
Magnetic Resonance Imaging 32 (2014) 281–290

Contents lists available at ScienceDirect

Magnetic Resonance Imaging

j ourna l homepage: www.mr i journa l .com
Noise estimation in parallel MRI: GRAPPA and SENSE

Santiago Aja-Fernández ⁎, Gonzalo Vegas-Sánchez-Ferrero, Antonio Tristán-Vega
LPI, ETSI Telecomunicación, Universidad de Valladolid, Spain
⁎ Corresponding author.
E-mail addresses: sanaja@tel.uva.es (S. Aja-Fernánde

(G. Vegas-Sánchez-Ferrero), atriveg@lpi.tel.uva.es (A. Tr

0730-725X/$ – see front matter © 2014 Elsevier Inc. Al
http://dx.doi.org/10.1016/j.mri.2013.12.001
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 2 July 2013
Revised 17 September 2013
Accepted 1 December 2013

Keywords:
Noise estimation
Multiple-coil
Parallel imaging
SENSE
GRAPPA
Parallel imaging methods allow to increase the acquisition rate via subsampled acquisitions of the k-
space. SENSE and GRAPPA are the most popular reconstruction methods proposed in order to suppress
the artifacts created by this subsampling. The reconstruction process carried out by both methods yields
to a variance of noise value which is dependent on the position within the final image. Hence, the
traditional noise estimation methods – based on a single noise level for the whole image – fail. In this
paper we propose a novel methodology to estimate the spatial dependent pattern of the variance of
noise in SENSE and GRAPPA reconstructed images. In both cases, some additional information must be
known beforehand: the sensitivity maps of each receiver coil in the SENSE case and the reconstruction
coefficients for GRAPPA.
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1. Introduction

Magnetic Resonance Imaging (MRI) is known to be affected by
several sources of quality deterioration, due to limitations in the
hardware, scanning times, movement of patients, or even themotion
of molecules in the scanning subject. Among them, noise is one
source of degradation that affects acquisitions. The presence of noise
over the acquired MR signal is a problem that affects not only the
visual quality of the images, but also may interfere with further
processing techniques such as registration or tensor estimation in
Diffusion Tensor MRI [1].

Noise has usually been statistically modeled attending to the
scanner coil architecture. For a single-coil acquisition, the complex
spatial MR data are typicallymodeled as a complex Gaussian process,
where the real and imaginary parts of the original signal are
corrupted with uncorrelated Gaussian noise with zero mean and
equal variance σn

2. Thus, the magnitude signal is the Rician
distributed envelope of the complex signal [2]. This Rician
distribution whose variance is the same for the whole image is
also known as homogeneous Rician distribution or, more accurately,
stationary Rician distribution, and it has been themost usedmodel in
literature for multiple applications [3–8].

When a multiple-coil MR acquisition system is considered, the
Gaussian process is repeated for each receiving coil. As a conse-
quence, noise in each coil in the k-space can be also modeled as a
complex stationary Additive White Gaussian Noise process, with
zero mean and equal variance. In that case, the noise in the complex
signal in the x-space for each coil will also be Gaussian. If the k-space
is fully sampled, the composite magnitude signal (CMS, i.e. the final
real signal after reconstruction) is obtained using methods such as
the sum-of-squares (SoS) [9]. Assuming the noise components to be
identically and independently distributed, the CMSwill follow a non-
central chi (nc-χ) distribution [9]. If the correlation between coils is
taken into account, the data do not strictly follow an nc-χ but, for
practical purposes, it can bemodeled as such, but taking into account
effective parameters [10,11].

However, in multiple-coil systems, fully sampling the k-space
acquisition is not the common trend in acquisition. Nowadays,
due to time restrictions, most acquisitions are usually accelerated
by using parallel MRI (pMRI) reconstruction techniques, which
allow to increase the acquisition rate via subsampled acquisitions
of the k-space. This acceleration goes together with an artifact
known as aliasing.

Many reconstruction methods have been proposed in order to
suppress the aliasing created by this subsampling, with SENSE
(Sensitivity Encoding for Fast MRI) [12] and GRAPPA (Generalized
Autocalibrating Partially Parallel Acquisition) [13] citegrappa
being dominant among them. From a statistical point of view,
both reconstruction methods will affect the stationarity of the
noise in the reconstructed data, i.e. the spatial distribution of the
noise across the image. As a result, if SENSE is used, the
magnitude signal may be considered Rician distributed [14,15]
but the value of the statistical parameters and, in particular, the
variance of noise σn

2, will vary for different image locations, i.e. it
becomes x-dependent. Similarly, if GRAPPA is used, the CMS may
be approximated by a non-stationary nc-χ distribution [15,16]
with effective parameters.
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Noise estimators proposed in literature are based on the assump-
tion of a singleσn

2 value for all thepixels in the image, assuming either a
Rician model [17,18,5,4,19,20] or an nc-χ [9,19,21,10]. Accordingly,
those methods do not apply when dealing with pMRI and non-
stationary noise. Noise estimators must therefore be reformulated in
order to cope with these new image modalities.

In this paper we propose different methodologies to estimate the
spatially distributed variance of noise σn

2 from the magnitude signal
when SENSE or GRAPPA are used as pMRI technique.

