 dx.

(

Let Ip represent

∫ ∞

0

xpe−
−nx2

2σ2 dx.

)

Then

Ip =
σ2

n

∫ ∞

0

xp−1 d

dx

(

−e−nx2

2σ2

)

dx

=
σ2

n

[

−xp−1e−
nx2

2σ2

]x=∞

x=0
+
σ2
n
(p− 1)

∫ ∞

0

xp−2e−
x2

2σ2 dx

=
σ2

n
(p− 1)Ip−2,

since the first part vanishes at both limits.
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By continuing this process we find

In−2 =

(

σ2

n

)

n−2
2

(n− 3)(n− 5) . . . 3.1I0

or

In−2 =

(

σ2

n

)

n−2
2

(n− 3)(n− 5) . . . 4.2I1

according n is even or odd.
But I0 is

∫ ∞

0

e−
nx2

2σ2 dx =

√

( π

2n

)

σ,

and I1 is
∫ ∞

0

xe
− nx2

2sigma2 dx =

[

−σ
2

n
e−

nx2

2σ2

]x=∞

x=0

=
σ2

n
.

Hence if n be even,

A =
Area

(n− 3)(n− 5) . . . 3.1
√

(

π
2

) (

σ2

n

)

n−1
2

,

while is n be odd

A =
Area

(n− 3)(n− 5) . . . 4.2
(

σ2

n

)

n−1
2

.

Hence the equation may be written

y =
N

(n− 3)(n− 5) . . . 3.1

√

(

2

π

)

( n

σ2

)

n−1
2

xn−2e−
nx2

2σ2 (n even)

or

y =
N

(n− 3)(n− 5) . . . 4.2

( n

σ2

)

n−1
2

xn−2e−
nx2

2σ2 (n odd)

where N as usual represents the total frequency.

Section II

To show that there is no correlation between (a) the distance of the mean
of a sample from the mean of the population and (b) the standard deviation of
a sample with normal distribution.

(1) Clearly positive and negative positions of the mean of the sample are
equally likely, and hence there cannot be correlation between the absolute value
of the distance of the mean from the mean of the population and the standard
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deviation, but (2) there might be correlation between the square of the distance
and the square of the standard deviation. Let

u2 =

(

S(x1)

n

)2

and s2 =
S(x21)

n
−
(

S(x1)

n

)2

.

Then if m′
1, M

′
1 be the mean values of u2 and sz, we have by the preceding part

M ′
1 = µ2

(n− 1)

n
and m′

1 =
µ2

n
.

Now

u2s2 =
S(x21)

n

(

S(x1)

n

)2

−
(

S(x1)

n

)4

=

(

S(x21)

n

)2

+ 2
S(x1x2).S(x

2
1)

n3
− S(x41)

n4
− 6S(x21x

2
2)

n4

− other terms of odd order which will vanish on summation.

Summing for all values and dividing by the number of cases we get

Ru2s2σu2σs2 +m1M1 =
µ4

n2
+ µ2

2

(n− 1)

n2
− µ4

n3
− 3µ2

2

(n− 1)

n3
,

where Ru2s2 is the correlation between u2 and s2.

Ru2s2σu2σs2 + µ2
2

(n− 1)

n2
= µ2

2

(n− 1)

n3
{3 + n− 3} = µ2

2

(n− 1)

n2
.

Hence Ru2s2σu2σs2 = 0, or there is no correlation between u2 and s2.

Section III

To find the equation representing the frequency distribution of the means of
samples of n drawn from a normal population, the mean being expressed in
terms of the standard deviation of the sample.

We have y = C
σn−1 s

n−2e−
nx2

2σ2 as the equation representing the distribution
of s, the standard deviation of a sample of n, when the samples are drawn from
a normal population with standard deviation s.

Now the means of these samples of n are distributed according to the equa-
tion1

y =

√

(n)N
√

(2π)σ
e−

nx2

2σ2 ,

and we have shown that there is no correlation between x, the distance of the
mean of the sample, and s, the standard deviation of the sample.

1Airy, Theory of Errors of Observations, Part II, §6.
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Now let us suppose x measured in terms of s, i.e. let us find the distribution
of z = x/s.

If we have y1 = φ(x) and y2 = ψ(z) as the equations representing the
frequency of x and of z respectively, then

y1dx = y2dz = y3
dx

s
,

∴ y2 = sy1.

Hence

y =
N
√

(n)s
√

(2π)σ
e−

ns2z2

2σ2

is the equation representing the distribution of z for samples of n with standard
deviation s.

Now the chance that s lies between s and s+ ds is

∫ s+ds

s
C

σn−1 s
n−2e−

ns2

2σ2 ds
∫∞
0

C
σn−1 sn−2e−

ns2

2σ2 ds

which represents the N in the above equation.
Hence the distribution of z due to values of s which lie between s and s+ds

is

y =

∫ s+ds

s
C
σn

√

(

n
2π

)

sn−1e−
ns2(1+z2)

2σ2 ds

∫∞
0

C
σn−1 sn−2e−

ns2

2σ2 ds
=

√

( n

2π

)

∫ s+ds

s
C
σn s

n−1e−
ns2(1+z2)

2σ2 ds
∫∞
0

C
σn−2 sn−2e−

ns2

2σ2 ds

and summing for all values of s we have as an equation giving the distribution
of z

y =

√

(

n
2π

)

σ

∫ s+ds

s
C
σn s

n−1e−
ns2(1+z2)

2σ2 ds
∫∞
0

C
σn−2 sn−2e−

ns2

2σ2 ds
.

