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In recent years, some substantial advances in understanding human (and nonhuman) brain organization have
emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated pat-
terns in spontaneous activity, in the ‘‘resting’’ brain. Most commonly, spontaneous neural activity is
measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called ‘‘resting
state.’’ This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodolog-
ical issues active in the field, and some ways in which resting-state fMRI has been used to delineate aspects
of area-level and supra-areal brain organization.
Introduction
A rapidly expanding approach to understanding neural organiza-

tion is to observe spontaneous neural activity, and particularly

the spatial and temporal patterns of this activity, in living animals.

Spontaneous activity can be assayed using many techniques,

ranging from single-unit recordings to electroencephalography

(EEG) to calcium imaging, each with particular spatial and

temporal resolution and tradeoffs. In humans, most studies of

spontaneous activity utilize fMRI, a noninvasive technique that

typically permits a whole-brain image every few seconds with

a spatial resolution of a few millimeters. fMRI measures neural

activity via the following mechanism: neural activity increases

local blood flow, which changes the ratio of oxy- to deoxyhemo-

globin, which alters the magnetic properties of tissue in ways

that are detectable withMRI (the blood-oxygen-level-dependent

[BOLD] signal). Thus, the principal technique used to measure

human spontaneous brain activity does so indirectly, via meta-

bolic and hemodynamic processes elicited by neural activity

(see Logothetis, 2008 for review).

The study of spontaneous fMRI signal represents a paradigm

shift in human neuroimaging. In the first years of fMRI research,

nearly all studies involved some behavioral manipulation, and

any signal fluctuations unrelated to the manipulation were

removed (as far as possible) by complex analyses. Understand-

ably, many investigators suspected that the signal in task-free

periods was driven largely by noise (and unconstrained, under-

specified neural activity) and that there was little to be gained

by studying such data. A publication by Biswal and colleagues

in 1995 changed this perspective by demonstrating that fluctua-

tions in the fMRI signal, in the absence of a task, were highly and

specifically correlated among functionally related brain regions.

In particular, the samebrain regions thatwere active during finger

tapping also displayed coherent low-frequency spontaneous
fMRI signal when the subject was asked to lie quietly in the scan-

ner for several minutes (Figure 1A) (Biswal et al., 1995). Over the

next 8 years, a handful of publications extended this line of in-

quiry, demonstrating that the correlated fluctuations were most

prominent at low frequencies (<0.08 Hz), that they were unlikely

to be explained as artifactual byproducts of motion, cardiac, or

respiratory factors, and that spontaneous low-frequency fMRI

signal was highly and specifically correlated at rest among audi-

tory processing regions, visual processing regions, and other

brain regions (Cordes et al., 2000; Hampson et al., 2002; Lowe

et al., 1998; Stein et al., 2000; Xiong et al., 1999).

These initial studies were met with caution or indifference by

many neuroscientists. Widespread interest was generated, how-

ever, by a report in 2003 that regions of the default mode network

displayed correlated spontaneous fMRI signal (Figure 1B) (Grei-

cius et al., 2003). The default mode network consists of several

brain regions that were first reported in meta-analyses of posi-

tron emission tomography (PET) and then fMRI data for their puz-

zling but highly reproducible tendency to deactivate during task

performance (Mazoyer et al., 2001; Raichle et al., 2001; Shulman

et al., 1997). Unlike motor, visual, or auditory cortex, the default

mode network involved large swathes of ‘‘association cortex’’

and was thought to subserve ‘‘higher-order,’’ ‘‘cognitive’’ opera-

tions such as introspection or autobiographical memory (see

Buckner et al., 2008 for review). Shortly after the report by Grei-

cius and colleagues, more publications emerged detailing high

and specific correlations within other ‘‘cognitive’’ systems (that

were also first defined by task-evoked activity in PET and fMRI

studies), such as attention systems (Fox et al., 2006a; Laufs

et al., 2003) and executive systems (Dosenbach et al., 2007;

Seeley et al., 2007).