2. Noise statistical models in pMRI

Aspreviouslystated,mostnoiseestimationmethods in literaturerely
ontheassumptionofasinglevalueofσn

2 foreverypixelwithinthe image.
However, this isno longer thecasewhenpMRIprotocols are considered.

In multiple coil systems, the acquisition rate may be increased by
subsampling the k-space data [22,23], while reducing phase distor-
tions when strong magnetic field gradients are present. The
immediate effect of the k-space subsampling is the appearance of
aliased replicas in the image domain retrieved at each coil. In order to
suppress or correct this aliasing, pMRI combines the redundant
information from several coils to reconstruct a single non-aliased
image domain.

The commonly used (stationary) Rician and nc-χ models do not
necessarily hold in this case. Depending on the way the information
from each coil is combined, the statistics of the image will follow
different distributions. It is therefore necessary to study the behavior
of the data for a particular reconstruction method. We will focus on
two of the most popular methods, SENSE [12] and GRAPPA [13], in
their most basic formulation.

In the following sections we will assume an L-coil configuration,
with L being the number of coils in the system. sSl kð Þ is the
subsampled signal at the l-th coil of the k-space (l = 1, ⋯, L), SSl xÞð is
the subsampled signal in the image domain, i.e., the x-space, and r is
the subsampling rate. The k-space data at each coil can be accurately
described by an Additive White Gaussian Noise (AWGN) process,
with zero mean and variance σK

2:

sSl kð Þ ¼ al kð Þ þ nl k;σ2
Kl

� �
; l ¼ 1; ⋯; L ð1Þ
Table 1
Relations between the variance of noise in complex MR data for each coil in the k-space

Noise relations

k-space Parameters

Fully sampled, σ2
Kl

k-size: |Ω|

Subsampled r, σ2
Kl

k-size: |Ω|/r

Subsampled r, σ2
Kl

k-size: |Ω| (zero padded)
with al(k) the noise-free signal and nl k;σ2
Kl

� �
¼ nlr k;σ2

Kl

� �
þ

j·nli k;σ2
Kl

� �
the AWGN process, which is initially assumed station-

ary so that σ2
Kl

does not depend on k.
The complex x-space is obtained as the inverse Discrete Fourier

Transform (iDFT) of sSl kð Þ for each slice or volume, so the noise in the
complex x-space is still Gaussian [15]:

SSl xð Þ ¼ Al xð Þ þ Nl x;σ2
l

� �
; l ¼ 1; ⋯; L

where Nl x;σ2
l

� � ¼ Nlr x;σ2
l

� �þ jNli x;σ2
l

� �
is also a complex AWGN

process (note we are assuming that there are not any spatial
correlations) with zero mean and covariance matrix:

Σ ¼
σ2

1 σ12 ⋯ σ1L

σ21 σ2
2 ⋯ σ2L

⋮ ⋮ ⋱ ⋮
σL1 σL2 ⋯ σ2

L

0
BB@

1
CCA: ð2Þ

The relation between the noise variances in the k- and x-domains is
given by the number of points used for the iDFT:

σ2
l ¼ r

Ωj jσ
2
Kl
;

with |Ω| the final number of pixels in the field of view (FOV). Note that
the final noise power is greater than in the fully sampled case due to
the reduced k-space averaging, as it will be the case with SENSE (see
below).On the contrary, the iDFTmaybe computed after zero-padding
the missing (not sampled) k-space lines, and then we have [16]:

σ2
l ¼ 1

Ωj j⋅rσ
2
K l
:

In the latter case the noise power is reduced with respect to the
fully sampled case, since we average exactly the same number of
samples but only 1 of each r of them contributes a noise sample (this
will also be the case with GRAPPA). Finally, note that although the
level of noise is smaller in GRAPPA due to the zero padding, the SNR
does not increase, since the zero padding produces also a reduction
of the level of the signal.

Relations between the variance of noise in complex x-space and
k-space for each coil are summarized in Table 1.
and the image domain.

x-space Relation

σ2
l ¼ 1

Ωj jσ
2
Kl
, x-size: |Ω|

σ2
l ¼ r

Ωj jσ
2
Kl
, x-size: |Ω|/r
(SENSE)

σ2
l ¼ 1

Ωj j⋅rσ
2
Kl
, x-size: |Ω|
(GRAPPA)
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2.1. Statistical Noise Model in SENSE Reconstructed Images

Prior to the definition of the estimators, the statistical noise
model in SENSE must be properly defined. Many studies have been
made about this topic from an SNR or a g-factor (noise amplification)
point of view [12,15,24]. Since this paper is focused on the σn

2 value
estimation rather than an SNR level, an equivalent reformulation
must be done, more coherent with the signal and noise analysis
usually assumed for noise estimation.

