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Parallel imaging reconstructions result in spatially varying noise
amplification characterized by the g-factor, precluding conven-
tional measurements of noise from the final image. A simple
Monte Carlo based method is proposed for all linear image
reconstruction algorithms, which allows measurement of sig-
nal-to-noise ratio and g-factor and is demonstrated for SENSE
and GRAPPA reconstructions for accelerated acquisitions that
have not previously been amenable to such assessment. Only a
simple “prescan” measurement of noise amplitude and corre-
lation in the phased-array receiver, and a single accelerated
image acquisition are required, allowing robust assessment of
signal-to-noise ratio and g-factor. The “pseudo multiple rep-
lica” method has been rigorously validated in phantoms and in
vivo, showing excellent agreement with true multiple replica
and analytical methods. This method is universally applicable to
the parallel imaging reconstruction techniques used in clinical
applications and will allow pixel-by-pixel image noise measure-
ments for all parallel imaging strategies, allowing quantitative
comparison between arbitrary k-space trajectories, image re-
construction, or noise conditioning techniques. Magn Reson
Med 60:895–907, 2008. © 2008 Wiley-Liss, Inc.
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Parallel imaging approaches are widely used for acceler-
ating MR image acquisitions (Simultaneous Acquisition of
Spatial Harmonics (SMASH) (1), Sensitivity Encoding
(SENSE) (2), Generalized Auto-Calibrating Partially Paral-
lel Acquisition (GRAPPA) (3). Receiving signals simulta-
neously in the independent elements of a radiofrequency
coil array allows acquisition of some of the phase-encoded
signals to be omitted. The distinct spatial sensitivity pro-
files of the elements contain spatial information that may
be used for the purpose of spatial encoding in the image
that is normally provided by application of magnetic field
gradients. The penalty for acquiring fewer signals is a loss
of Signal-to-Noise Ratio (SNR) in the final image by a factor

of the square root of the acceleration factor �R due to
reduced signal averaging. In parallel imaging image-noise
is further amplified by the ill-conditioning of the image
reconstruction process. In general, the noise amplification
is spatially variant and depends on the specific geometry
of the radiofrequency coil array used and is therefore char-
acterized by the (geometry) g-factor (2). An accurate and
quantitative method of analyzing noise amplification is
essential for objective comparison between parallel imag-
ing techniques and between image reconstruction methods
when developing new methods and designing clinical im-
aging protocols. Spatial variation of the image noise pre-
cludes the conventional (and simple) Region-of-Interest
(ROI) approach for SNR estimation which uses a region of
signal within the object and a region of noise outside of the
object (4,5), making SNR difficult to deal with practically
in parallel imaging. Quantification of noise amplification
in parallel imaging has been studied previously (2,6), pro-
ducing methods for direct calculation of image noise, g-
factor (2) and SNR (7) for some classes of parallel imaging
strategies. However, all existing techniques are subject to
certain regimes in which it is impossible to calculate SNR
analytically. Direct image noise matrix approaches (2) re-
quire memory for matrices of size O(n2), where n may be as
large as N2 for arbitrary k-space trajectories and general-
ized SENSE image reconstruction (8), where N is the image
matrix dimension. Typically N may be 256, which, for
complex floating-point data, leads to a reconstruction ma-
trix of approximately 30 Gb. For direct GRAPPA ap-
proaches n may be as large as N3 (9) leading to a recon-
struction matrix of approximately 2000 Tb. Furthermore,
matrix inversion approaches require O(n3) operations (8).
Thus, direct computation rapidly may become intractable
such that currently there is no universal approach for
measuring SNR or g-factor.

Statistical methods, for example Monte Carlo and boot-
strapping methods (10), are often used in functional pa-
rameter estimation from MRI (e.g., Jones and Steger et al.)
(11,12). This work develops a simple Monte Carlo method
for rigorously calculating image noise propagating through
the image reconstruction itself (similarly to methods ex-
plored previously) (13,14). This method allows calculation
of SNR and g-factor for all parallel imaging techniques
which use a linear image reconstruction algorithm, irre-
spective of whether direct calculation is available or com-
putationally tractable. In this work we demonstrate noise
analysis for two classes of parallel imaging methods
(SENSE and GRAPPA) routinely used in clinical imaging
applications.
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IMAGE NOISE ANALYSIS FOR LINEAR
RECONSTRUCTION ALGORITHMS

As described by Pruessmann et al. (2), for a linear image
reconstruction the propagation of noise from the sampled
values in k-space into the image noise is described by
noise matrices. The image reconstruction is described by
the operation of the reconstruction matrix F on the vector
of k-space data s, to generate image pixel values in the
vector � (Eq. [1]).

� � Fs [1]

The variance of the pixel values in the pth element of � is
given by the pth diagonal entry in the image noise matrix X.

X � F�̃F† [2]

The sample noise matrix �̃ (2) is the Kronecker product
of the noise covariance matrix � and an identity matrix of
dimension Nacq equal to the number of acquired k-space
points (the length of vector s divided by the number of coil
elements) (Eq. [3]).

�̃ � �RINacq [3]

The noise covariance matrix describes the level and
correlation of noise in the signals received in each element
of the coil array. The noise covariance matrix may be
expressed in terms of the individual noise records nik

(noise samples 1� k � Nk for coil i) received in each coil
element in the absence of NMR signal (Eq. [4], where *
represents complex conjugation) (7).