By what we have already proved this reduces to

y =
1

2

n− 2

n− 3
.
n− 4

n− 5
. . .

5

4
.
3

2
(1 + z2)−

1
2n, if n be odd

and to

y =
1

2

n− 2

n− 3
.
n− 4

n− 5
. . .

4

3
.
2

21
(1 + z2)−

1
2n, if n be even

Since this equation is independent of σ it will give the distribution of the
distance of the mean of a sample from the mean of the population expressed in
terms of the standard deviation of the sample for any normal population.
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Section IV. Some Properties of the Standard

Deviation Frequency Curve

By a similar method to that adopted for finding the constant we may find
the mean and moments: thus the mean is at In−1/In−2,
which is equal to

n− 2

n− 3
.
n− 4

n− 5
. . .

2

1

√

(

2

π

)

σ√
n
, if n be even,

or
n− 2

n− 3
.
n− 4

n− 5
. . .

3

2

√

(π

2

) σ√
n
, if n be odd .

The second moment about the end of the range is

In
In−2

=
(n− 1)σ2

n
.

The third moment about the end of the range is equal to

In+1

In−2
=
In+1

In−1
.
In− 1

In−2

= σ2 × the mean.

The fourth moment about the end of the range is equal to

In+2

In−2
=

(n− 1)(n+ 1)

n2
σ4.

If we write the distance of the mean from the end of the range Dσ/
√
n and

the moments about the end of the range ν1, ν2, etc.,
then

ν1 =
Dσ√
n
, ν2 =

n− 1

n
σ2, ν3 =

Dσ3

√
n
, ν4 =

N2 − 1

n
σ4.

From this we get the moments about the mean:

µ2 =
σ2

n
(n− 1−D2),

µ3 =
σ3

n
√
n
{nD − 3(n− 1)D + 2D2} =

σ3D

n
√
n
{2D2 − 2n+ 3},

µ4 =
σ2

n2
{n2 − 1− 4D2n+ 6(n− 1)D2 − 3D4}

=
σ4

n2
{n2 − 1−D2(3D2 − 2n+ 6)}.

It is of interest to find out what these become when n is large.
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In order to do this we must find out what is the value of D.
Now Wallis’s expression for π derived from the infinite product value of sinx

is
π

2
(2n+ 1) =

22.42.62 . . . (2n)2

123252 . . . (2n− 1)2
.

If we assume a quantity θ
(

= a0 +
a1

n + etc.
)

which we may add to the 2n+1
in order to make the expression approximate more rapidly to the truth, it is easy
to show that θ = − 1

2 + 1
16n−etc., and we get2

π

2

(

2n+
1

2
+

1

16n

)

=
22.42.62 . . . (2n)2

123252 . . . (2n− 1)2
.

From this we find that whether n be even or odd D2 approximates to n −
3
2 + 1

8n when n is large.
Substituting this value of D we get

µ2 =
σ2

2n

(

1− 1

4n

)

, µ2 =
σ3
√

(

1− 3
2n + 1

16n2

)

4n2
, µ4 =

3σ4
4n2

(

1 +
1

2n
− 1

16n2

)

.

Consequently the value of the standard deviation of a standard deviation

which we have found

(

σ√
(2n)

√
{1−(1/4n)}

)

becomes the same as that found for

the normal curve by Prof. Pearson {σ/(2n)} when n is large enough to neglect
the 1/4n in comparison with 1.

Neglecting terms of lower order than 1/n, we find

β1 =
2n− 3

n(4n− 3)
, β)2 = 3

(

1− 1

2n

)(

1 +
1

2n

)

.

Consequently, as n increases, β2 very soon approaches the value 3 of the
normal curve, but β1 vanishes more slowly, so that the curve remains slightly
skew.

Diagram I shows the theoretical distribution of the standard deviations found
from samples of 10.

Section V. Some Properties of the Curve

y =
n− 2

n− 3
.
n− 4

n− 5
. . .

(

4
3 .

2
π if n be even

5
4 .

3
2 .

1
2 if n be odd

)

(1 + z2)−
1
2n

Writing z = tan θ the equation becomes y = n−2
n−3 .

n−4
n−5 . . . etc. × cosn θ, which

affords an easy way of drawing the curve. Also dz = dθ/ cos2 θ.

2This expression will be found to give a much closer approximation to π than Wallis’s
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Hence to find the area of the curve between any limits we must find

n− 2

n− 3
.
n− 4

n− 5
. . . etc.×

∫

cosn−2 θdθ

=
n− 2

n− 3
.
n− 4

n− 5
. . . etc.

{

n− 3

n− 2

∫

cosn−4 θdθ +

[

cosn−3θ sin θ

n− 2

]}

=
n− 2

n− 3
.
n− 4

n− 5
. . . etc.