In multiple coil scanners, the signal acquired in each coil, l =
1, 2, ⋯, L, can be modeled in the k-space by the following
equation [22,25]:

sl kð Þ ¼ ∫V Cl xð ÞS0 xð Þej2πk·xdx;

where S0(x) is the excited spin density function throughout the
volume V (it is sometime denoted by ρ(x)), and it can be seen as an
original imageweighted by the spatial sensitivity of coil l-th, Cl(x). In
the x-space this is equivalent to [22,26]:

Sl xð Þ ¼ Cl xð ÞS0 xð Þ; l ¼ 1; ⋯; L: ð3Þ

An accelerated pMRI acquisition with a factor r will reduce the
matrix size of the image at every coil. The signal in one pixel at
location (x,y) of l-th coil can be now written as [12,26]:

Sl x; yð Þ ¼ Cl x; y1ð ÞS0 x; y1ð Þ þ ⋯þ Cl x; yrð ÞS0 x; yrð Þ: ð4Þ

Let us call SSl x; yð Þ to the subsampled signal at coil l-th and SR x; yð Þ to
the final reconstructed image. Note that the latter can be seen as an
estimator of the original image SR x; yð Þ ¼ bS0 x; yð Þ that can be
obtained from Eq. (4)

SSl x; yð Þ ¼ Cl x; y1ð Þ bS0 x; y1ð Þ þ ⋯þ Cl x; yrð Þ bS0 x; yrð Þ
¼ Cl x; y1ð ÞSR x; y1ð Þ þ ⋯þ Cl x; yrð ÞSR x; yrð Þ l ¼ 1; ⋯; L

SR x; yð Þ can be easily derived from this relation. For instance, for r =
2 for pixel (x,y), SR x; yð Þ becomes [12,22,26]

SR1
SR2

� �
¼ W1 W2½ � � SS1 ⋯ SSL

� 	
; ð5Þ

whereSRi stands for each of the r reconstructed pixels. In matrix form
for each pixel and an arbitrary r

SRi ¼ Wi � SS i ¼ 1; ⋯; r; ð6Þ

with W = [W1, ⋯ Wr] a reconstruction matrix created from the
sensitivity maps at each coil. These maps, C = [C1, ⋯,CL] are estimated
through calibration right before each acquisition session. Once they
are known, the matrix W reduces to a least-squares solver for
the overdetermined problem C x; yð Þ � SR x; yð Þ≃SS x; yð Þ [12,26]:

W x; yð Þ ¼ C� x; yð ÞC x; yð Þ� �−1C� x; yð Þ: ð7Þ

The correlation between coils may be incorporated in the
reconstruction as a pre-whitening matrix for the measurements,
and W(x,y) becomes then a weighted least squares solver with
correlation matrix Σ:

W x; yð Þ ¼ C� x; yð ÞΣ−1C x; yð Þ
� �−1

C� x; yð ÞΣ−1
:

The SNRs of the fully sampled image and the image reconstructed
with SENSE are related by the so-called g-factor, g [24,26]:

SNRSENSE ¼ SNRfullffiffiffi
r

p
⋅g

ð8Þ

However, in our problem we are more interested on the actual
noise model underlying the SENSE reconstruction and on the final
variance of noise. The final signal SRi is obtained as a linear
combination of SSl , where the noise is Gaussian distributed. Thus, the
resulting signal is also Gaussian, with variance:

σ2
i ¼ W�

i ΣWi: ð9Þ

Since Wi is position-dependent, i.e. Wi = Wi(x,y), so will be the
variance of noise, σi

2(x,y). For further reference, when the whole
image is taken into account, let us denote the variance of noise for
each pixel in the reconstructed data by σ2

R(x).
All in all, noise in the final reconstructed signalSR x; yð Þwill follow

a complex Gaussian distribution. If the magnitude is considered, i.e.
M(x,y) = |SR x; yð Þ|, the final magnitude image will follow a Rician
distribution [15], just like single-coil systems.

To sum up: (1) Subsampled multi coil MR data reconstructed with
Cartesian SENSE followa Rician distribution at each point of the image;
(2) The resulting distribution is non-stationary. This means that the
varianceofnoisewill vary frompoint to point across the image; (3) The
final value of thevarianceof noise at each pointwill only dependon the
covariance matrix of the original data (prior to reconstruction) and on
the sensitivity map, and not on the data themselves.

2.2. Noise statistical model in GRAPPA

The GeneRalized Autocalibrated Partially Parallel Acquisitions
(GRAPPA) [13] reconstruction strategy estimates the full k-space in
each coil from a sub-sampled k-space acquisition. The reconstructed
lines are estimated through a linear combination of the existing
samples. Weighted data in a neighborhood η(k) around the
estimated pixel from several coils are used for such an estimation.
While the sampled data sSl (k) remain the same, the reconstructed
lines SRl (k) are estimated through a linear combination of the
existing samples. Weighted data in a neighborhood η(k) around the
estimated pixel from several coils are used for such an estimation:

sRl kð Þ ¼
XL
m¼1

∑
c∈η kð Þ

sSm k−cð Þωm l; cð Þ; ð10Þ

with sl(k) the complex signal from coil l at point k and ωm(l,k) the
complex reconstruction coefficients for coil l. These coefficients are
determined from the low-frequency coordinates of k-space, termed
the Auto Calibration Signal (ACS) lines, which are sampled at the
Nyquist rate (i.e. unaccelerated). Breuer et al. [27] pointed out that
Eq. (10) can be rewritten using the convolution operator:

sRl kð Þ ¼
XL
m¼1

sSm kð Þ⊛wm l;kð Þ; ð11Þ

where wm(l,k) is a convolution kernel that can be easily derived from
the GRAPPA weight set ωm(l,k). Since a (circular) convolution in the
k-space is equivalent to a product into the x-space, we can write:

SRl xð Þ ¼ Ωj j
XL
m¼1

SSm xð Þ �Wm l;xð Þ;

with Wm(l,x) the GRAPPA reconstruction coefficients in the x-space
and |Ω| the size of the image in each coil.
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The CMS can be obtained using the SoS of the signal in each coil:

ML xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
l¼1

SRl xð Þ�� ��2
vuut : ð12Þ

In [16] the authors pointed out that the resultant distribution of
the CMS in Eq. (12) is not strictly a nc-χ, but its behavior will be very
similar and could be modeled as such with a small approximation
error. However, the reconstruction method will highly increase the
correlations between the reconstructed signals in each coil, which
translates into a decrease of the number of Degrees of Freedomof the
distribution. As a consequence, the final distribution will show a
(reduced) effective number of coils Leff and an (increased) effective
variance of noise σeff

2 :

Leff xð Þ ¼
Aj j2 tr C2

X

� �
þ tr C2

X

� �� �2

A�C2
XA þ jjC2

X jj2F
; ð13Þ

σ2
eff xð Þ ¼

tr C2
X

� �
Leff

; ð14Þ

where CX
2(x) = WΣW* is the covariance matrix of the interpolated

data at each spatial location, A(x) = [A1, ⋯,AL]T is the noise-free
reconstructed signal, ||. ||F is the Frobenius norm, Σ is the covariance
matrix of the original data and W(x) is the GRAPPA interpolation
matrix for each (x):

W xð Þ ¼
W1 1; xð Þ ⋯ W1 L; xð Þ

⋮ ⋱ ⋮
WL 1; xð Þ ⋯ WL L;xð Þ

0
@

1
A

Although the nc-χ model is feasible for GRAPPA, the resulting
distribution is non-stationary since the effective parameters are
spatially dependent.

2.3. Practical simplifications over the GRAPPA model

For practical purposes, in order to make the noise estimation
feasible, some simplifications can be made over Eqs. (13) and (14).
We will simplify the problem by assuming that the variance of noise
is the same for every coil, σl

2 = σn
2, and that the signal is also the

same Ai = Aj for all i, j. The covariance matrix can therefore be
written as:

Σ ¼ σ2
n⋅

1 ρ12 ⋯ ρ1L
ρ21 1 ⋯ ρ2L
⋮ ⋮ ⋱ ⋮

ρL1 ρL2 ⋯ 1

0
BB@

1
CCA: ð15Þ

Accordingly, matrix CX2 becomes

C2
X xð Þ ¼ σ2

n⋅W �
1 ρ12 ⋯ ρ1L
ρ21 1 ⋯ ρ2L
⋮ ⋮ ⋱ ⋮

ρL1 ρL2 ⋯ 1

0
BB@

1
CCA�W� ¼ σ2

n⋅ΘΘΘ xð Þ: ð16Þ

The effective values may be now simplified to:

Leff xð Þ ¼ SNR2 L tr ΘΘΘð Þ þ tr ΘΘΘð Þð Þ2
SNR2‖ΘΘΘ‖1 þ ‖ΘΘΘ‖2F

; ð17Þ

σ2
eff xð Þ ¼ σ2

n
SNR2‖ΘΘΘ‖1 þ ‖ΘΘΘ‖2F
SNR2 Lþ tr ΘΘΘð Þ ; ð18Þ
with SNR2 xð Þ ¼ A2
T xð Þ
Lσ2

n
. For these equations, two extreme cases can

be considered:

1. In the background, where no signal is present and hence SNR = 0,
the effective values are:

Leff ;B ¼ tr ΘΘΘð Þð Þ2
‖ΘΘΘ‖2F

ð19Þ

σ2
eff ;B ¼ σ2

n
‖ΘΘΘ‖2F
tr ΘΘΘð Þ : ð20Þ

2. For high SNR areas, say SNR → ∞:

Leff ;S ¼ L⋅ tr ΘΘΘð Þ
‖ΘΘΘ‖1

ð21Þ

σ2
eff ;S ¼ σ2

n
‖ΘΘΘ‖1
L

: ð22Þ

These two cases give respectively the lower and upper bounds of
σeff
2 (x) within the image (vice-versa for Leff). Using the simplified

version of the effective variance of noise in Eq. (22) we can write:

σ2
eff xð Þ ¼ ϕn xð Þ⋅σ2

eff ;B þ 1−ϕn xð Þð Þ⋅σ2
eff ;S ð23Þ

with

ϕn xð Þ ¼ tr ΘΘΘ xð Þð Þ
L SNR2 xð Þ þ tr ΘΘΘ xð Þð Þ : ð24Þ

Note that ϕn(x) becomes 1 in the background (when SNR → 0) and
becomes 0 in high SNR areas (when SNR → ∞).

The simplified model here presented is far from the standard
stationary nc-χ generally used, and clearly very far from the
stationary Rician model. If we consider results in Eqs. (20) and
(22) we can see that the variance of noise in the background and
in the signal areas will be different. If the estimation of noise is
done using only the background (as it has been traditionally done)
and no corrections are done, there will be a bias when used over the
signal areas.

