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Machine learning (ML)–based systems can be affected by 
systematic errors across various stages of their develop-

ment and implementation, such as data collection, model 
development, model evaluation, and deployment (1). Given 
the increasing challenges in health care delivery due to algo-
rithmic bias, the U.S. Food and Drug Administration re-
leased an action plan in 2021 emphasizing the importance 
of identifying and mitigating bias in clinical artificial intel-
ligence (AI) and ML-based systems (2). Model development 
is a part of the ML process that uses mathematical algorithms 
to process, predict, and classify medical data. Recognizing 
how model development impacts bias offers new mitigation 
techniques beyond data handling. Sources of systematic er-
ror can be classified as error = bias2 1 variance 1 noise (3). 
Among the three components, bias is defined as the differ-
ence between the model’s output and the correct solution, 
variance is defined as the oscillations from the expected esti-
mator value that any particular sampling of the data is likely 
to cause, and noise is the random error that is irreducible.

In the following sections, we first explain a more fun-
damental overview of bias in the ML model, as bias may 
have different meanings depending on the context. Then, we 
present technical practices that can be employed to mitigate 
bias through different aspects of model development, such as 
selection of the network and loss function, data augmenta-
tion, optimizers, and transfer learning (Fig 1). By discussing 
challenges in model training and the appropriate solutions, 
this report recommends appropriate practices and consid-
erations to mitigate algorithm bias in radiology AI studies.

Bias, Variance, and Fairness in ML Algorithms

Overview of Sources of Bias in ML
Error is the difference between the model’s predictions and 
the ground truth labels for a dataset. Bias refers to show-

ing preference for one group over another. When applied in 
AI, the presence of bias typically means that the predictions 
consistently err in one direction. Model predictions can also 
be biased for subpopulations of patients, leading to health 
care unfairness. Recognizing that bias can come in these two 
forms, we will first cover the “offset” form of bias in these 
first three sections and then the “fairness” form of bias.

The more subtle form of ML bias, which is of concern 
for clinical practice, is when a certain input feature is over- 
or underweighted because the data are not sufficiently 
broad. In other words, a model with a bias will have many 
wrong predictions on the “true” population that favor a 
certain direction (eg, overcalling or undercalling disease). 
To calculate bias and variance, one can retrain their model 
several times and measure these variables. Suppose that we 
have a training set consisting of n pairs of inputs xi and 
ground truth values yi for i = 1,...,n. Ground truth y is the 
measured or labeled data of the true quantity Y with a 
function Y = y 1 ε, where ε is the coherent noise with zero 
mean and variance s2. The noise ε is randomly distributed 
and irreducible due to measurement precision. However, 
researchers can introduce label or measurement bias if they 
fail to recognize a pattern in how they mislabel examples. 
For instance, if melanomas are harder to detect in people 
with dark skin, there will be a bias in the training data. If 
the researchers do not recognize this increased difficulty, 
the bias will result in a poorer and unfair model (4).

Suppose an ML model is trying to approximate the true 
value Y by its prediction f(x). The mean square error (MSE) 
can be formulated as:

( ) ( ) ( )2 2 2 2( ) ( ) ( )Y f x y f x y f xε ε       − = + − = − +            (1),

because [ ] 0ε = , and ε is independent from the predict-
ing deviation y 2 f(x). The first term on the right-hand 
side of Equation (1) can be rewritten as:
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fractures on unseen radiographs, the model should learn visual 
representations of how a fracture appears on radiographs and 
ignore irrelevant information specific to each patient (eg, osteo-
arthritis in patients). Figure 2A shows the bias-variance trade-off 
when training a deep learning (DL) model.

Identification of Underfitting and Overfitting
This trade-off between bias and variance causes DL models to 
underfit or overfit the training data. Underfitting is the stage 
in which the model is not or only partially learning helpful 
information to solve the problem. It usually happens during 
the initial stage of training in which the training metrics of 
the model are relatively high. At this stage, the model has 
high bias and low variance. On the other hand, overfitting 
happens later in training, when the model learns the noise in 
the data and uses it to solve the problem and minimize its loss 
value. At this stage, the model has low bias on the training set 
but will pay attention to different signals, causing high vari-
ance in predictions.