∫

cosn−4 θdθ +
1

n− 3

n− 4

n− 5
. . . etc.[cosn−3 θ sin θ],

and by continuing the process the integral may he evaluated.
For example, if we wish to find the area between 0 and θ for n = 8 we have

Area =
6

5
.
4

3
.
2

1
.
1

π

∫ θ

0

cos6 θdθ

=
4

3
.
2

π

∫ θ

0

cos4 θdθ +
1

5
.
4

3
.
2

π
cos5 θ sin θ

=
θ

π
+

1

π
cos θ sin θ +

1

3
.
2

π
cos3 θ sin θ +

1

5
.
4

3
.
2

π
cos5 θ sin θ

and it will be noticed that for n = 10 we shall merely have to add to this same
expression the term 1

7 .
6
5 .

4
3 .

2
π cos7 θ sin θ.
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The tables at the end of the paper give the area between −∞ and z
(

or θ = −π
2

and θ = tan−1 z
)

.

This is the same as 0.5 + the area between θ = 0, and θ = tan−1 z, and as
the whole area of the curve is equal to 1, the tables give the probability that the
mean of the sample does not differ by more than z times the standard deviation
of the sample from the mean of the population.

The whole area of the curve is equal to

n− 2

n− 3
.
n− 4

n− 5
. . . etc.×

∫ + 1
2π

− 1
2π

cosn−2 θdθ

and since all the parts between the limits vanish at both limits this reduces to
1.

Similarly, the second moment coefficient is equal to

n− 2

n− 3
.
n− 4

n− 5
. . . etc.×

∫ + 1
2π

− 1
2π

cosn−2 θ tan2 θdθ

=
n− 2

n− 3
.
n− 4

n− 5
. . . etc.×

∫ + 1
2π

− 1
2π

(cosn−4 θ − cosn−2 θ)dθ

=
n− 2

n− 3
− 1 =

1

n− 3
.

Hence the standard deviation of the curve is 1/
√

(n− 3). The fourth mo-
ment coefficient is equal to

n− 2

n− 3
.
n− 4

n− 5
. . . etc.×

∫ + 1
2π

− 1
2π

cosn−2 θ tan4 θdθ

=
n− 2

n− 3
.
n− 4

n− 5
. . . etc.×

∫ + 1
2π

− 1
2π

(cosn−6 θ − 2 cosn−4 θ + cosn−2 θ)dθ

=
n− 2

n− 3
.
n− 4

n− 5
− 2(n− 2)

n− 3
+ 1 =

3

(n− 3)(n− 5)
.

The odd moments are of course zero, an the curve is symmetrical, so

β1 = 0, β2 =
3(n− 3)

n− 5
= 3 +

6

n− 5
.

Hence as it increases the curve approaches the normal curve whose standard
deviation is 1/

√

(n− 3).
β2, however, is always greater than 3, indicating that large deviations are

mere common than in the normal curve.
I have tabled the area for the normal curve with standard deviation 1/

√
7

so as to compare, with my curve for n = 103. It will be seen that odds laid

3See p. 29
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according to either table would not seriously differ till we reach z = 0.8, where
the odds are about 50 to 1 that the mean is within that limit: beyond that
the normal curve gives a false feeling of security, for example, according to the
normal curve it is 99,986 to 14 (say 7000 to 1) that the mean of the population
lies between −∞ and +1.3s, whereas the real odds are only 99,819 to 181 (about
550 to 1).

Now 50 to 1 corresponds to three times the probable error in the normal
curve and for most purposes it would be considered significant; for this reason I
have only tabled my curves for values of n not greater than 10, but have given
the n = 9 and n = 10 tables to one further place of decimals. They can he used
as foundations for finding values for larger samples.4

The table for n = 2 can be readily constructed by looking out θ = tan−1 z
in Chambers’s tables and then 0.5 + θ/π gives the corresponding value.

Similarly 1
2 sin θ + 0.5 gives the values when n = 3.

There are two points of interest in the n = 2 curve. Here s is equal to half
the distance between the two observations, tan−1 s

s = π
4 , so that between +s

and −z lies 2× π
4 × 1

π or half the probability, i.e. if two observations have been
made and we have no other information, it is an even chance that the mean of
the (normal) population will lie between them. On the other hand the second

4E.g. if n = 11, to the corresponding value for n = 9, we add 7
8
× 5

6
× 3

4
× 1

2
× 1

2
cos8 θ sin θ:

if n = 13 we add as well 9
10

× 7
8
× 5

6
× 3

4
× 1

2
× 1

2
cos10 θ sin θ, and so on.
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moment coefficient is

1

π

∫ + 1
2π

=− 1
2π

tan2 θdθ =
1

π
[tan θ − θ]

+ 1
2π=∞

=− 1
2π

= ∞,

or the standard deviation is infinite while the probable error is finite.

Section VI. Practical Test of the foregoing

Equations

Before I bad succeeded in solving my problem analytically, I had endeavoured
to do so empirically. The material used was a correlation table containing the
height and left middle finger measurements of 3000 criminals, from a paper by
W. R. Macdonnell (Biometrika, i, p. 219). The measurements were written
out on 3000 pieces of cardboard, which were then very thoroughly shuffled and
drawn at random. As each card was drawn its numbers were written down in
a book, which thus contains the measurements of 3000 criminals in a random
order. Finally, each consecutive set of 4 was taken as a sample—750 in all—and
the mean, standard deviation, and correlation5 of each sample determined. The
difference between the mean of each sample and the mean of the population was
then divided by the standard deviation of the sample, giving us the z of Section
III.