3. Noise estimation

3.1. Noise Estimation in SENSE

In the background of a SENSE MR image, where the SNR is zero,
the Rician PDF simplifies to a (non-stationary) Rayleigh distribution,
whose second order moment is defined as

E M2 xð Þ
n o

¼ 2⋅σ2
R xð Þ: ð25Þ

Since σ2
R(x) is x-dependent, E{M2(x)} will also show a different

value for each x position.
Let us assume that each coil in the x-space is initially corrupted

with uncorrelated Gaussian noise with the same variance σn
2 and

there is a correlation between coils ρ so that matrix Σ becomes

Σ ¼ σ2
n

1 ρ ⋯ ρ
ρ 1 ⋯ ρ
⋮ ⋮ ⋱ ⋮
ρ ρ ⋯ 1

0
BB@

1
CCA ¼ σ2

n Iþ ρ 1−I½ �ð Þ:
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with I the L × L identity matrix and 1 a L × Lmatrix of 1’s. For each x
value, we define the global map

GWi
¼ W�

i Iþ ρ 1−I½ �ð ÞWi; i ¼ 1; ⋯; r

Global map GW xð Þ can be easily inferred from the GWi
values.

Note that GW xð Þ is strongly related to the g-factor [24]. Eq. (25)
then becomes

E M2 xð Þ
n o

¼ 2 σ2
n GW xð Þ ð26Þ

and

σ2
n ¼

E M2 xð Þ
n o
2 GW xð Þ ð27Þ

By using this regularization, we can assure a single σn
2 value for all

the points in the image. Following the noise estimation philosophy in
[4,19], we can now define a noise estimator based on the local
sample estimation of the second order moment:

M2 xð Þ
D E

x
¼ 1

η xð Þj j ∑
p∈η xð Þ

M2 pð Þ;

with η(x) a neighborhood centered in x. 〈M2(x)〉x is known to follow
a Gamma distribution [19] whose mode is 2σn

2(|η(x)| − 1)/|η(x)|.
Then

mode
M2

L

D E
x

GW xð Þ

8<
:

9=
; ¼ 2σ2

n
η xð Þj j−1
η xð Þj j ≈2σ2

n

when |η(x)| N N 1. The estimator is then defined as

cσ2
n ¼ 1

2
mode

M2
L xð Þ

D E
x

GW xð Þ

8<
:

9=
; ð28Þ

and consequently the noise in each pixel is estimated as

bσ2
R xð Þ ¼ 1

2
mode

M2
L xð Þ

D E
x

GW xð Þ

8<
:

9=
;GW xð Þ ð29Þ

This estimator is only valid over the background pixels. However,
as shown in [4,19], no segmentation of these pixels is needed: the
Fig. 1. Sensitivity Maps used for the experiments. Top: synthetic s
use of the mode allows us to work with the whole image. On the
other hand, to carry out the estimation, the sensitivity map of each
coil and the correlation between coils must be known beforehand.
These parameters are needed for the SENSE encoding, and thus, they
can be easily obtained.

3.2. Noise estimation in GRAPPA

The background area of a GRAPPA reconstructed image may be
approximated by a c-χ distribution, whose second order moment is
defined as

E M2
L

n o
¼ 2σ2

nL: ð30Þ

Effective parameters Leff(x) and σeff
2 (x) must be taken into

account. Since both are x-dependent, E{ML
2} will also show a

different value for each x position:

E M2
L xð Þ

n o
¼ 2 σ2

eff xð Þ Leff xð Þ
¼ 2 tr C2

X xð Þ
� �

and assuming the simplifications proposed in Section 2.3:

E M2
L xð Þ

n o
¼ 2 σ2

n tr Θ xð Þð Þ:

In order to estimate a possible value of σn
2 matrices W(x) (the

GRAPPA weights) must be known before hand. In addition, some
assumption must be also made over covariance matrix Σ. One
possible assumption is the same correlation between all coils, as
done in SENSE:

Σ ¼ σ2
n

1 ρ ⋯ ρ
ρ 1 ⋯ ρ
⋮ ⋮ ⋱ ⋮
ρ ρ ⋯ 1

0
BB@

1
CCA ¼ σ2

n Iþ ρ 1−I½ �ð Þ:

or, in a much simplified case, no correlations between coils,
Σ = σn

2 I. In any case, from Eq. (30) we can always derive

σ2
n ¼

E M2
L xð Þ

n o
2 tr Θ xð Þð Þ ð31Þ

Following the same noise estimation philosophy proposed for
SENSE, we can define a noise estimator based on the local sample
estimation of the second order moment:

cσ2
n ¼ 1

2
mode

M2
L xð Þ

D E
x

tr Θ xð Þð Þ

8<
:

9=
; ð32Þ
ensitivity map. Bottom: Map estimated from real acquisition.



Fig. 2. Maps of σℛ
2 (x) in the final image: (a–c–e): Theoretical values. (b–d–f): Estimated from samples. (a–b) Synthetic Sensitivity Map with no correlation. (c–d) Synthetic

Sensitivity Map with correlation between coils. (e–f) Real sensitivity map with correlation between coils (log scale).
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This estimator is only valid over the background pixels. However,
as shown in [4,19], no segmentation of these pixels is needed. On the
other hand, to carry out the estimation, the GRAPPA interpolation
weights must be known beforehand.