Differentiating underfitting and overfitting is a critical task. 
Underfitting can be detected when the results on the training 
set have high bias and are not improving, which means that the 
model cannot learn from the signal (either useful or noise) pres-
ent in the data (Fig 2B). This occurs mainly because the model is 
not suitable for the task; either the model capacity is too low, or 
there is a misconfiguration in the pipeline. To recognize an over-
fitted model, performance on the validation and training sets 
should be evaluated. Overfitting is present if the performance on 
training data improves while the performance on the validation 
data deteriorates. Approaches to avoid overfitting will be briefly 
discussed in the following section (6).

Overview of Reducing Bias and Overfitting
One option to reduce overfitting is to use early stopping, 
which monitors the model’s performance on the valida-
tion set and stops the training when the validation metric 
decreases or its validation loss increases over a few steps (an 
increase in a single epoch can be due to noise). Early stopping 
is a common and simple-to-deploy approach, but it might 
cause bias in the model. When training is stopped based on  
the validation set, information is leaked from the validation 
set to the training set. This highlights the value of cross-vali-
dation and nested cross-validation in evaluating ML models. 
Nested cross-validation can minimize data leakage but might 
not always be feasible. Thus, many studies fall back to cross-
validation to decrease leakage, though this is not optimal (7). 
To train a model with cross-validation, one fold is put aside 
as the validation set, and the other folds are used for training. 
This process is performed “n” times (for n-fold cross-valida-
tion), with each fold treated as a validation set once. If there 
is a relatively high variance in performance, cross-validation 
offers an opportunity to perform model ensembling among 
folds, which can efficiently reduce overfitting.

A separate (third) test set can also be used to evaluate model 
performance on unseen data after model training is completed. 
This set should not be used for fine-tuning or early stopping to 
prevent data leakage. Testing on a separate dataset, ideally one 

( ) [ ]2 2 2( ) ( ) 2 ( )y f x y f x y f x   − = + −      (2).

Meanwhile, model bias and variance can be expressed respec-
tively as:

[ ]( ) [ ] [ ]2 22 2Bias[ ] ( ) ( ) 2 ( )f f x y y f x y f x= − = + −    (3),

[ ]22Var[ ] ( ) ( )f f x f x = −    (4).

Combining Equations (2), (3), and (4), the MSE of the ML 
model from Equation (1) can be decomposed as:

( ) [ ]2 2 2( ) Bias[ ] VarY f x f f σ − = + +   (5).

A good model is one with low bias (being valid) and low vari-
ance (being reliable). Unfortunately, there is empirical evidence 
that bias and variance have an inverse relationship in ML mod-
els, which is called the bias-variance trade-off (5). This means 
that lowering the model’s bias leads to increasing its variance 
and vice versa.

For example, an untrained model intended to detect a frac-
ture in wrist radiographs will randomly classify images without 
considering representative features of a fracture. This untrained 
model has a high bias. During training, this model tries to re-
duce its loss value and learn representations that can help it solve 
the task at hand, hence minimizing its bias. However, as the 
training progresses, the model may start to learn, or memorize, 
the random noise in the training data and rely on those unique 
noise patterns rather than representative features to detect frac-
tures. When training a new model, the noise potentially used 
for predictions could be very different from that of the previous 
model, resulting in different predictions for real-world examples. 
At this stage, the model has high variance. To detect wrist bone 

Abbreviations
Adam = adaptive moment estimation, AI = artificial intelligence, 
DL = deep learning, GAN = generative adversarial network, ML = 
machine learning, MSE = mean square error

Summary
This report reviews potential biases during machine learning model 
development and proposes possible mitigation strategies for radiology 
artificial intelligence studies.

Key Points
	n Machine learning studies are susceptible to bias in their model 

development phase.
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model development include data augmentation, model and loss 
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generative adversarial network (GAN), can be used for model 
training (10).