�ij �
1

2Nk
�

k�1

Nk

niknjk* [4]

Trivially, a conventional Fourier Transform image re-
construction is a linear operation that may be expressed in
the matrix form of Equation [1]. Noise amplification may
also be characterized analytically using this formalism.
The g-factor is simply the ratio of the SNR for an optimal
unaccelerated image and the SNR of the accelerated image
with an additional factor of the acceleration factor R which
accounts for the SNR loss due to averaging fewer acquired
signals (Eq. [5]).

g �
SNRoptimal,unaccelerated

SNRaccelerated��R
�

SDaccelerated

SDoptimal,unaccelerated��R
[5]

Equivalently, assuming the image signal is the same in
the accelerated and unaccelerated optimal reconstructions
(which is explicitly required by the formalism of the
SENSE reconstruction in Pruessmann et al.) (2) the g-factor
may be expressed in terms of the image noise standard
deviations (SD) leading to the familiar expression of g-
factor in terms of image noise matrix terms (Eq. [6]).

gp �
�Xpp

accelerated

�R � Xpp
optimal,unaccelerated [6]

The optimal SNR image is achieved by considering the
noise correlations between elements of the coil array as
described by Roemer et al. (15). Therefore, it follows that
an unaccelerated image reconstruction may be suboptimal
and may by our current definition have a g-factor greater
than unity.

This analytical approach allows image reconstructions
to include “division by the image noise” to generate pixel
values in units of SNR, whereby the normal image pixel is
divided by the calculated image noise for that pixel (here-
after referred to as the “direct SNR method”). Kellman and
McVeigh (7) describe image reconstructions in SNR-units
by the direct SNR method for fully gradient-encoded (un-
accelerated) acquisitions and accelerated acquisitions us-
ing a SENSE technique. The direct method provides an
image with pixel-by-pixel SNR values which faithfully
represent the spatial variation in image noise resulting
from parallel imaging acquisition to complement the in-
formation in the conventional magnitude image.

Most clinical applications of parallel imaging follow
either the SENSE or the GRAPPA approaches. SENSE im-
age reconstructions may be generalized (2,8,16) as a pseu-
do-inverse of the encoding matrix E which expresses the
k-space signals received by each element of a coil array
receiver s as the Fourier transform of the object � multi-
plied by the complex spatial sensitivity of the coil element
(Eqs. [7] and [8]).

s � E� [7]

� � �E†�̃�1E��1E†�̃�1s [8]

It can be seen in Equation [8] that all generalized SENSE
image reconstructions obey the linear formulation re-
quired in Equation [1] for the analytical image noise matrix
formalism of Equation [2] to hold.

GRAPPA techniques reconstruct missing phase-encoded
lines in k-space by linearly combining neighboring lines.
The weighting factors for the combination are determined
from fitting lines to a small additional number of auto-
calibration signal (ACS) lines acquired around the center
of k-space. This is a generalization of similar k-space fit-
ting approaches (1,17). In other techniques, for example,
AUTO-SMASH (17), the linear combination of k-space
lines produces a single composite k-space from which a
final image is reconstructed by Fourier transform. As de-
scribed by Griswold et al. (3), the GRAPPA approach re-
constructs fully sampled k-space data for each element of
the coil array before reconstructing an image for each coil
by Fourier transform and enjoys the SNR advantage of a
root-sum-of-squares (RSS) combination of the separate coil
images.

The RSS step, specifically intended to improve SNR
(and avoid phase cancellation problems), is nonlinear and
precludes use of the image noise matrix formalism to cal-
culate image noise and g-factor directly. This has proven
an obstacle to detailed analysis of the characteristics of
noise propagation in the GRAPPA method beyond appre-
ciating the excellent appearance of various images recon-
structed by the GRAPPA method. However, the RSS coil-
combination is a simplification of the full complex coil
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combination described by Roemer et al. (15) for the unac-
celerated case. Use of complex combinations allows the
GRAPPA reconstruction to be written as a linear matrix
operation (9). In this alternative formulation, each of the
steps of the GRAPPA reconstruction may be expressed as a
matrix operation. First, missing phase-encoded lines in the
undersampled k-space are reconstructed by the operation
of a transfer matrix T, which performs linear combinations
of neighboring lines. Second, a Fourier transform matrix H
is applied to the now repleted k-space data matrix from
each coil. Finally, a complex coil-combination matrix Ĉ (9)
is applied to form the vector of final image pixels � (Eq.
[9]).

� � ĈHTs [9]

Complex coil combination allows the GRAPPA recon-
struction to be expressed as a linear operation and, there-
fore, noise propagation may be analyzed using the image
noise formalism of Eq. [2]. The coil sensitivities used in
the matrix Ĉ may be calculated from a separate image or
from the central lines of the acquired k-space data in a
“self-calibrating” approach. The linear matrix representa-
tion “complex-GRAPPA” approach is discussed in Robson
et al. (9).

Limitations of Conventional Noise Analysis

The formality of writing the reconstruction in a matrix
operation form for the purpose of noise analysis carries the
high computational burden of handling many data at once.
The size of the reconstruction matrix for SENSE and
GRAPPA methods with 1-D acceleration is O(Ny by Nky �
c), where Ny and Nky are the number of data in the image-
and k-space y-dimension, and c is the number of coil
elements. The computation for the generalized SENSE
method is more demanding as this involves inversion of a
matrix of this order of magnitude (8). In volumetric image
acquisitions where acceleration is applied in two dimen-
sions, which is commonly the case in clinical applica-
tions, the matrices become larger, O(Ny � Nz by Nky �
Nkz � c), where Nz and Nkz are equivalent quantities in the
z-dimension; furthermore, in GRAPPA methods where the
reconstruction kernel may span three dimensions (18), the
matrix expands into a further dimension leading to a re-
construction matrix size O(Nx � Ny � Nz by Nkx � Nky �
Nkz � c). Thus direct calculation of SNR and g-factor by
means of image noise matrices soon becomes computa-
tionally intractable. It should be noted that 2D-Cartesian-
SENSE (19) is computationally tractable because the reg-
ularly undersampled data permit contraction of the gener-
alized matrix expression into small sub-blocks. For
variable density k-space sampling schemes coupled with
2D acceleration, the full matrix must be used. Non-Carte-
sian k-space sampling trajectories, including radial and
spiral techniques, where it is not possible to form discrete
sets of aliased pixels are another important class of image
acquisitions for which an analytical and computationally
tractable matrix reconstruction may not be available due to
the size of the reconstruction matrix. In all such cases
where the matrix approach of image reconstruction is not
feasible an alternative approach is used. For SENSE tech-