3.3. Estimation of effective values in GRAPPA

Although many methods and applications based on the nc-χ
use only the σn

2 value, there are other situations in which the
effective value of noise is needed. Note that this effective value will
now be x-dependent.

Assuming that we know the GRAPPAweights beforehand, we can
use the estimation cσ2

n in Eq. (28) to estimate cσ2
n;B and cσ2

n;S, using
Eqs. (20) and (22) respectively. These two values give the lower and
upper bounds of the actual σeff

2 (x) across the image. Using the
simplified version of the effective variance of noise in Eq. (23):

cσ2
eff xð Þ ¼ cϕn xð Þ⋅cσ2

eff ;B þ 1−cϕn xð Þ
� �

⋅cσ2
eff ;S ð33Þ

A rough estimation of ϕn(x) can be done using the sample second
order moment (although more complex estimation could also be
considered). Since

E M2
L xð Þ

n o
¼ A2

T þ 2 σ2
n tr Θ xð Þð Þ:

we can write

ϕn ¼ tr Θð Þ
A2
T

σ2
n
þ tr Θð Þ

¼ tr Θð Þ σ2
n

A2
T þ tr Θð Þ σ2

n
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Fig. 3. Estimation of the variance of noise from SENS
Therefore, a simple estimation would be

cϕn xð Þ ¼ tr Θð Þ cσ2
n

M2� 

−tr Θð Þ cσ2

n

: ð34Þ

Finally, the estimated effective noise variance becomes:

cσ2
eff xð Þ¼cσ2

n
tr Θð Þ cσ2

n

M2� 

−tr Θð Þ cσ2

n

⋅ ‖Θ‖1
L

þ 1− tr Θð Þ cσ2
n

M2� 

−tr Θð Þ cσ2

n

0
@

1
A⋅ ‖Θ‖2F

tr Θð Þ

2
4

3
5:

ð35Þ

4. Experiments and Results

For the sake of validation of the noise estimators proposed, some
experiments are carried out. We will focus first in SENSE and later
in GRAPPA.

4.1. Noise estimation in SENSE

We will first test the variation of parameter σ2
R(x) across the

image in SENSE. To that end, we work with two sensitivity maps
belonging to 8-coil systems as shown in Fig. 1: one synthetic
sensitivity map (top) and a real map (bottom), estimated from a T1
acquisition done in a GE Signa 1.5 T EXCITE, FSE pulse sequence,
8 coils, TR = 500 ms, TE = 13.8 ms, 256 × 256 and FOV:
20 cm × 20 cm. For the sake of simplicity we assume a normalized
variance at each coil σl

2 = 1 since it will not affect the experiment.
We will simulate two different configurations, first, assuming that
there is no initial correlation between coils, and second, assuming a
correlation coefficient of ρ = 0.1. From the data, and using the
Average
Maximum
Minimum

(b) Blind estimation
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Fig. 4. Slice from a brain T1 acquisition done in a GE Signa 1.5 T EXCITE with 8 coils.
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theoretical expression in Eq. (9) we calculate the variance of noise
for each pixel in the final image. In order to test the theoretical
distributions, 5000 samples of 8 complex 256 × 256 Gaussian
images with zero mean and covariance matrix Σ are generated.
The k-space of the data is subsampled by a 2× factor and
reconstructed using SENSE and the synthetic sensitivity field. We
estimate the variance of noise in each point using the second order
moment of the Rayleigh distribution [19]:

σ2
R xð Þ ¼ 1

2
E M2 xð Þ
n o

:

We estimate the E{M2(x)} along the 5000 samples.
Visual results are depicted in Fig. 2. For the synthetic maps, when

no correlations are considered, the final variance of noise will
not depend on the position x. Therefore, in this particular case
σ2

R(x) = σ2
R. The estimated values in Fig. 2-(b) show a noise pattern

that slightly varies around the real value (note the small range of
variation). In this very particular case, the noise can be considered to
be spatially stationary, and the final image (leaving the correlation
between pixels aside) is equivalent to one obtained from a single-
coil scanner.

When correlations are taken into account, even using the same
synthetic sensitivity map, results differ. In Fig. 2-(c), the theoretical
value shows that the standard deviation of noise of the reconstructed
data is not the same for every pixel, i.e., the noise is no longer spatial-
stationary. The center of the image shows a larger value that
decreases going north and south. So, in this more realistic case, the
σ2

R(x) will depend on x, which can have serious implications for
future processing, such as model based filtering techniques. The
estimated value in Fig. 2-(d) shows exactly the same non-
homogeneous pattern across the image. In the last experiment,
Fig. 2-(e) and Fig. 2-(f), a real sensitivity map is used, and correlation
between coils is also assumed. Again, the noise is non-stationary. To
increase the dynamic range of the images, the logarithm has been
used to show the data.
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Fig. 5. Results of σn estimation using the proposed method; 100 experiments are considere
Standard deviation of the estimated values.
Secondly, we will validate the noise estimation capability of
the proposed method by carrying out an experiment with a 2D
synthetic slice from a BrainWeb MR volume [28], with intensity
values in [0 − 255].The average intensity value for theWhite Matter
is 158, for the Gray Matter is 105, for the cerebrospinal fluid 36 and
0 for the background. An 8-coil system is simulated using the
artificial sensitivity in Fig. 1. Image in each coil is corrupted with
additive circular complex Gaussian noise with std σn ranging in
[5 − 40] and ρ = 0.1 between all coils. The k-space is uniformly
subsampled by a factor of 2 and reconstructed using SENSE. Note
that the variance of noise of the subsampled images in each coil is
amplified by a factor r [12]: (σn

2)sub = r × σn
2.