This provides us with two sets of 750 standard deviations and two sets of 750
z’s on which to test the theoretical results arrived at. The height and left middle
finger correlation table was chosen because the distribution of both was approx-
imately normal and the correlation was fairly high. Both frequency curves, how-
ever, deviate slightly from normality, the constants being for height β1 = 0.0026,
β2 = 3.176, and for left middle finger lengths β1 = 0.0030, β2 = 3.140, and in
consequence there is a tendency for a certain number of larger standard devia-
tions to occur than if the distributions wore normal. This, however, appears to
make very little difference to the distribution of z.

Another thing which interferes with the comparison is the comparatively
large groups in which the observations occur. The heights are arranged in 1
inch groups, the standard deviation being only 2.54 inches. while, the finger
lengths wore originally grouped in millimetres, but unfortunately I did not at
the time see the importance of having a smaller unit and condensed them into
2 millimetre groups, in terms of which the standard deviation is 2.74.

Several curious results follow from taking samples of 4 from material disposed
in such wide groups. The following points may be noticed:

(1) The means only occur as multiples of 0.25. (2) The standard deviations
occur as the square roots of the following types of numbers: n, n+0.10, n+0.25,
n+ 0.50, n+ 0.69, 2n+ 0.75.

(3) A standard deviation belonging to one of these groups can only be as-
sociated with a mean of a particular kind; thus a standard deviation of

√
2 can

5I hope to publish the results of the correlation work shortly.
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only occur if the mean differs by a whole number from the group we take as
origin, while

√
1.69 will only occur when the mean is at n± 0.25.

(4) All the four individuals of the sample will occasionally come from the
same group, giving a zero value for the standard deviation. Now this leads to
an infinite value of z and is clearly due to too wide a grouping, for although
two men may have the same height when measured by inches, yet the finer
the measurements the more seldom will they he identical, till finally the chance
that four men will have exactly the same height is infinitely small. If we had
smaller grouping the zero values of the standard deviation might be expected
to increase, and a similar consideration will show that the smaller values of the
standard deviation would also be likely to increase, such as 0.436, when 3 fall
in one group and 1 in an adjacent group, or 0.50 when 2 fall in two adjacent
groups. On the other hand, when the individuals of the sample lie far apart,
the argument of Sheppard’s correction will apply, the real value of the standard
deviation being more likely to he smaller than that found owing to the frequency
in any group being greater on the side nearer the mode.

These two effects of grouping will tend to neutralize the effect on the mean
value of the standard deviation, but both will increase the variability.

Accordingly, we find that the mean value of the standard deviation is quite
close to that calculated, while in each case the variability is sensibly greater.
The fit of the curve is not good, both for this reason and because the frequency
is not evenly distributed owing to effects (2) and (3) of grouping. On the other
hand, the fit of the curve giving the frequency of z is very good, and as that is
the only practical point the comparison may he considered satisfactory.

The following are the figures for height:

Mean value of standard deviations: Calculated 2.027± 0.02
Observed 2.026
Difference = −0.001

Standard deviation of standard deviations: Calculated 0.8558± 0.015
Observed 0.9066
Difference +0.0510

Comparison of Fit. Theoretical Equation: y = 16×750
√

(2π)σ2
x2e

− 2x2

σ2

Scale in terms of standard deviations of population

Calculated frequency

1 1
2

10 1
2

27 45 1
2

64 1
2

78 1
2

87 88 81 1
2

71 58 45 33 23 15 9 1
2

5 1
2

7

Observed frequency
3 14 1

2
24 1

2
37 1

2
107 67 73 77 77 1

2
64 1

2
49 1

2
35 28 12 1

2
9 11 1

2
7

Difference
+1 1

2
+4 −2 1

2
−8 +42 1

2
−11 1

2
−14 −11 −4 −7 −5 1

2
+4 1

2
+2 +5 −2 1

2
−

1
2

+6 0

Whence χ2 = 48.06, P = 0.00006 (about).

In tabling the observed frequency, values between 0.0125 and 0.0875 were
included in one group, while between 0.0875 and 0.012.5 they were divided over
the two groups. As an instance of the irregularity due to grouping I may mention
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that there were 31 cases of standard deviations 1.30 (in terms of the grouping)
which is 0.5117 in terms of the standard deviation of the population, and they
wore therefore divided over the groups 0.4 to 0.5 and 0.5 to 0.6. Had they all
been counted in groups 0.5 to 0.6 χ2 would have fallen to 20.85 and P would
have risen to 0.03. The χ2 test presupposes random sampling from a frequency
following the given law, but this we have not got owing to the interference of
the grouping.

When, however, we test the z’s where the grouping has not had so much
effect, we find a close correspondence between the theory and the actual result.

There were three cases of infinite values of z which, for the reasons given
above, were given the next largest values which occurred, namely +6 or −6. The
rest were divided into groups of 0.1; 0.04, 0.05 and 0.06, being divided between
the two groups on either side.