niques, an iterative conjugate-gradient (CG) technique may
be applied to reconstruct the image as described in Pruess-
mann et al. (8). For GRAPPA techniques, many small con-
volution operations are applied to the undersampled k-
space followed by a standard Fourier Transform algorithm
(indeed this is the conventional implementation of the
GRAPPA reconstruction for Cartesian sampling, and with
additional regridding of the data for non-Cartesian
GRAPPA) (20). However, direct calculation of the image
noise and g-factor is not possible without forming the
reconstruction matrix; indeed iterative approaches for gen-
eralized SENSE do not yield explicitly the reconstruction
weights which form the reconstruction matrix.

Direct calculation of image noise becomes intractable
whenever the reconstruction matrix becomes too large to
be computationally feasible, including the following: (i)
Cartesian SENSE with variable density k-space traversal
and 2D acceleration; (ii) Generalized SENSE with arbitrary
k-space trajectories (e.g., spirals); (iii) GRAPPA with 2D
acceleration (including regular undersampling schemes);
(iv) GRAPPA with 2D or 3D reconstruction kernels.

A PSEUDO MULTIPLE REPLICA APPROACH

As an alternative to the analytical matrix-based approach,
image noise amplifications may be determined from the
variations in image pixel values caused by random noise
fluctuations in the input k-space signals where the image
reconstruction is considered to be a “black-box” signal
processing block.

The gold-standard image noise measurement is the so-
called “actual multiple replica” method where k-space
signals are acquired multiple times and reconstructed us-
ing the same “black-box” into a stack of equivalent image
replicas which differ only in their noise content. Image
noise may then be found on a pixel-by-pixel basis by
finding the standard deviation of pixel values through the
stack of image replicas. Acquisition of multiple image
replicas allows assessment of image noise and thus SNR
on a pixel-by-pixel basis and is therefore useful for mea-
suring the spatially-variant amplified noise in parallel im-
aging (4,5). The use of this gold standard is not feasible in
practice for “real-world” in vivo imaging due to excessive
patient motion or physiologic noise between image acqui-
sitions, susceptibility to instrument drift (21), and pro-
longed examination times.

For a linear “black-box” signal processing block the
image noise is solely dependent on the noise in the signal
and the reconstruction can be seen to operate on the image
and the noise separately. We propose a simple Monte
Carlo technique hereafter termed the “pseudo multiple
replica method” for obtaining a robust measurement of
image noise for all linear image reconstructions which
may be used when a direct calculation is not possible.
Correctly scaled and correlated synthetic random noise is
added to the acquired k-space before “black-box” image
reconstruction. This process is repeated multiple times,
each time with different synthetic noise, to produce a stack
of independent image replicas from which image noise
may be calculated emulating the gold-standard actual mul-
tiple replica method. A previous study (13) has used this
approach with synthetic Gaussian noise without consider-
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ing noise correlations. Another study (14) applied a boot-
strap method, reordering acquired noise, to estimate the
noise propagation through the image reconstruction that
included noise correlations and scaling without needing to
generate “fresh” noise for each replica. The pseudo multi-
ple replica method is based on prior knowledge of the
signal noise in k-space. It does not require explicit knowl-
edge of the reconstruction matrix and requires acquisition
of k-space only once to calculate SNR of the accelerated
image.

The iterative conjugate gradient method for SENSE
methods is linear and thus may be used with the pseudo
multiple replica method. For GRAPPA methods, the con-
ventional image reconstruction which applies many small
convolutions before RSS coil-combination is nonlinear
only in the final RSS step. Therefore, a linear complex-
GRAPPA may be implemented in both a full matrix form
(transfer matrix used to reconstruct k-space) and the con-
ventional form of reconstruction. Thus a linear conven-
tional GRAPPA technique may be used with the pseudo
multiple replica method. (“RSS-GRAPPA” will be speci-
fied explicitly hereafter, with “conventional” referring to
k-space reconstruction and “complex” referring to com-
plex coil combination.).

THEORY

Pseudo Multiple Replica Method

On the assumption that repeatedly acquired k-space data
differs only in its noise content, the signal component
being unchanged, synthetic complex noise, correctly
scaled and correlated between elements of the coil array,
may be added to k-space to emulate actual multiple replica
acquisition before image reconstruction (see Fig. 1). Noise
may be added uniformly to k-space; the characteristic spa-
tial variance of noise occurs only in image space after
image reconstruction. The pseudo multiple replica
method takes advantage of the linearity of the image re-
construction. Each pseudo replica image has the correct
representation of the image noise despite being noisier
than the original acquired image by a factor of �2 after

FIG. 1. a: The pseudo multiple replica method. Image k-space and
the noise prescan data are acquired once (steps 1–3). The noise
covariance matrix is used to scale and correlate unity SD Gaussian
noise for every replica loop (steps 4–7). The reconstructed image is
added to a stack of replicas before repeating the noise-addition
loop (step 8). For self-calibrated techniques, the reconstruction
matrix is calculated from the original data and is used for all replicas.
The stack of replicas is then used to calculate SNR (step 9–10). In
step 11, the multiple replica loop is repeated using an artificial
fully-sized zero k-space to analyze noise from an un-accelerated
acquisition and with an image reconstruction that is simply an FFT
and an optimal complex coil combination. Finally, g-factor is calcu-
lated (step 12). b: The steps involved in forming the SNR and
g-factor for both SENSE and GRAPPA image reconstructions.
Noise SD is found from the standard deviation of the real or imag-
inary parts of the complex pixel values for each pixel location
through the stack of replicas (STEP 2). In STEP 5, the g-factor is
found from the two noise SD maps divided by the square root of the
acceleration factor R.
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addition of the second independent set of pseudo noise
data. The actual image noise, which cannot be removed
from the acquired k-space, remains in every image replica
and appears as part of the “true” image when the image
noise is calculated from the stack of pseudo image repli-
cas. The noise is found from the standard deviation of
either the real or imaginary components of the complex
image pixel values through the stack of replicas because
the linear reconstruction transforms noise in an equivalent
manner in either component of the complex signal. As
many replicas as desired for calculating standard devia-
tion may be formed.