Resting-state analyses also began to reveal unanticipated as-

pects of brain organization. For example, studies of interactions
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Figure 1. Spatial Correspondence between Task-Evoked Activity
Patterns and Patterns in Spontaneous fMRI Signal Correlations
(A) Modeled BOLD activity during finger tapping and a seed correlation map
with location (a) as the seed.
(B) Locations in a PET meta-analysis where deactivations are seen across
tasks and a seed correlation map with the posterior cingulate as the seed.
Images modified from Biswal et al. (1995), Shulman et al. (1997), and Greicius
et al. (2003).
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among systems revealed that low-frequency fMRI signal in

the default mode network was negatively correlated with

low-frequency fMRI signal in attention and executive systems

(Fox et al., 2005; Fransson, 2005). It was already known that

default regions deactivated during most tasks and that attention

and executive regions activated during most tasks, but it was

not known that in the absence of tasks these regions also dis-

played anticorrelated signals. Thus, resting-state fMRI data

suggested that certain portions of the brain might be organized

into anticorrelated networks, perhaps operating in ongoing

competition. The functional characterizations of these net-

works—default mode regions supporting ‘‘internally oriented’’

processes, attention/executive regions supporting ‘‘externally

oriented’’ processes—fueled such speculation. In this manner,

by reproducing and then extending features of brain organiza-

tion that were salient to cognitive neuroscientists, the study of

spontaneous fMRI signal began to attract a much broader

following.

In the decade since these landmark studies, the pace of

research in the field of ‘‘functional connectivity MRI’’ (referring

to correlated fMRI signal, also called ‘‘intrinsic’’ or ‘‘resting-

state’’ connectivity when the signal is acquired in the resting

state) has steadily accelerated. The field now encompasses

studies of correlated fMRI signal at rest, in sleep, under anes-

thesia, during tasks, and in animal models including macaques,

marmosets, mice, rats, and pigeons. Substantial clinical and

lifespan literatures exist.
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The purpose of this Primer is to introduce the technique of

functional connectivity MRI to a nonspecialist audience. In

many neuroscientific fields, experimental design is of primary

importance and data analysis techniques may be relatively

well-established and uncontroversial. In functional connectivity

MRI, the situation is nearly reversed: there is relatively little

experimental design to discuss (at least within the scope of

this Primer), but the data can be analyzed in a huge variety of

ways to investigate different questions. This Primer will first

outline some basics of resting-state data sets and analysis and

then build to some of the more advanced techniques currently

practiced in the field. The presentation of these methods will

illustrate how functional connectivity MRI has augmented our

understanding of brain organization. Because this article is a

Primer, it is aimed at introducing techniques and concepts of

analysis, not at comprehensively surveying the field. The focus

will be on the healthy, adult, human brain; clinical, lifespan, and

nonhuman findings are mentioned only insofar as they advance

the issues at hand. A deeper discussion is favored over a broader

discussion at several points of the article. Certain emerging

topics, such as dynamics in the resting state, are not discussed.

For further information the reader is referred to Raichle (2010) for

a historical and metabolic perspective; Deco et al. (2011) and

Hutchison et al. (2013) for dynamical perspectives; Bullmore

and Sporns (2012) and Sporns (2014) for network perspectives;

Murphy et al. (2013) for a methods perspective; Lee et al. (2013)

for a clinical perspective; and Buckner et al. (2013) and Crad-

dock et al. (2013) for general perspectives.

Obtaining Correlates of Spontaneous Neural Activity
with fMRI
The Basics of a Resting-State Data Set

A resting-state data set is typically acquired by asking a subject

to lie quietly in an fMRI scanner for 5 or more minutes. Many

groups ask the subject to fixate a cross-hair, but other groups

do not pose this requirement. Some groups ask the subject to

lie with the eyes closed. fMRI signal correlations from these

conditions are largely comparable but differences can be de-

tected (Patriat et al., 2013; Van Dijk et al., 2010). The minimal re-

quirements of a resting-state study make it easy to scan a wide

variety of populations, but the cost is subject boredom and a

possibility that the subject may fall asleep. Indeed, a recent

analysis of publicly available data sets indicates that substantial

portions of eyes-closed subjects fall asleep, that fewer eyes-

open subjects fall asleep, and that fixating subjects rarely fall

asleep (Tagliazucchi and Laufs, 2014). Since sleep entails

changed patterns of neural activity, well-characterized by

EEG, that are probably also detectable in resting-state fMRI

data (see Picchioni et al., 2013 for review), it is important to

avoid inadvertently including sleep-related state changes in

data. In eyes-open and fixation scans, it may be adequate sim-

ply to watch subjects to ensure that the eyes remain open. If

eyes-closed scans are used, periodic verbal interactions (which

complicate the ‘‘resting’’ state) or other external measures of

sleep state such as heart rate variability or EEG may be useful.