The calculated value for the standard deviation of the frequency curve was
1 (±0.0171), while the observed was 1.030. The value of the standard deviation
is really infinite, as the fourth moment coefficient is infinite, but as we have
arbitrarily limited the infinite cases we may take as an approximation 1/

√
1500

from which the value of the probable error given above is obtained. The fit of
the curve is as follows:

Comparison of Fit. Theoretical Equation: y = 2N
π

cos4 θ, z = tan θ

Scale of z

Calculated frequency

5 9 1
2

13 1
2
34 1

2
44 1

2
78 1

2
119 141 78 1

2
44 1

2
34 1

2
13 1

2
13 1

2
9 1
2

5

Observed frequency
9 14 1

2
11 1

2
33 43 1

2
70 1

2
119 1

2
151 1

2
122 67 1

2
49 26 1

2
16 10 6

Difference
+4 +4 −2 −2 −1 1

2
−1 −8 + 1

2
+10 1

2
+3 −11 +4 1

2
−8 +2 1

2
+ 1

2

Whence χ2 = 12.44, P = 0.56.

This is very satisfactory, especially when we consider that as a rule obser-
vations are tested against curves fitted from the mean and one or more other
moments of the observations, so that considerable correspondence is only to ])c
expected; while this curve is exposed to the full errors of random sampling, its
constants having been calculated quite apart from the observations.

The left middle finger samples show much the same features as those of
the height, but as the grouping is not so large compared to the variability the
curves fit the observations more closely. Diagrams III6 and IV give the standard
deviations of the z’s for the set of samples. The results are as follows:

6There are three small mistakes in plotting the observed values in Diagram III, which make
the fit appear worse than it really is
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Mean value of standard deviations: Calculated 2.186± 0.023
Observed 2.179
Difference = −0.007

Standard deviation of standard deviations: Calculated 0.9224± 0.016
Observed 0.9802
Difference = +0.0578

Comparison of Fit. Theoretical Equation: y = 16×750√
(2π)σ2

x2e
− 2x2

σ2

Scale in terms of standard deviations of population
1 1

2 10 1
2 27 45 1

2 64 1
2 78 1

2 87 88 81 1
2 71 58 45 33 23 15 9 1

2 5 1
2 7

Calculated frequency
2 14 27 1

2 51 64 1
2 91 94 1

2 68 1
2 65 1

2 73 48 1
2 40 1

2 42 1
2 20 22 1

2 12 5 7 1
2

Observed frequency
+ 1

2 +3 1
2 + 1

2 +5 1
2 — +12 1

2 +7 1
2 −19 1

2 −16 +2 −9 1
2 −4 1

2 +9 1
2 −3 +7 1

2 +2 1
2 − 1

2 + 1
2

Whence χ2 = 21.80, P = 0.19.

Value of standard deviation: Calculated 1(±0.017)
Observed 0.982
Difference = −0.018

Comparison of Fit. Theoretical Equation: y = 2N
π

cos4 θ, z = tan θ

Scale of z
Calculated frequency
5 9 1

2 13 1
2 34 1

2 44 1
2 78 1

2 119 141 119 78 1
2 44 1

2 34 1
2 13 1

2 9 1
2 5

Observed frequency
4 15 1

2 18 33 1
2 44 75 122 138 120 1

2 71 46 1
2 36 11 9 6

Difference
−1 +6 +4 1

2 −1 − 1
2 −3 1

2 +3 −3 +1 1
2 −7 1

2 +2 +1 1
2 −2 1

2 − 1
2 +1

Whence χ2 = 7.39, P = 0.92.

A very close fit.
We see then that if the distribution is approximately normal our theory

gives us a satisfactory measure of the certainty to be derived from a small
sample in both the cases we have tested; but we have an indication that a fine
grouping is of advantage. If the distribution is not normal, the mean and the
standard deviation of a sample will be positively correlated, so although both
will have greater variability, yet they will tend to counteract one another, a
mean deriving largely from the general mean tending to be divided by a larger
standard deviation. Consequently, I believe that the table given in Section VII
below may be used in estimating the degree of certainty arrived at by the mean
of a few experiments, in the case of most laboratory or biological work where
the distributions are as a rule of a “cocked hat” type and so sufficiently nearly
normal
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Section VII. Tables of

n−2
n−3 .

n−4
n−5 . . .

(

3
2 .

1
2 n odd

2
1 .

1
π n even

)

∫ tan−1 z

− 1
2π

cos
n−2

θdθ

for values of n from 4 to 10 inclusive

Together with
√
7√

(2π)

∫ x

−∞ e−
7x2

2 dx for comparison when n = 10

z
(

= x

s

)

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 For comparison
( √

7√
(2π)

∫

x

−∞ e−
7x2

2 dx

)