Linearity of an image reconstruction also ensures that
Gaussian distributed white noise in the received NMR
signal is transformed into Gaussian noise in the image
domain. Thus, the standard deviation of image pixel val-
ues takes an intuitive interpretation defining the range in
which the true pixel value may be found, or, equivalently,
the amount by which the pixel value may vary due to
random noise fluctuations alone. Furthermore, linear re-
constructions do not suffer from noise biasing which re-
sults from magnitude operations (7,22).

Scaling and correlation of the noise is determined from
the signal acquired during a “noise prescan” when the
receiver is opened with no RF pulses and no normal MR
signal present, as described by Kellman and McVeigh (7)
(see Fig. 1a). The coils must be loaded as for imaging so
that the noise received is that originating from the object;
and the coil must be in place as for imaging so that the
noise correlations due to coupling of component coils are
correctly measured. The bandwidth of the receiver and the
receiver gains are set as for imaging to ensure the noise is
scaled correctly. Further details of the noise prescan may
be found in Kellman and McVeigh (7).

The noise covariance matrix �ij measuring the noise
level (diagonal elements) and correlation (off-diagonal el-
ements) between coils i and j (where i and j run from 1 to
the number of coils, c) in the coil array may be formed
(7,23) from the measured noise prescan data according to
Equation [10] with the noise records nik of N complex
points sampled at time intervals indexed by k from the ith

component coil.

�ij �
1

2N �
k�1

N

nikn*jk [10]

Scaled and correlated noise records for each channel i of
the phased-array nik

corr are formulated from uncorrelated
Gaussian-distributed white noise nik

G with unity standard
deviation by matrix multiplication with the principal ma-
trix square root of the measured noise covariance matrix
(Eq. [11]) such that the noise covariance matrix is recov-
ered upon multiplication of correlated noise records (Eq.
[12]), given that the principal square root of the noise
covariance matrix is equal to its Hermitian conjugate.

nik
corr � �

j�1

c

�ij
1/2njk

G [11]

1
2N �

k�1

N

nik
corrnjk

corr* �
1

2N �
k�1

N ��
p�1

c

�ip
1/2npk

G �
q�1

c

�jq
1/2*nqk

G *�
�

1
2N �

p�1

c �
q�1

c

�ip
1/2�jq

1/2* �
k�1

N

npk
G nqk

G *

�
1

2N �
p�1

c �
q�1

c

�ip
1/2�jp

1/2*2N�pq � �
p�1

c

�ip
1/2�pj

1/2 � �ij [12]

The matrix square root �ij
1/ 2 is given by the matrix of

eigenvectors Vij and the diagonal matrix of square roots of
eigenvalues Spq

�ij
1/2 � �

p�1

c �
q�1

c

VipSpqVqj
�1 [13]

from the eigen-decomposition of the noise covariance ma-
trix �ij

�ij � �
p�1

c �
q�1

c

VipDpqVqj
�1 [14]

where Dpq is the diagonal matrix of eigenvalues. The prin-
cipal matrix square root is given by taking all positive
square roots of the eigenvalues. For the Hermitian-positive
definite noise covariance matrix, all eigenvalues are real
and positive, and the eigenvectors form a unitary basis, so
that it can be seen that �ij

1/ 2 is equal to its Hermitian
conjugate as required in Equation [12]. The principal ma-
trix square root of the noise covariance matrix was chosen
arbitrarily as the “correlating matrix.” The Cholesky de-
composition of the noise covariance matrix into a lower
triangular matrix Lij and its Hermitian conjugate is an
equivalent choice for the correlating matrix as previously
used by Pruessmann et al. (8). To confirm the freedom of
choice Gaussian noise was correlated with the principal
matrix square root, another of the matrix square roots from
the eigen-decomposition, and the lower triangular matrix
from the Cholesky decomposition. The noise SD of each of
the correlated channels was found to be the same for each
method used. Thus, any appropriate choice of the corre-
lating matrix produces equivalent results when used with
the pseudo multiple replica method.

SNR Maps From the Pseudo Multiple Replica Method

Maps of SNR are formed from the pseudo multiple replica
method by first forming an image noise map. For each
pixel the standard deviation in either the real or imaginary
component of the complex image is found from the stack
of image replicas. The SNR is then given by the magnitude
of the image in the original reconstructed image, that is,
that without additional noise added, divided by the value
of the noise standard deviation for that pixel. We use the
real component of the image because the image is com-
pletely real after reconstruction so as to avoid magnitude-
related noise bias in low-SNR regions. Note that the image
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noise is always correctly measured, without noise bias,
from the complex data. The SNR map will always have
itself the SNR of the acquired image from which the signal
component of SNR is taken whereas the SNR of the image
noise map may be made as high as desired by increasing
the number of pseudo replicas reconstructed and is lim-
ited only by total available computation time.

g-Factor Maps From the Pseudo Multiple Replica Method

g-Factor maps are generally created directly from the re-
construction matrix as specified in Pruessmann et al. (2).
To ensure the general applicability of the pseudo multiple
replica method, a procedure is required for determining
the g-factor that does not require acquisition of a fully
sampled reference image to provide the image noise stan-
dard deviation for an unaccelerated acquisition in the
expression for the g-factor in Equation [5] (where R is the
acceleration factor).