Results for the experiment are shown in Fig. 3-(a): the average of
the 100 experiments divided by the actual value of σn

2 is depicted.
Accordingly, the closer to 1, the better the estimation. From the
figure it can be seen that the estimation is very accurate for all the
considered values of σn. The estimation is similar to the one carried
out for single coil data in [4]. However, the goodness of the
estimation lies in the fact that the sensitivity maps are available.
We repeat the estimation assuming that the maps are not available,
and considering a single σ2

R value for the whole image:

bσ2
R ¼ 1

2
mode M2

L xð Þ
D E

x

n o
ð36Þ

We define the ratio bσ2
R=σ

2
R xð Þ and we calculate the average, the

minimum and maximum values across the image, and the average
along 100 samples. Results are depicted in Fig. 3-(b). The estimated
value presents a constant bias of around 5% for all values. The
estimated value will be in a range from 85% to 100% of the original
value. Hence, if GW xð Þ is unknown, estimating an individual value of
σn
2 will only be acceptable for certain applications, whenever they

are robust enough to cope with a bit deal of bias and a higher deal of
uncertainty in this parameter.

Finally, an experiment is carried out with data from a real
acquisition, see Fig. 4, with sensitivitymap in Fig. 1-bottom. First, as a
4

6

8
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12 x 10
−3

st
d(
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t)/

σ n

(b) Standard deviation
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n

d for each sigma value. (a) Mean of the estimated value divided by the actual value. (b)



Fig. 6. Effective standard deviation of noise: (a) Original σeff(x), derivated from the GRAPPA weights and Eq. (14); (b) Estimated σ̂ eff xð Þ from Eq. (35); (c) Estimation of effective
std of noise for SNR = 0, σ̂ eff ;B xð Þ; (d) Estimation of effective std of noise for high SNR, σ̂ eff ;S xð Þ.
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golden standard, parameter σn is estimated from the Gaussian
complex data:
Real component
 cσn ¼ 4:1709

Imag. component
 cσn ¼ 4:0845
Then a subsampled acquisition is simulated and reconstructed
with SENSE. σn is first estimated using Eq. (28) and then, assuming
the map GW xð Þ is unknown, using Eq. (36). Results are as follows:
Magnitude (GW xð Þ known)
 cσn=
ffiffiffi
r

p ¼ 4:1728

Magnitude (GW xð Þ unknown)
 cσn=

ffiffiffi
r

p ¼ 4:8404
Fig. 7. Estimation of correction factor cϕn xð Þ from Eq. (34).
Note that the value estimated using the proposedmethod is totally
consistent with the estimation done over the original complex
Gaussian data. The blind estimation method, on the other hand,
overestimates the noise level. This is caused because in Eq. (29) the
map given byGW xð Þ is basically a normalization. The lack of knowledge
of this parameter displaces themode of the distribution from its actual
value, hence themismatch. However, for some applications inwhich a
great accuracy is not needed, there could still be a valid value that gives
a rough approximation to the variance of noise.

4.2. Noise estimation in GRAPPA

For the sake of validation, several experiments are considered.
First, synthetic experiments were carried out using the same 2D
synthetic slice from a BrainWebMR volume used for SENSE. Image in
each coil is again corrupted with Gaussian noise with std σn ranging
in [5 − 40] and ρ = 0. The k-space is uniformly subsampled by a
factor of 2, keeping 32 ACS lines. The CMS is reconstructed using
GRAPPA and SoS. The sample local moments have been calculated
using 7 × 7 neighborhoods. Two different cases are considered in the
simulation, 4 and 8 coils.

Results for the experiment are shown in Fig. 5: in Fig. 5-(a), the
mean of the 100 experiments divided by the actual value of σn is
depicted. Accordingly, the closer to 1, the better the estimation; in
Fig. 5-(b), the standard deviation of the experiments divided by the
actual value is shown; the lower the value, the better the estimation.

From the results it can be seen that the estimation is very accurate,
although a small bias appears for low values of σn. This bias is surely
motivated by a mismatch between the GRAPPA reconstructed image
and the nc-χmodel: according to [16] the error of approximating the
CMS by a nc-χ is larger for very low σn values. All in all, the proposed
method shows a very good average behavior – the values are in a
small range between0.97 and1 –with a small biasedmean and a very
low variance, which assures a consistent estimation.

For the sake of illustration, themap of the effective values of noise
is also calculated for one single experiment with σn = 10. For that
experiment, the theoretical value of σeff
2 (x) is calculated using

Eq. (14). From the expression in Eq. (35), using the estimated noisecσ2n and the GRAPPAweights coded in Θ, the variance of noise for the
two extreme cases (SNR = 0 and high SNR) is estimated. Using the
correction factor cϕn xð Þ, a global value for cσ2eff xð Þ is obtained.

Results are depicted in Fig. 6-(a) (σeff(x)); Fig. 6-(b) (dσeff xð Þ);
Fig. 6-(c) dσeff ;B xð Þ; Fig. 6-(d) dσeff ;S xð Þ. The correction factor cϕn xð Þ is
depicted in Fig. 7.