0.1 0.5633 0.5745 0.5841 0.5928 0.6006 0.60787 0.61462 0.60411
0.2 0.6241 0.6458 0.6634 0.6798 0.6936 0.70705 0.71846 0.70159
0.3 0.6804 0.7096 0.7340 0.7549 0.7733 0.78961 0.80423 0.78641
0.4 0.7309 0.7657 0.7939 0.8175 0.8376 0.85465 0.86970 0.85520
0.5 0.7749 0.8131 0.8428 0.8667 0.8863 0.90251 0.91609 0.90691
0.6 0.8125 0.8518 0.8813 0.9040 0.9218 0.93600 0.94732 0.94375
0.7 0.8440 0.8830 0.9109 0.9314 0.9468 0.95851 0.96747 0.96799
0.8 0.8701 0.9076 0.9332 0.9512 0.9640 0.97328 0.98007 0.98253
0.9 0.8915 0.9269 0.9498 0.9652 0.9756 0.98279 0.98780 0.99137
1.0 0.9092 0.9419 0.9622 0.9751 0.9834 0.98890 0.99252 0.99820
1.1 0.9236 0.9537 0.9714 0.9821 0.9887 0.99280 0.99539 0.99926
1.2 0.9354 0.9628 0.9782 0.9870 0.9922 0.99528 0.99713 0.99971
1.3 0.9451 0.9700 0.9832 0.9905 0.9946 0.99688 0.99819 0.99986
1.4 0.9451 0.9756 0.9870 0.9930 0.9962 0.99791 0.99885 0.99989
1.5 0.9598 0.9800 0.9899 0.9948 0.9973 0.99859 0.99926 0.99999
1.6 0.9653 0.9836 0.9920 0.9961 0.9981 0.99903 0.99951
1.7 0.9699 0.9864 0.9937 0.9970 0.9986 0.99933 0.99968
1.8 0.9737 0.9886 0.9950 0.9977 0.9990 0.99953 0.99978
1.9 0.9970 0.9904 0.9959 0.9983 0.9992 0.99967 0.99985
2.0 0.9797 0.9919 0.9967 0.9986 0.9994 0.99976 0.99990
2.1 0.9821 0.9931 0.9973 0.9989 0.9996 0.99983 0.99993
2.2 0.9841 0.9941 0.9978 0.9992 0.9997 0.99987 0.99995
2.3 0.9858 0.9950 0.9982 0.9993 0.9998 0.99991 0.99996
2.4 0.9873 0.9957 0.9985 0.9995 0.9998 0.99993 0.99997
2.5 0.9886 0.9963 0.9987 0.9996 0.9998 0.99995 0.99998
2.6 0.9898 0.9967 0.9989 0.9996 0.9999 0.99996 0.99999
2.7 0.9908 0.9972 0.9989 0.9997 0.9999 0.99997 0.99999
2.8 0.9916 0.9975 0.9989 0.9998 0.9999 0.99998 0.99999
2.9 0.9924 0.9978 0.9989 0.9998 0.9999 0.99998 0.99999
3.0 0.9931 0.9981 0.9989 0.9998 — 0.99999 —

Explanation of Tables

The tables give the probability that the value of the mean, measured from
the mean of the population, in terms of the standard deviation of the sample,
will lie between −∞ and z. Thus, to take the table for samples of 6, the
probability of the mean of the population lying between −∞ and once the
standard deviation of the sample is 0.9622, the odds are about 24 to 1 that the
mean of the population lies between these limits.
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The probability is therefore 0.0378 that it is greater than once the standard
deviation and 0.07511 that it lies outside ±1.0 times the standard deviation.

Illustration of Method

Illustration I. As an instance of the kind of use which may be made of the tables,
I take the following figures from a table by A. R. Cushny and A. R. Peebles in
the Journal of Physiology for 1904, showing the different effects of the optical
isomers of hyoscyamine hydrobromide in producing sleep. The average number
of hours’ sleep gained by the use of the drug is tabulated below.

The conclusion arrived at was that in the usual doses 2 was, but 1 was not,
of value as a soporific.

Additional hours’ sleep gained by the use of hyoscyamine hydrobromide

Patient 1 (Dextro-) 2 (Laevo-) Difference (2− 1)
1 +0.7 +1.9 +1.2
2 −1.6 +0.8 +2.4
3 −0.2 +1.1 +1.3
4 −1.2 +0.1 +1.3
5 −0.1 −0.1 0
6 +3.4 +4.4 +1.0
7 +3.7 +5.5 +1.8
8 +0.8 +1.6 +0.8
9 0 +4.6 +4.6

10 +2.0 +3.4 +1.4
Mean +0.75 Mean +2.33 Mean +1.58
s.d. 1.70 s.d. 1.90 s.d. 1.17

First let us see what is the probability that 1 will on the average give increase
of sleep; i.e. what is the chance that the mean of the population of which these
experiments are a sample is positive. +0.75/1.70 = 0.44, and looking out z =
0.44 in the table for ten experiments we find by interpolating between 0.8697
and 0.9161 that 0.44 corresponds to 0.8873, or the odds are 0.887 to 0.113 that
the mean is positive.

That is about 8 to 1, and would correspond to the normal curve to about
1.8 times the probable error. It is then very likely that 1 gives an increase of
sleep, but would occasion no surprise if the results were reversed by further
experiments.