Again taking advantage of the linearity of the reconstruc-
tion, the pseudo multiple replica method is applied to
noise-only data. The unaccelerated image noise may be
found by reconstructing a synthetic noise-only fully sam-
pled k-space (i.e., the data has the full matrix size of the
final image) instead of an acquired unaccelerated “image
k-space”. Repeated reconstruction of multiple replicas of
noise-only k-space data produces a stack of noise-only
image replicas whose pixel noise standard deviation gives
the proper value for an unaccelerated acquisition. Alter-
natively, a direct image-noise calculation for R � 1 may be
used (7).

Care must be taken to find the optimal-SNR image for the
unaccelerated case to correctly define the g-factor. For both
SENSE and GRAPPA techniques, this is given by an FFT,
correctly scaled for unity gain of noise, followed by an
optimal complex coil-combination described by Roemer et
al. (15). The Roemer-optimum image is formed by the
inclusion of the noise covariance matrix into the optimal
coil-combination Ĉ which appears in the GRAPPA matrix-
reconstruction (Eq. [9]) as described in Robson et al. (9).

g-Factor maps are then found from the ratio of the noise
standard deviation maps for an accelerated and an unac-
celerated acquisition (Eq. [5]).

The procedure for measuring the noise covariance ma-
trix and for performing the pseudo multiple replica mea-
surement of the SNR and g-factor is described in Figure 1.

Pseudo Multiple Replica Method With Self-calibrated
Approaches

The pseudo multiple replica technique relies on the image
reconstruction being identical for each replica in order
that fluctuations in the NMR signal are correctly translated
into variance in the image domain. For “externally-cali-
brated” techniques, this condition is met. Conventionally,
SENSE techniques use coil sensitivities obtained from a
separate calibration image and are therefore externally cal-
ibrated. However, GRAPPA techniques are most often self-
calibrating, finding the reconstruction weights from the
acquired k-space itself (i.e. from the Auto-Calibrating-Sig-
nal lines). It is possible to implement an externally cali-
brated GRAPPA-reconstruction by using weights calcu-

lated from a separate equivalent k-space acquisition. In the
case of self-calibrated techniques, it is important to use the
same reconstruction for each replica in the pseudo multi-
ple replica method. For SENSE techniques this requires
the use of the same coil sensitivities for each replica. For
GRAPPA techniques the same transfer matrix (or set of
reconstruction weights) must be used as calculated for
reconstructing the original accelerated image without
pseudo-noise added (rather than using new weights calcu-
lated from synthetic noise-enhanced ACS in each replica).

METHODS

Pre-Scan Noise Measurement and Scaling

The required number of noise samples which must be
taken to correctly measure the noise covariance matrix has
been determined by calculating the SD of Gaussian distrib-
uted random noise records of various lengths N, which
each have unit variance. This was repeated five times each
for different values of N between 64 and 106. The SD of the
five estimates for each N is plotted in Figure 2 showing
that for a measurement of noise SD to be accurate to within
2% N must be greater than approximately 2000 and within
1% greater than approximately 8000 (following a 1/�N
pattern). These values can be achieved by using image
matrices of 64 � 64 and 128 � 128, respectively.

It was confirmed that digitization error was not impor-
tant by observing a Gaussian character in a histogram plot
of both the real and imaginary components of the noise
received in each of the elements of the coil array with no
NMR signal present. Twenty-one bins were used over the
observed range of the noise.

It was assumed throughout that the noise is white in
character, having equal power at all frequencies. Kellman
and McVeigh describe the prescan noise measurement in
greater detail (7).

Experiments

The pseudo multiple replica SNR measurement was vali-
dated with images of the manufacturer’s standard spheri-

FIG. 2. Plot of the standard deviation (closed circles) of repeated
(five) estimates of the noise-SD (open circles) of separate unity-
variance Gaussian-distributed noise data of varying number of sam-
ples. For a single estimate of the noise-SD to have a standard
deviation less than 1% of the true value (here 0.01), the noise data
must comprise greater than approximately 104 samples.
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cal phantom. Pseudo multiple replica SNR and g-factor
measurements were compared with gold-standard actual
multiple replica SNR and g-factor measurements from 128
separately acquired 2D slice images and also compared
with the direct SNR method (7,9). Both SENSE and
GRAPPA methods were investigated for various accelera-
tion factors with undersampling in one dimension.

2D acceleration with variable density k-space traversal
was then investigated in phantoms where it is possible to
validate the pseudo multiple replica method against the
gold standard actual multiple replica method but not
against a direct calculation.

The pseudo multiple replica method was then applied
in vivo after obtaining written informed consent with ap-
proval of our institutional review board. First, in the brain,
1-D acceleration was used allowing the pseudo multiple
replica method to be verified by a direct image-noise cal-
culation, noting that no actual replica method is feasible in
vivo. Finally, a 3D volumetric image of the abdomen was
obtained using 2D acceleration, a variable density k-space
trajectory and self-calibration. A clinical prescription was
chosen which requires parallel imaging acceleration to
acquire data in a single 22-s breath-hold demonstrating the
pseudo multiple replica technique in a case for which no
other method exists for calculating SNR and g-factor.

Pseudo multiple replica calculations used 128 image
replicas throughout. The estimate of SNR and g-factor
becomes increasingly accurate as the number of replicas is
increased, thus the optimal choice of the number of repli-
cas is somewhat arbitrary and depends on the desired
accuracy and total computation time available. Using ap-
proximately 100 replicas gives an adequate accuracy of
	10% according to a 1/�N scaling relationship.