Curse of dimensionality describes the explosive nature of in-
creasing data dimensions and its resulting decrease in the den-
sity of data. Adding features without also increasing data size 
causes the feature space dimensionality to expand and become 
sparser and sparser, which may result in overfitting. Dimension-
ality reduction algorithms, such as principal component analysis, 
can make the data befitting. For clinical imaging tasks, features 
are imaging pixels. For instance, a 512 3 512 MR image has 
262 144 features. Thus, one way to reduce the number of fea-
tures is through image compression.

Regularization is another way to minimize overfitting. Reg-
ularization techniques include adding dropout layers and L1 

that is external, potentially ensures a more robust trained model 
than using an internal dataset. However, a review reported that 
only 6% of AI studies for medical imaging diagnosis included an 
external dataset for testing (8).

Another approach to reducing overfitting is to make the 
model capacity smaller (ie, fewer layers). By having fewer param-
eters, there is less capacity to learn spurious features, forcing the 
network to learn only those features that are important. This has 
the side benefit of being less computationally intense; however, a 
model that is too simple may not perform as well.

Overfitting can also be addressed by having more examples, 
which does not necessarily entail collecting additional training 
data. A more intense augmentation strategy, such as adding noise 
(9) or synthetic data with the same distribution, such as from a 

Figure 1:  A framework of different phases in deep learning model development to mitigate bias.

Figure 2:  (A) Bias-variance trade-off and the total error in terms of model complexity. Underfitting can occur due to use of an overly simplistic model that does not have 
the capacity to capture the complex relationships in the data, resulting in relatively high bias and low variance (indicated by the leftward arrow). On the other hand, a very 
complex model can lead to overfitting with relatively low bias and high variance (indicated by the rightward arrow). (B) Observation of underfitting and overfitting in typical 
training curves with representative underfitting learning curves shown as the dashed lines and overfitting as the solid lines. Of note, underfitting may occur due to premature 
stopping, and overfitting may arise due to late stopping.
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screening or diagnosis), researchers may intentionally tune 
the model toward false-positive cases (unnecessary further 
evaluation) or false-negative cases (missed diagnoses). Imbal-
anced datasets can be rebalanced by undersampling or overs-
ampling to enhance the model’s focus on rare cases. In DL 
frameworks, this can be achieved by defining sampler algo-
rithms such as WeightedRandomSampler in PyTorch (https://
pytorch.org) (16), in which the sampling weight for each class 
is calculated by taking the reciprocal of the class counts. A 
more convenient approach to enable sampling from each 
class with equal probability is possible by using third-party 
packages called StratifiedSampler. Oversampling and under-
sampling will prevent the model from seeing substantially 
more instances of one class over others during training, there-
fore reducing the risk of overfitting (17).

Data augmentation can mitigate both issues of data scarcity 
and data imbalance. For the purpose of oversampling, data aug-
mentation seems to be a more advanced technique than simply 
replicating data, as fake data can be generated by transforming 
the existing data or can be synthesized using DL approaches (eg, 
GANs) (18). By creating a more versatile dataset, data augmen-
tation helps the model understand the data, rather than memo-
rize it.

Geometric and resolution transformations, also known as 
data warping, are often applied to augment existing data and 
include techniques like zooming, flipping, rotation, cropping, 
scaling, affine transformations, and cutout (19) (Fig 3A). These 
popular transformations are usually embedded in software librar-
ies for ML such as PyTorch (16), Keras and TensorFlow (20), 
and Medical Open Network for AI (ie, MONAI) (21). When 
training on a specific dataset, there may be considerations for 
using different data augmentation techniques. For example, flip-
ping chest radiographs or CT scans may generate imaging data 
with the heart located on the right (but incorrect) side. A model 
trained on flipped imaging data may mispredict dextrocardia, a 
rare anatomic variation (22). On the contrary, flipping is often 
considered a safe augmentation technique when training models 
that do not have an apparent side, such as the brain. However, 
the subtle differences between the two sides may cause problems 
during the completion of certain tasks, and any differences in 
race, sex, or age across patients will likely result in bias.