If now we consider the chance that 2 is actually a soporific we have the
mean inclrease of sleep = 2.33/1.90 or 1.23 times the s.d. From the table the
probability corresponding to this is 0.9974, i.e. the odds are nearly 400 to 1
that such is the case. This corresponds to about 4.15 times the probable error
in the normal curve. But I take it that the real point of the authors was that
2 is better than 1. This we must t4est by making a new series, subtracting 1
from 2. The mean values of this series is +1.38, while the s.d. is 1.17, the mean
value being +1.35 times the s.d. From the table, the probability is 0.9985, or
the odds are about 666 to one that 2 is the better soporific. The low value of
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the s.d. is probably due to the different drugs reacting similarly on the same
patient, so that there is correlation between the results.

Of course odds of this kind make it almost certain that 2 is the better so-
porific, and in practical life such a high probability is in most matters considered
as a certainty.

Illustration II. Cases where the tables will be useful are not uncommon
in agricultural work, and they would be more numerous if the advantages of
being able to apply statistical reasoning were borne in mind when planning the
experiments. I take the following instances from the accounts of the Woburn
farming experiments published yearly by Dr Voelcker in the Journal of the

Agricultural Soceity.
A short series of pot culture experiments were conducted in order to deter-

mine the casues which lead to the production of Hard (glutinous) wheat or Soft
(starchy) wheat. In three successive years a bulk of seed corn of one variety was
picked over by hand and two samples were selected, one consisting of “hard”
grains avid the other of “soft”. Some of each of them were planted in both heavy
and light soil and the resulting crops wore weighed and examined for hard and
soft corn.

The conclusion drawn was that the effect of selecting the seed was negligible
compared with the influence of the soil.

This conclusion was thoroughly justified, theheavy soul producing in each
case nearly 100% of hard corn, but still the effect of selecting the seed could
just be traced in each year.

But a curious point, to which Dr Voelcker draws attention in the second
year’s report, is that the soft seeds produced the higher yield of both corn and
straw. In view of the well-known fact that the varieties which have a high
yield tend to produce soft corn, it is interesting to see how much evidence the
experiments afford as to the correlation between softness and fertility in the
same variety.

Further, Mr Hooker7 has shown that the yield of wheat in one year is largely
determined by the weather during the preceding year. Dr Voelcker’s results
may afford a clue as to the way in which the seed id affected, and would almost
justify the selection of particillar soils for growing wheat.8

Th figures are as follows, the yields being expressed in grammes per pot:

Year 1899 1900 1901 Standard
Soil Light Heavy Light Heavy Light Heavy Average deviation z
Yield of corn from soft seed 7.55 8.89 14.81 13.55 7.49 15.39 11.328
Yield of corn from hard seed 7.27 8.32 13.81 13.36 7.97 13.13 10.643
Difference +0.58 +0.57 +1.00 +0.19 −0.49 +2.26 +0.685 0.778 0.88
Yield of straw from soft seed 12.81 12.87 22.22 20.21 13.97 22.57 17.442
Yield of straw from hard seed 10.71 12.48 21.64 20.26 11.71 18.96 15.927
Difference +2.10 +0.39 +0.78 −0.05 +2.66 +3.61 +1.515 1.261 1.20

If we wish to laid the odds that the soft seed will give a better yield of corn
on the average, we divide, the average difference by the standard deviation,

7Journal of the Royal Statistical Society, 1897
8And perhaps a few experiments to see whether there is a correlation between yield and

“mellowness” in barley.
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giving us
z = 0.88.

Looking this up in the table for n = 6 we find p = 0.9465 or the odds are 0.9465
to 0.0535 about 18 to 1.

Similarly for straw z = 1.20, p = 0.9782, and the odds are about 45 to 1.
In order to see whether such odds are sufficient for a practical man to draw

a definite conclusion, I take another act of experiments in which Dr Voelcker
compares the effects of different artificial manures used with potatoes on a large
scale.

The figures represent the difference between the crops grown with the rise
of sulphate of potash and kailit respectively in both 1904 and 1905:

cwt. qr. lb. ton cwt. qr. lb.
1904 + 10 3 20 : + 1 10 1 26
1905 + 6 0 3 : + 13 2 8







(two experiments in each year)

The average gain by the use of sulphate of potash was 15.25 cwt. and the
s.d. 9 cwt., whence, if we want the odds that the conclusion given below is
right, z = 1.7, corresponding, when n = 4,to p = 0.9698 or odds of 32 to 1; this
is midway between the odds in the former example. Dr Voelcker says: “It may
now fairly be concluded that for the potato crop on light land 1 cwt. per acre
of sulphate of potash is a better dressing than kailit.”

Am an example of how the table should be used with caution, I take the
following pot culture experiments to test whether it made any difference whether
large or small seeds were sown.

Illustration III. In 1899 and in 1903 “head corn” and “tail corn” were taken
from the same bulks of barley and sown in pots. The yields in grammes were
as follows:

1899 1903
Large seed . . . 13.9 7.3
Small seed . . . 14.4 1.4

+0.5 +1.4

The average gain is thus 0.95 and the s.d. 0.45, giving z = 2.1. Now the
table for n = 2 is not given, but if we look up the angle whose tangent is 2.1 in
Chambers’s tables,

p =
tan−1 2.1

180◦
+ 0.5 =

64◦39′

180◦
= 0.859,

so that the odds are about 6 to 1 that small corn gives a better yield than large.
These odds9 are those which would be laid, and laid rigidly, by a man whose
only knowledge of the matter was contained in the two experiments. Anyone
conversant with pot culture would however know that the difference between the

9[Through a numerical slip, now corrected, Student had given the odds as 33 to 1 and it
is to this figure that the remarks in this paragraph relate.
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two results would generally be greater and would correspondingly moderate the
certainty of his conclusion. In point of fact a large-scale experiment confirmed
this result, the small corn yielding shout 15% more than the large.