All data were acquired on a 1.5 Tesla (T) Excite-HDx
whole-body scanner, (GE Healthcare, Waukesha, WI) using
an 8-channel head coil array except the abdomen image
which used an 8-channel body array. In the phantom and
the brain images k-space data were acquired fully sampled
and later decimated by removing some acquired phase-
encoded lines from the data set to mimic accelerated ac-
quisitions of various net reduction factors and k-space
sampling patterns. Noise data were acquired from an
equivalent separate single image with the amplitude of RF
pulses set to zero and without changing transceiver set-
tings, giving greater than 4096 data points, which was
sufficient to calculate the noise covariance matrix.

An axial 2D slice of the phantom was acquired using a
fast gradient recalled echo pulse sequence; imaging param-
eters included: matrix size of 64 � 64, field of view of
20 cm, slice thickness of 1 mm, acquisition bandwidth
of 
 15.36 kHz, flip angle of 10°. 128 replicas of the same
slice were acquired consecutively in a single experiment.
k-Space data from the first replica acquisition were used
with the direct SNR method and the pseudo multiple
replica method. The chosen imaging parameters for the
phantom experiment resulted in an image SNR of approx-
imately 40 for a fully sampled image, which is sufficiently
low that noise dominates shot-to-shot variation in the
scanner in the determination of SNR from the actual mul-
tiple replicas (6). For a selection of pixels, pixel intensity
in each replica was plotted against replica number (not

shown) to confirm that no temporal drift was present in the
actual multiple replica data.

An axial 2D slice of the brain was acquired using a
T1-weighted spin-echo pulse sequence; imaging parame-
ters included: matrix size of 256 � 256, field of view of
22 cm, slice thickness of 5 mm, acquisition bandwidth
of 
 15.36 kHz, TR/TE of 500/20 ms.

A coronal 3D volume of the abdomen was acquired with
a T1-weighted fast gradient recalled echo pulse sequence;
imaging parameters included: in-plane matrix size of
200 � 200, with 80 3-mm slices, field of view of 36 cm,
frequency-encode direction superior-inferior, acquisition
bandwidth of 
 62.5 kHz, TR/TE of 3.9/1.7 ms, and flip
angle 15°.

In-house implementations of an iterative conjugate-gra-
dient generalized SENSE image reconstruction and a com-
plex-combined GRAPPA method with conventional con-
volution-like k-space reconstruction (9) were used for the
multiple replica images. In-house implementations were
also used for the direct matrix-inverse generalized SENSE
reconstruction and the direct complex-GRAPPA matrix-
reconstruction (9). All image reconstruction and image
replica analysis was performed using Matlab (The Math-
Works, Natick, MA) and run on a standard PC with a
Pentium IV 2.8 GHz CPU and 512 MB of RAM. The com-
putation time required to generate SNR and g-factor maps
is dominated by the reconstruction of the accelerated im-
age replicas (the generation of pseudo noise, the formation
of unaccelerated image replicas, and finding the final im-
age noise standard deviation are all relatively rapid). Com-
putation times varied according to the size of the image
matrices being handled and reconstruction type; they were
generally rather long, ranging from a few minutes for 128
conventional GRAPPA replicas with a matrix size of 64 �
64 to approximately 24 hr for 128 replicas of a CG-gener-
alized SENSE reconstruction with a matrix size of 200 �
200 � 80. However, the Matlab code used in this work had
not been optimized for speed, and significant reductions in
computation time are likely to be possible.

g-Factor maps for the gold-standard actual multiple rep-
lica method (in the phantom) were formed by dividing the
image-noise SD-maps calculated from the stack of actual
accelerated image replicas by the image-noise SD-map cal-
culated from the stack of actual optimal-SNR unacceler-
ated image replicas. It was confirmed that the image-noise
SD-map calculated from the unaccelerated actual multiple
replicas and the SD-map calculated using “pseudo fully
sampled” noise and the pseudo multiple replica method
were equivalent (not shown). Unaccelerated image-noise
maps for the pseudo replica method used “pseudo fully
sampled” noise throughout.

In all cases, for both SENSE and GRAPPA methods coil
sensitivities were calculated from the fully sampled center
of k-space which is filtered by a Kaiser-Bessel window
with � � 2. In all cases except in the phantom for an outer
reduction factor of 3 the undersampled k-space had a
variable density sampling pattern.

RESULTS

Figure 3 shows the SNR-scaled images (intensity � units
of SNR) and g-factor maps for the 2D slice through the
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phantom reconstructed using a SENSE image reconstruc-
tion. Measurements have been made using three methods:
(i) actual multiple replica method, (ii) pseudo multiple
replica method, and (iii) direct SNR method. SNR maps
are shown for: (a) fully sampled image, (b) threefold regu-
larly undersampled, and (c) variable-density undersam-
pling with an outer reduction factor (ORF) of 4 and dense
fully sampled center of 16 lines giving total acceleration
factor R � 2.3. Difference maps between the pseudo mul-
tiple replica measurement and gold standard methods are
shown for both SNR and g-factor maps. Difference maps
are normalized to the gold-standard measurement. Figure
4 shows equivalent images using a GRAPPA image recon-
struction. Interestingly, in the g-factor maps for the
GRAPPA image reconstruction shown in Figure 4 there are

localized regions in which the g-factor is less than one.
This is a surprising feature which is discussed further
below.