Knowledge of medicine is critical to selecting augmenta-
tions that will not degrade diagnostic performance. For instance, 
when detecting COVID-19 on chest radiographs, zoom or crop 
augmentations may remove the pathologic area, which is typi-
cally found in the periphery of the lungs (23). Random crop-
ping when training models for a tumor classification task will 
randomly break each section into multiple patches. The model 
is then trained on a collection of patches generated from differ-
ent sections. Because the tumor usually occupies only a small 
region of the positive sections, there may be many patches that 
come from a positive section and are hence labeled as tumor 
positive while they actually contain no tumor (Fig 3B). In con-
trast, random cropping is often helpful to train tumor segmenta-
tion models because model labels are patch-specific segmenta-
tion masks. Adding more patches and labels can help the model 
learn more efficiently. Indeed, the type of ML task, clinical 

and L2 regularizations. Weight decay, which can be thought of 
as a form of L2 regularization, prevents network weights from 
growing too large (11). One last approach to minimize overfit-
ting is ensemble modeling. It is assumed that if a model focuses 
on random noise, then different models should learn different 
noise patterns; therefore, using the consensus of these models 
will provide superior results to each of them individually (12). 
Further details for these techniques will be discussed in the fol-
lowing sections.

Bias and Fairness in ML Algorithms
Up to this point, we have largely described bias from a math-
ematical perspective that describes it as an offset in output ac-
curacy, but bias can also refer to the fairness of the developed 
ML algorithms (13). Algorithmic fairness, an emerging field 
of ML, aims to mitigate the differences in modeling outcomes 
between social groups.

One might argue that the best AI tool is one that is “blind” to 
patient demographics: An ideal model should not depend on any 
protected features of a patient, such as sex, race, or geodiversity. 
However, such an approach may have undesirable consequences 
due to the value of demographic information in making correct 
diagnoses. Age, sex, and race are all known to have an impact on 
the probabilities of disease development, and they may also im-
pact disease appearance (13). Therefore, blinding an AI system 
to such information could lead to poorer patient care, just as it 
would for a human diagnostician. Given the high dimensional-
ity of clinical AI tasks with image-based or large-sized datasets, 
algorithms can still leverage proxy features to reconstruct the 
protected features even if sensitive attributes are excluded (14).

Instead, we must recognize and respect the differences within 
a population. As noted in the first report of this series, it is critical 
to sample the entire population as much as is feasible. Algorith-
mic bias can be addressed by adding regularization constraints 
to penalize the relative “cost” between groups, or through ad-
versarial learning (15), in which the adversarial model is trained 
to minimize its ability to identify the protected attributes from 
hidden features. In practice, the proper methods to assess and 
report clinical variations while ensuring some form of parity for 
different protected groups are still challenging and may need to 
be addressed on a task-by-task basis to create a bias-free system.

Technical Practice in Mitigating Algorithmic Bias

Data Sampling and Augmentation
ML algorithms have optimal performance when the number 
of samples of different classes is approximately equal in the 
training set. However, we mentioned earlier that real-world 
applications in medicine often have imbalanced datasets. 
A screening test aimed at detecting cancer within a normal 
population may result in many more negative diagnoses than 
positive. Training on such an imbalanced dataset may cause 
the model to learn to predict all cases as the dominant class 
and achieve very high accuracy; however, false-negative cases 
will introduce substantial bias into the model. Moreover, de-
pending on the specific application (eg, for the purpose of 
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1/(1−p) during training to keep consistent outputs for inference, 
which is usually a built-in feature of dropout layers in DL frame-
works. In practice, we can either assign different p values for each 
layer or use stochastic dropout, in which the dropout ratio itself 
is randomly determined by a probability distribution, making it 
tunable among different iterations (30).