From the illustrations it is easy to see that the variance of noise
has a high variation itself across the image. σeff(x) ranges from 10 to
45. Even inside the same tissue, there is a huge variation (from 25 to
45). There is, also, a high mismatch between the head and the
background areas. Some interesting conclusions can be raised from
this: (1) The assumption of a single σn

2 value for the whole volume
does not hold in GRAPPA. Assuming this single value will clearly bias
any further processing; (2) In this example, the noise values in the
background are much smaller than those inside the tissue. If the
background is used to estimate the noise, and no correction is
applied, there can be a huge mismatch between the real noise and
the estimated value.

For the second experiment, real acquisitions are considered. 100
repetitions of the same slice of a phantom, scanned in an 8-channel
head coil on a GE Signa 1.5 T EXCITE 12m4 scanner with FGRE
Pulse Sequence to generate low SNR, see Fig. 8 efimag:ball. Matrix
size = 128 × 128, TR/TE = 8.6/3.38 ms, FOV 21 × 21cm, slice
thickness = 1 mm. Noise variance σn

2 is initially estimated using
the variance of the real part of every coil of every sample, where the
noise is known to be additive Gaussian [29]. This value σ0

2 is taken as



Fig. 8. Slice of an 8-coil 2D acquisition of the phantom used for the experiments.
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Golden Standard. Then, all the 100 samples are 2 × subsampled. The
GRAPPA reconstruction coefficients are derived from one sample,
using 32 ACS lines, and used for interpolation in all samples. The CMS
is obtained by SoS. Noise is estimated over each CMS using Eq. (28).
For the sake of illustration, values for tr(Θ)(x) derived from the
GRAPPA coefficients are depicted in Fig. 9. (See Fig. 8.).

Estimation results are as follows:
Fi
se
σ0
g. 9. Values of ma
cond experiment.
mean cσn

� �
p tr(Θ)(x) from the G
mean cσn

� �
=σ0
RAPPA reconstruction coe
std cσn

� �
=σ0
0.0428
 0.0424
 0.9905
 0.0113
Results obtained estimating the noise with the proposed method
are totally consistent with the value obtained over the complex
Gaussian images without subsampling. There is a very small bias in
the estimation and the method also shows a very small variance, as
also seen in the synthetic experiments. The map of tr(Θ)(x) depicted
in Fig. 9 shows that, in this real case, there is also a great variation of
the noise parameter across the image.

Finally, for the sake of comparison with SENSE estimation, a new
experiment is carried out with the data from the real acquisition in
Fig. 4, as a golden standard for parameter σn the estimation from the
Gaussian complex already done for SENSE (cσn ¼ 4:1709 for the real
component.) The complex data are subsampled with r = 2. The k-
space is reconstructed using GRAPPA and 32 ACS lines and the CMS is
obtained by SoS. Noise is estimated over the CMS using Eq. (28). Two
different estimations have been done: (1) using the GRAPPA
coefficients; (2) assuming the coefficients unknown. In the last
case, matrix Θ(x) is replaced by an 8 × 8 identity matrix.

Results are as follows:
Magnitude (GRAPPA coefficients known)
 cσn � ffiffiffi
r

p ¼ 4:1097ffiffiffip

Magnitude (GRAPPA coefficients unknown)
 cσn � r ¼ 5;1933
Again, like in SENSE; the value estimated using the proposed
method is consistent with the estimation done over the original
complex Gaussian data. The blind estimation method, on the other
hand, overestimates the noise level. Note that there is a great lack of
fficients of the
knowledge of a normalization level, hence the error. However, note
that it can still be valid to estimate the order of magnitude of the
variance of noise, or in case a rough estimation is needed.

5. Conclusions

The proper modeling of the statistics of thermal noise in MRI is
crucial for many image processing and computer aided diagnosis
tasks. While the stationary Rician and nc-χ models have been the
keystone of statistical signal processing in MR for years, the
stationarity assumption cannot be applied when parallel imaging
reconstruction is considered: the main assumption of a single value
of σn

2 to characterize the whole data set is no longer valid. When
pMRI techniques are used, due to the reconstruction process, the
variance of noise becomes x-dependent, with a different value for
each pixel.

To overcome the problems of non-stationarity, we have proposed
a novel noise estimation technique to be used with SENSE and
GRAPPA reconstructed data. The estimation of the spatially variant
σn
2(x) is of paramount importance, since the knowledge of this

parameter will allow us to re-use many of the methods proposed in
literature for stationary models. In most cases it will suffice with
changing an scalar σn

2 value by the spatially dependent σn
2(x).

The estimation methods proposed have shown to be accurate,
robust and easy to use. However, it also shows some limitations.
First, correlation between coils must be known beforehand, as well
as the sensitivity map from each coil (in SENSE) or the reconstruc-
tion weights (in GRAPPA). Finally, some post processing software in
the scanner may add a mask to data, which eliminates part of the
background, drastically reducing the number of points available for
noise estimation [30]. The estimation method selected must be
properly adjusted to this problem. Note that if the background is
totally removed, the estimation should be done using methods that
do not rely on the background, but on the signal areas.
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