The issue of inadvertent sleep has only recently gained promi-

nence, and the field has not yet developed consensus on how

to deal with this issue.
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Figure 2. Large-Scale Correlation Patterns in Resting-State fMRI Data
Data are shown from three reports on the spatial patterns of correlated BOLD signal: a ten-component ICA analysis, a surface-based analysis of surface vertex
clustering, and a volume-based analysis of voxel-wise clustering. Images modified from Smith et al. (2009), Yeo et al. (2011), and Power et al. (2011).
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An fMRI data set consists of a series of 3D images (also called

volumes or frames), where each image is composed of tens to

hundreds of thousands of voxels (volumetric pixels). A certain

amount of time is required to acquire signal from a voxel, mean-

ing that temporal resolution is in tension with both spatial resolu-

tion (voxel size) and image size (i.e., whether the image covers

the entire brain or only part of the brain). In principle, voxel sizes

can be submillimeter, and temporal resolution can be subsec-

ond. Smaller voxels better separate tissue types and even layers

of cortex but have smaller signal-to-noise ratios. Increased tem-

poral resolution aids statistical power, but the information gained

by increased sampling rates is fundamentally limited by the fact

that fMRI measures a slow hemodynamic response. In recent

years, a typical data set might consist of whole-brain images

with voxel sizes of �2–4 mm and intervals between images of

�2 s. Recently developed acceleration techniques permit more

rapid image acquisition (whole-brain images every few hundred

ms), which can then be traded for increased spatial resolution or

image size (see Feinberg and Yacoub, 2012 for review).

Voxel size (and any explicit blurring in addition to the blurring

inherent in data realignment and resampling) governs the ability

to detect particular aspects of brain organization. For example,

larger voxels (e.g., 4 mm) can simultaneously sample tissue on

opposing banks of a sulcus or tissue in the occipital lobe and

the cerebellum (such phenomena are called partial volume
effects). Activity that is shared across conditions in a larger voxel,

when reexamined at a higher resolution, may turn out to reflect

blurring across separate (and separable) neural populations

(Beauchamp et al., 2004). Fine-scale organization in V1 such

as ocular dominance columns (Menon et al., 1997) or orientation

hypercolumns are resolvable by fMRI (Yacoub et al., 2008) but

will not be detected with the ‘‘typical’’ data sets of recent years.

Two types of limitations of these fMRI images should be

mentioned. The first type of limitation is that, for practical pur-

poses, most fMRI data sets have incomplete images of the brain.

Due to the proximity of sinuses (air pockets) in the cranium, fMRI

signal dropout occurs in the inferior temporal, orbitofrontal, and

lateral midtemporal cortex. Most resting-state data sets have

poor signal quality in those regions. For example, in the images

at the top of Figure 2, the underlying brain template is the

average fMRI signal across subjects, and the dropout of orbito-

frontal and lateral temporal signal intensity is visible in certain sli-

ces. Specific scanning procedures can reduce signal dropout in

such regions. In addition to signal dropout, and for the same un-

derlying reasons, geometric image distortion can occur in these

same regions. Image distortion can be largely corrected using

techniques such as field maps (which measure distortion).

The second type of limitation is that fMRI signal (technically,

T2*-weighted signal, which is MRI signal optimized to detect

BOLD changes) reflects many factors, only some of which relate
Neuron 84, November 19, 2014 ª2014 Elsevier Inc. 683
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to neural activity. First, the signal reflects neurally driven changes

in oxy- to deoxyhemoglobin ratios, which is the BOLD signal of

interest. But the depth and rate of respiration also influence

oxy- to deoxyhemoglobin ratios, modulating BOLD signal in non-

neural ways (Birn et al., 2006; Wise et al., 2004). Head motion,

present in virtually all scans, can produce large signal disruptions

that can take many seconds to resolve (Friston et al., 1996; Po-

wer et al., 2014; Satterthwaite et al., 2013). Cardiac and respira-

tory cycles can also modulate signal via several mechanisms. A

fuller accounting of the various sources of artifact is beyond the

scope of this Primer (see Murphy et al., 2013), but the magnitude

of the problem is captured by the following statistic: in Human

Connectome Project data, which are high quality and undergo

an advanced denoising procedure, of the roughly 200 signals

identified per subject, only �23 on average are considered to

reflect neural activity, constituting �4% of the variance (Marcus

et al., 2013).