The loss function is by convention an objective function that 
we wish to minimize during model training. While metrics such 
as accuracy are functions used to judge model performance, they 
are not always suitable to be used as loss functions, as ML algo-
rithms require the loss function to be smooth and convex. Loss 
functions may result in algorithmic bias if not properly designed 
to meet data or task requirements. For example, while MSE is 
a well-known loss function for regression, it usually generates 
blurry images for image-generative tasks such as super-resolution 
and in-painting. Therefore, training models for such tasks is usu-
ally done with other loss functions, including perceptual loss 
(31,32). Medical imaging segmentation is another example in 
which region-based loss functions, such as Dice loss, or bound-
ary-based loss functions, such as Hausdorff distance loss, can be 
selected for certain segmentation tasks or used at different train-
ing stages (33). Compound loss functions can be designed by 
summing different types of loss functions, such as Dice 1 cross 
entropy and Dice 1 focal Tversky loss, and each can be given 
unique weights reflecting their importance. While Dice and fo-
cal loss are helpful for imbalanced datasets that we often face 
in medicine, Tversky loss is found to detect small-region signals 
(eg, liver tumors) more accurately (34). By better capturing mi-
nority signals or subgroups of data, those loss functions can be 
used to potentially improve the fairness form of bias.

Adding a regularization term to the loss function can also help 
address overfitting. L1 and L2 are the most popular regulariza-
tions ( 2

22
λ θ 

 
 

 and 1
λ θ , respectively), where l is the regularization 

domain expertise, and even the dataset characteristics all affect 
the choices when using data augmentation techniques.

Model and Loss Function
To cure the bias-variance dilemma in supervised learning, 
we start by choosing the model capacity. We can build our 
model efficiently from existing feature-extractor network 
backbones such as VGG (24), ResNet (25), EfficientNet (26) 
and DenseNet (27). Depending on the size and complexity 
of the dataset, overfitting may occur. Accordingly, we can re-
duce model capacity by using models with fewer parameters or 
simpler architecture (eg, ResNet18 or Vgg16 over ResNet50), 
which have a smaller chance to adapt and learn the noise of 
the data. Furthermore, models with smaller capacities can both 
train and run faster, an important consideration for outcome 
inference. Self-configuring methods are proposed in the litera-
ture to automatically set the model capacity on the basis of da-
taset properties (28).

Another approach is to use dropout techniques, which are 
able to retain the complexity of the model. During the train-
ing process, nodes are randomly dropped (meaning their out-
put is set to 0) (29), helping the model avoid dependency on 
any specific neuron. The dropout intensity is controlled by an 
additional hyperparameter p valued between 0 and 1, which 
describes the probability of removing a node. Because the 
number of active nodes after applying a p-valued dropout on 
an n-sized model is equal to n(1−p), a higher value of p re-
moves more nodes. Dropout prevents coadaptation of nodes 
and therefore can make the trained model more general and 
robust to data distribution shift. However, too much drop-
out may cause excess reduction of model capacity, introduc-
ing underfitting. Because dropout is active during training 
but not inference, the outputs need to be scaled by a factor of 

Figure 3:  (A) Examples of data augmentation techniques: (I) adding noise, (II) zooming, (III) cutout, and (IV) rotation. (B) Illustration of potential bias as-
sociated with random cropping in classification tasks. Green boxes denote accurate crops, and red boxes denote inaccurate crops.
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rate, an additional hyperparameter introduced to penalize the 
amplitude of weights θ in the model. As overfitting models usu-
ally have large weights, l tunes the penalty of the regularization 
to the complexity of the model. However, if l is too high, the 
model may become too simple, increasing the risk of underfit-
ting. Thus, the goal is to strike the right balance between low 
model complexity and prevention of bias. By simple derivations, 
we can observe that L2 regularization is equivalent to weight 
decay, which is a hyperparameter often included in the train-
ing optimizer (discussed later). Domain knowledge is crucial in 
selecting the correct form and amount of regularization into the 
loss function. For instance, in tasks of MRI reconstruction, com-
pressed sensing uses a regularization term subject to prior spar-
sity constraints to penalize the optimization problem (35,36). In 
summary, different types of regularization techniques, including 
dropout, can improve the generalizability and accuracy of ML 
algorithms when applied to unseen data.