There is excellent agreement between the SNR and g-
factor maps calculated with all methods and for all accel-
erations both in spatial distribution and in the overall
scaling of SNR and g-factor values. The difference maps
show there is no residual differential structure in the SNR
or g-factor maps between methods. Computations of the
mean value in the difference maps inside a mask of the
phantom show that systematic error in the SNR and g-
factor maps from the pseudo multiple replica method are
always within 2% of the gold standard measurement.
These small global errors are likely due to small inaccu-
racy in the measurement of the noise covariance matrix

FIG. 3. SNR-scaled images and g-
factor maps (three leftmost col-
umns, SNR top, g-factor bottom)
for various acceleration factors
(ORF shown at left) using general-
ized SENSE reconstruction. There
is excellent agreement between all
methods: (i) actual multiple replica,
(ii) pseudo multiple replica, and (iii)
direct calculation. Iterative CG re-
construction is used for the multi-
ple replica methods and matrix-in-
version for the direct SNR method.
Difference maps (two rightmost
columns) for each acceleration be-
tween methods show negligible re-
sidual structure between all meth-
ods. (Phase-encoding/acceleration
direction is left–right.)
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when comparing to actual multiple replica noise, or due to
some small scaling difference that exists between the di-
rect image reconstructions and the reconstruction methods
used for the multiple replica measurements.

As discussed by Kellman and McVeigh (7) the noise in
the direct SNR method is determined from more samples
(64 � 64) of the noise in the noise covariance matrix than
the number of replica images (128); therefore, the SNR and
g-factor maps for the multiple replica methods appear
noisier than those from the direct SNR method. The light
bands at the edges of the FOV evident in the gold-standard
multiple replica difference maps in Figures 3 and 4 are a
consequence of a sharp roll-off to the top-hat frequency
response of the digital receiver which is not replicated in
the pseudo noise; this does not affect the noise in the
bandwidth including the image.

Figure 5 shows SNR and g-factor maps for both a
SENSE and a GRAPPA image reconstruction method.
Data were undersampled with an ORF of 2 in two-
dimensions and included a dense center of k-space of 8
lines in both dimensions giving a total reduction factor
R � 3.1. Excellent agreement is observed between the
pseudo multiple replica method and the gold standard
actual multiple replica method. Mean values of the dif-
ference maps within the mask of the phantom show
systematic differences in the SNR and g-factor maps
between the pseudo and actual multiple replica meth-
ods of less than 2%. It is interesting to note that despite
being applied to exactly the same data, the SENSE and
GRAPPA reconstructions give very different patterns of
SNR and g-factor, as also observed by Thunberg and
Zetterberg (13).

FIG. 4. SNR-scaled images and g-
factor maps (three leftmost col-
umns, SNR top, g-factor bottom)
for various acceleration factors
(ORF shown at left) using GRAPPA
reconstruction. There is excellent
agreement between all methods: (i)
actual multiple replica (ii) pseudo
multiple replica, and (iii) direct cal-
culation. Conventional convolu-
tion-like reconstruction is used for
the multiple replica methods and
matrix-inversion for the direct SNR
method; both use SNR-optimal
complex coil-combination. Differ-
ence maps (two rightmost col-
umns) for each acceleration be-
tween methods show negligible
residual structure between all
methods. (Phase-encoding/accel-
eration direction is left–right.)
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Figure 6 shows SNR and g-factor maps for the axial 2D
brain image reconstructed using a SENSE and a GRAPPA
technique undersampled with an ORF of 4 and including
a dense fully sampled center of 32 lines giving a total
acceleration R � 2.9. The SNR-scaled images and g-factor
maps calculated using the pseudo multiple replica method
are compared with those calculated using the direct SNR
method and show excellent agreement (note that actual
multiple replica measurement is not feasible due to subject
motion limitations). Mean values of the difference maps
within the mask of the brain show systematic differences
in the SNR and g-factor maps between the pseudo multiple
replica and direct SNR methods of less than 1%. The
g-factor maps in the brain are familiar from those in the
phantom where the overall geometry and the coil sensitiv-
ity distributions are similar.

Figure 7 shows SNR and g-factor maps for a coronal and
axial-reformatted slice from the 3D volumetric image of
the abdomen. Acquired data was undersampled with an
ORF of 2 in both phase-encoded directions with a densely

sampled center of 20 lines in each direction and a total
acceleration factor R � 2.63. Image reconstruction used a
generalized SENSE approach. No direct calculation of SNR
and g-factor is computationally feasible with this k-space
trajectory, because the reconstruction matrix was approx-
imately 6 Gb (for a matrix size of 200 � 80 being under-
sampled by R � 2.63 and with 8 coils, see “Limitations of
Conventional Noise Analysis” in the “Introduction” sec-
tion); nor is an actual multiple replica method feasible in
vivo.

DISCUSSION

g-Factor Less Than Unity for GRAPPA

It was noted in the Results section that a g-factor less than
1 is found when using a GRAPPA reconstruction. It is well
established that a g-factor less than one is not possible for
SENSE reconstructions that use a matrix inverse of the
entire under-sampled k-space data (2). Any image recon-

FIG. 5. SNR-scaled images and
g-factor maps (SNR middle-top,
g-factor middle-bottom) for 2D
accelerated generalized SENSE
and GRAPPA image reconstruc-
tions. A fully sampled and accel-
erated image is shown (top-left/
top-right for each reconstruction
method); an ORF of 2 in both di-
mensions was used with a dense
center of 8 lines in each dimen-
sion giving R � 3.1 for the full
matrix size of 64 � 64. CG-Gener-
alized SENSE and convolution-like
GRAPPA with complex-combina-
tion reconstructions were used.
There is excellent agreement be-
tween pseudo multiple replica and
actual multiple replica methods.
Difference maps (bottom) between
methods show negligible residual
structure.
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struction (including modifications to SENSE techniques)
may include explicitly some degree of numerical regular-
ization to improve the apparent SNR and in such cases a
g-factor less than unity may be found (24). We infer from
the observation of g 
 1 that our implementation of the
GRAPPA technique includes some implicit conditioning
of the noise. This has been observed and discussed in
Robson et al. (9). The agreement of a direct calculation of
g-factor and an actual multiple replica method indicates
that this observation of g 
 1 is a genuine finding. Such
inherent conditioning is likely to stem from calculation of
the weighting factors for fitting missing lines in k-space on
a least-squares basis. Indeed, in the related SMASH recon-
struction technique (1), the fitting process is explicitly
approximate.