I will conclude with an example which comes beyond the range of the tables,
there being eleven experiments.

To test whether it is of advantage to kiln-dry barley seed before sowing,
seven varieties of barley wore sown (both kiln-dried and not kiln-dried in 1899
and four in 1900; the results are given in the table.

Lb. head corn per acre Price of head corn in Cwt. straw per acre Value of crop per acre
shillings per quarter in shillings

N.K.D. N.D. Diff. N.K.D. N.D. Diff. N.K.D. N.D. Diff. N.K.D. N.D. Diff.

1903 2009 +106 26 1
2

1
2

0 19 1
2

25 +5 1
2

140 1
2

152 +11 1
2

1935 1915 − 20 28 26 1
2

−1 1
2

22 1
2

24 +1 1
2

152 1
2

145 −7 1
2

1910 2011 +101 29 1
2

28 1
2

−1 23 24 +1 158 1
2

161 +2 1
2

1899 2496 2463 − 33 30 29 −1 23 28 +5 204 1
2

199 1
2

−5

2108 2180 + 72 27 1
2

27 − 1
2

22 1
2

22 1
2

0 162 142 +2

1961 1925 −36 26 26 0 19 1
2

419 1
2

− 1
2

142 139 1
2

−2 1
2

2060 2122 + 62 29 26 −3 24 1
2

22 1
2

−2 1
2

168 155 −13

1444 1482 + 38 29 1
2

28 1
2

−1 15 1
2

16 + 1
2

118 ‘117 1
2

− 1
2

1900 1612 1542 − 70 28 1
2

28 − 1
2

18 17 1
2

− 1
2

128 1
2

121 −7 1
2

1316 1443 +127 30 29 −1 14 1
2

15 1
2

+1 1
2

109 1
2

116 1
2

+7

1511 1535 + 24 28 1
2

28 − 1
2

17 17 1
2

+ 1
2

120 120 1
2

+ 1
2

Average 1841.5 1875.2 +33.7 28.45 27.55 −0.91 19.95 21.05 +1.10 145.82 144.68 +1.14

Standard . . . . . . 63.1 . . . . . . 0.79 . . . . . . 2.25 . . . . . . 6.67
deviation
Standard
deviation . . . . . . 63.1 . . . . . . 0.79 . . . . . . 2.25 . . . . . . 6.67

÷
√

8

It will he noticed that the kiln-dried seed gave on an average the larger yield.
of corn and straw, but that the quality was almost always inferior. At first sight
this might be supposed to be due to superior germinating power in the kiln-dried
seed, but my farming friends tell me that the effect of this would be that the
kiln-dried seed would produce the better quality barley. Dr Voelcker draws the
conclusion: “In such seasons as 1899 and 1900 there is no particular advantage
in kiln-drying before mowing.” Our examination completely justifies this and
adds “and the quality of the resulting barley is inferior though the yield may be
greater.”

In this case I propose to use the approximation given by the normal curve
with standard deviation s/

√
n− 3 and therefore use Sheppard’s tables, looking

up the difference divided by S/
√
8. The probability in the case of yield of corn

per acre is given by looking up 33.7/22.3 = 1.51 in Sheppard’s tables. This gives
p = 0.934, or the odds are about 14 to 1 that kiln-dried corn gives the higher
yield.

Similarly 0.91/0.28 = 3.25, corresponding to p = 0.9994,2 so that the odds
are very great that kiln-dried seed gives barley of a worse quality than seed
which has not been kiln-dried.

Similarly, it is about 11 to 1 that kiln-dried seed gives more straw and about
2 to 1 that the total value of the crop is less with kiln-dried seed.

2As pointed out in Section V, the normal curve gives too large a value for p when the
probability is large. I find the true value in this case to be p = 0.9976. It matters little,
however, to a conclusion of this kind whether the odds in its favour are 1660 to 1 or merely
416 to 1.
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Section X. Conclusions

1. A curve has been found representing the frequency distribution of stan-
dard deviations of samples drawn from a normal population.

2. A curve has been found representing the frequency distribution of the
means of the such samples, when these values are measured from the mean of
the population in terms of the standard deviation of the sample.

3. It has been shown that the curve represents the facts fairly well even
when the distribution of the population is not strictly normal.

4. Tables are given by which it can be judged whether a series of experiments,
however short, have given a result which conforms to any required standard of
accuracy or whether it is necessary to continue the investigation.

Finally I should like to express my thanks to Prof. Karl Pearson, without
whose constant advice and criticism this paper could not have been written.

[Biometrika, 6 (1908), pp. 1–25, reprinted on pp. 11–34 in “Student’s” Collected

Papers, Edited by E. S. Pearson and John Wishart with a Foreword by Launce
McMullen, Cambridge University Press for the Biometrika Trustees, 1942.]
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