Optimizer and Hyperparameters
During the training process of ML models, the loss function 
is minimized by a specific algorithm called an optimizer. With 
each iteration, the optimizer is searching for optimal values of 
the model’s learnable parameters, such as weights and biases 
(which are clearly not either of the two forms of bias, offset or 
fairness, discussed in the paper). Because various optimizers are 
available in ML frameworks, there is often no need to build 
a new optimizer from scratch. However, it is useful to learn 
about different types of optimizers available to developers and 
know how they work to minimize the loss function, avoiding 
possible training bias. Stochastic gradient descent (a variant of 
gradient descent) is a very basic but heavily used optimizer for 
ML. The parameter updates depend on the loss function J(θ) 
from iteration t to t 1 1 as

1 · ( )t t tmv Jθθ θ η θ+ = + − ∇  (6),

in which θ are the learnable parameters, η is the learning rate, 
m is the momentum, and vt is the velocity. Choosing a proper 
learning rate can be difficult because the optimizer will con-
verge slowly if the learning rate is too small and may oscillate 
or diverge if the learning rate is too large. Momentum provides 
inertia to the moving curve of θ in terms of t in the parametric 
space, thus increasing the stability of the optimizer. On the 
other hand, adaptive moment estimation (Adam) develops an 
adaptive learning rate for each parameter and also combines 
advantages of the RMS-Prop and Adadelta methods (37), 
making Adam one of the most popular optimizers to train ML 
models efficiently. As using a fixed learning rate is cumbersome 
in practice, a learning rate scheduler can be used to update the 
learning rate value dynamically during training. For example, 
for the cyclic learning rate, the criterion is to use learning rate 
annealing (a higher learning rate) at the early stage of the cycle 
to quickly approach the regions of minima and then set a de-
caying learning rate to gradually find the minimum (38).

ML algorithms have several configurable options to better fit 
to the data at hand, which are called hyperparameters, including 
but not limited to learning rate, the amount of dropout, data 

augmentation, number of layers, and number of nodes in each 
layer. Finding the best combination of these options is called 
hyperparameter optimization (39), which can be the most time-
consuming part of the training, as the number of combinations 
to explore can grow exponentially. A model without optimized 
hyperparameters is essentially underfitting the data and is con-
sidered more biased than ideal.

There are several techniques for finding the best set of hy-
perparameters. A simple approach is performing a grid search, 
which defines a list of hyperparameters and then tries all their 
combinations with respect to each other to select the best com-
bination on the basis of the model’s performance on a holdout 
set. Although this approach seems to be very applicable, it can 
be computationally expensive. For instance, suppose there are 
four hyperparameters with only three different choices for each. 
A grid search to tune these hyperparameters requires 81 (or,  34) 
training experiments, which is not always feasible.

Another approach is to randomly select different combina-
tions of hyperparameters for training and to compare the com-
bined effects of those hyperparameter choices on the model’s 
performance. For hyperparameters that have no effect on the 
training performance, tuning is therefore redundant. Ran-
domly searching for hyperparameters has shown to be more 
effective than the grid search to identify such redundant hyper-
parameters (40).

The last approach for finding the best set of hyperparameters 
is to use Bayesian optimization. This method uses uncertainty 
estimates for finding the best set of hyperparameters. This ap-
proach will fit a surrogate model to the results of an already avail-
able hyperparameter search and then use an uncertainty estimate 
to choose what other points need to be explored. After several 
iterations, the overall trend will be evident, and the best hyper-
parameters will be selected (41). Overall, researchers should use 
at least one of these approaches to ensure a suitable combination 
of hyperparameters.