Pseudo Multiple Replica

The pseudo multiple replica method has been shown to be
an accurate method of quantifying the image noise for both

SENSE and GRAPPA techniques when compared with
direct calculation of image noise and g-factor from the
image noise matrices and to the gold-standard actual mul-
tiple replica values. Validation of the pseudo multiple
replica method has been further demonstrated against the
gold-standard actual replica method for a variable-density
2D-accelerated parallel imaging acquisition for which it is
not feasible to calculate image noise directly due to the
extremely large reconstruction matrix required for the di-
rect calculation of image noise. While computation time
for the pseudo multiple replica method is also long it
requires repetitions of smaller computations and is there-
fore a preferred approach when direct approaches become
unfeasible. The method has been used to produce maps of
g-factor without requiring acquisition of an unaccelerated
image permitting the method to be used in vivo when the
need to acquire a lengthy unaccelerated image would be
prohibitive (e.g., for volumetric image acquisition). Gener-
ation of g-factor maps in addition to SNR maps is benefi-

FIG. 6. SNR-scaled images and g-
factor maps (SNR middle-top, g-
factor middle-bottom) in vivo for
generalized SENSE and GRAPPA
image reconstructions. A fully sam-
pled and accelerated image is
shown (top-left/top-right for each
reconstruction method); an ORF of
4 was used with a dense center of
32 lines giving R � 2.9 for the full
matrix size of 256 � 256. CG-Gen-
eralized SENSE and convolution-
like GRAPPA with complex-combi-
nation reconstructions were used
with the pseudo multiple replica
method; matrix-inverse generalized
SENSE and full matrix GRAPPA
image reconstruction was used for
the direct method. There is excel-
lent agreement between pseudo
multiple replica and direct calcula-
tion methods. Difference maps
(bottom) between methods show
negligible residual structure.
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cial for assessing noise amplification because SNR maps
include spatial variations due to the magnetization density
as well as noise amplification. Furthermore, SNR maps
include artifacts from the image reconstruction which
should not be confused with localized regions of noise
amplification. Additionally, the pseudo multiple replica
technique is immune to the influence of instrumental drift
and is, therefore, likely to out-perform acquisition of ac-
tual multiple replicas (4,5,21).

The noise prescan is both rapid and simple. For a typical
receiver bandwidth of 60 kHz, the noise pre-scan could
take as little as one sixth of a second given 104 samples
required to measure the noise standard deviation to within
1%. Data acquisition simply requires opening the receiver
without RF excitation, which easily may be incorporated
into any imaging pulse sequence program.

In this work, we have made possible the comparison
between the noise characteristics of different image recon-
struction methods. In our implementations, it is apparent
that GRAPPA techniques intrinsically control noise to a
greater extent than SENSE techniques and demonstrate a
more diffuse spatial variation of image noise as seen in
their g-factor maps (13). In future studies, the pseudo
multiple replica method will allow comprehensive, quan-
titative comparison between reconstruction techniques for
which direct image noise calculations may not be available
or may be computationally intractable. For example, in
Figure 3, it is interesting to note that a lower total accel-
eration of R � 2.3 displays higher g-factor values and
lower SNR due to the variable density of its k-space tra-
jectory with ORF of 4 when compared with equivalent
values for the regularly undersampled threefold accelera-
tion; similar investigation of variable density trajectories
where direct calculation of image noise is not computa-
tionally feasible will be possible.

Furthermore, because the pseudo replica method brack-
ets the entire image acquisition and reconstruction process
inserting random noise at the beginning and computing
image noise in the final step, it is possible with this
method to analyze the effect of image processing steps, for
example, an explicit noise conditioning step, or the stop-
ping condition chosen in iterative approaches.

Computation time is the principal drawback to the
pseudo multiple replica method which may preclude rou-
tine implementation of SNR analysis. The lengthy image
postprocessing time may be drastically reduced by imple-
menting the analysis with optimized C-programs run on a
faster dedicated computer. Furthermore, reconstruction of
separate image replicas may be trivially parallelized on
cluster or multi-core architectures. However, an important
application of the SNR and g-factor analysis proposed here
will be in developing new parallel imaging techniques and
designing clinical imaging protocols—cases in which
computation time may not be a primary constraint.

CONCLUSION

The pseudo multiple replica image noise measurement
outlined here is a simple, robust and accurate method for
the quantification of SNR and g-factor for all parallel im-
aging techniques which use a linear image reconstruction
algorithm, encompassing the majority of clinical parallel
imaging applications. This allows noise analysis for recon-
structions that do not permit direct calculation of image
noise. This approach will provide a useful tool for objec-
tive comparison between the in vivo-performance of par-
allel imaging methods being universally applicable with
any signal acquisition schemes, k-space sampling schemes
or trajectories, image reconstruction methods, image pro-
cessing, or regularization techniques, hopefully guiding

FIG. 7. SNR and g-factor maps
calculated using the pseudo mul-
tiple replica method for slices
from a 3D volumetric image ac-
quired in vivo in a 22-s breath-
hold. A CG-generalized SENSE
image reconstruction of data un-
dersampled in two dimensions
with ORF 2 � 2, a dense center of
20 � 20 lines and total accelera-
tion R � 2.63 was used. The gray-
scale maximum of 30/40 for SNR
maps corresponds to coronal/ax-
ial orientations, respectively.
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choices as to which parallel imaging approaches are most
appropriate for different clinical applications.
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