Transfer Learning and Ensemble Modeling
Clinical ML models may underperform because of lack of suf-
ficient labeled clinical data to train them. Manual labeling of 
medical images is time-consuming, costly, and prone to error. 
Researchers may attempt to battle data scarcity by integrating 
data from different cohorts; however, representation bias can 
arise when there is a distribution shift between the adopted pop-
ulations. Additionally, disease patterns may evolve (eg, diagnosis 
of COVID-19 prior to 2019), leading to a mismatch between 
the data initially collected for training and the target data ob-
served during the inference. Such situations can predispose ML 
models to prediction bias and reinforce that bias over time.

Using transfer learning, ML models with knowledge of a pre-
vious task can be borrowed and fine-tuned on the current task, 
mitigating overfitting on small datasets. Depending on the size 
of the dataset, certain hidden layers of a previously trained model 
can remain frozen (the associated weights are not changed) dur-
ing the fine-tuning, while the weights of a few fully connected 
top layers are allowed to be changed.

ImageNet is the most well-known dataset used for transfer 
learning to improve the performance of computer vision tasks 
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such as segmentation, detection, and classification (42). Al-
though routinely used, this dataset contains photographic im-
ages, which differ substantially from medical images. Therefore, 
using weights from models trained on ImageNet may not always 
be the ideal transfer learning solution for ML models trained 
on medical data. On the contrary, transfer learning from in-do-
main datasets such as ChestX-ray8 (43) and CheXpert (44) has 
been shown to improve performance compared with ImageNet 
pretrained models (45). Additionally, more and more clinical 
AI tasks entail three-dimensional models, while ImageNet and 
other public datasets can only assist in pretraining two-dimen-
sional models, favoring the use of in-domain transfer learning. 
For example, a three-dimensional U-Net tumor-segmentation 
model pretrained on the preoperative Multimodal Brain Tumor 
Segmentation, or BraTS, dataset can be used for fine-tuning on 
postoperative brain MRI (46).

Ensemble models can mitigate prediction bias by train-
ing several models and producing a hybrid prediction based 
on them, as the ensemble is usually more generalized than 
each base model. There are many different approaches for 
training base models. For instance, in bootstrap aggregat-
ing, also known as bagging, base models are trained in paral-
lel on randomly sampled datasets; whereas, in the boosting 
approach, base models are trained sequentially to focus on 
the errors from previous models. Predictions of base models 
can be combined by different strategies such as unweighted 
or weighted model averaging and majority voting. While 
the former method takes the average of the probability out-
comes of the base learners, the latter one counts the votes 
of the base learners to determine the final decision, making 
it less biased toward a particular base learner outlier (Fig 4) 
(47). As a result, majority voting seems to be an appropriate 
strategy when the base models are homogeneous in terms of 
performance (48). For cases with heterogeneous base models, 
weighted model averaging is preferred (eg, in a study on CO-
VID-19 detection) (49).

Semisupervised learning is another approach to alleviate al-
gorithmic bias originating from insufficient data annotations 
(50). Pretext or auxiliary tasks are designed to help models 
learn visual features of the data in an unsupervised manner 
(51). Examples of such tasks are enforced predictions, data 
generation, or contrastive learning, by which vanishing gra-
dient and overfitting issues may be mitigated. For example, a 
classifier that aims to detect COVID-19 on chest radiographs 
may benefit from a previously trained model that has learned 
to do unsupervised in-painting on chest radiographs, either by 
regarding that in-painting model as a source for transfer learn-
ing or by using it for adding an auxiliary loss (52) to the main 
training. Recent works on medical images using semi- or self-
supervised learning achieve good results on small datasets, with 
applications such as tumor segmentation, chest radiograph 
classification, and body decomposition (53).

Conclusion
This report discussed how ML studies are susceptible to bias 
in their model development phase. We reviewed possible ap-
proaches and recent advances to mitigate different types of 
bias during the development of ML models (eg, selection 
bias, social bias, and fairness bias). Specifically, we explored 
four basic aspects of clinical AI model development: data 
augmentation, model and loss function, optimizers, and 
transfer learning. Given the wide spectrum of biases in ML, 
it was not possible to cover all suboptimal practices in model 
development. This report may provide guidance for develop-
ers to identify erroneous practices and biases in their clinical 
ML systems.
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