Isolating Neural Signal from Artifactual Signal

Accurate estimation of neurally driven covariance in resting-

state fMRI signals thus depends on removal of artifactual influ-

ences on the signals. Several major denoising approaches are

mentioned here. Some investigators obtain relevant physiologic

recordings during resting-state scans, such as cardiac rate,

respiratory-belt traces, or end-tidal pCO2 recordings, and use

regression models to reduce physiology-related variance in the

data set (Birn et al., 2008; Chang and Glover, 2009b; Glover

et al., 2000). Nearly all investigators regress motion estimates

fromdata sets, and somewithholdmotion-contaminated images

from analysis (Lemieux et al., 2007; Power et al., 2014). Some in-

vestigators regress signals found in white matter or the ventri-

cles, which are presumably not of interest, from the gray matter

voxels (Behzadi et al., 2007; Jo et al., 2010;Weissenbacher et al.,

2009). Still other investigators regress the average signal from

the whole brain from the data set (global signal regression)

(Fox et al., 2009). Another technique is to apply independent

component analysis (ICA) to the entire data set to derive a subset

of signals, classify them as signals of interest and signals of

noninterest, and then remove the uninteresting signals (Beck-

mann et al., 2005; Griffanti et al., 2014; van de Ven et al., 2004)

(a version of this process was used to derive the �200 signals

in Human Connectome Project data mentioned above). Some

techniques, such as multiecho scanning, leverage the physical

principles underlying the fMRI signal to help distinguish BOLD

signal (neural- and pCO2-related signal) from non-BOLD signal

(Bright and Murphy, 2013; Kundu et al., 2013). Other methods

exist or are emerging in the rapidly evolving resting-state denois-

ing literature.

The level of technical detail just given about denoising may be

unusual for a general introduction to functional connectivity MRI.

However, to understand the field, it is important to know that a

wide variety of denoising techniques are used and that these

techniques are not equally efficacious (that is, the choice of

denoising techniques is not trivial and can have substantial ef-

fects on findings). Two examples, both active issues in the field,

should illustrate why denoising methodology deserves close

attention.

The first example relates to the anticorrelations between the

default mode and attention networks mentioned previously, first
684 Neuron 84, November 19, 2014 ª2014 Elsevier Inc.
highlighted in two functional connectivity MRI studies that used

global signal regression (Fox et al., 2005; Fransson, 2005).

Beginning in 2009, several groups reported that they could

not detect anticorrelations between these networks under their

preferred processing strategy and/or without global signal

regression (Anderson et al., 2011; Hampson et al., 2010; Jo

et al., 2010; Murphy et al., 2009; Weissenbacher et al., 2009).

On conceptual grounds, two groups raised the possibility that

the anticorrelations were a byproduct of global signal regression

rather than a true neurobiological phenomenon (Murphy et al.,

2009; Weissenbacher et al., 2009). Subsequently, the anticorre-

lations have been found in several functional connectivity MRI

studies that address the criticisms made against the original pa-

pers (Carbonell et al., 2011, 2014; Chai et al., 2012; Chang and

Glover, 2009a; Fox et al., 2009; He and Liu, 2012; Keller et al.,

2013; Marx et al., 2013; Power et al., 2014). And, importantly,

the anticorrelations have also been detected with electrophysio-

logic techniques (Keller et al., 2013). One possibility for the lack

of anticorrelations in some fMRI studies is that the data con-

tained artifactual signals that spuriously increased covariance

to the point where no negative correlations remained. Consistent

with this possibility, unremoved physiologic artifact is sufficient

to mask the presence of anticorrelations (Chang and Glover,

2009a), and anticorrelations are stronger in lower-motion sub-

jects compared to higher-motion subjects (in whom the anticor-

relations are almost absent) (Power et al., 2014). Thus, the extent

of artifact in a data set, and the extent of artifact removal, influ-

ences the ability to detect anticorrelations in resting-state fMRI.

The second example concerns a set of motion-related findings

that impact all resting-state studies but that will be illustrated

with the developmental literature. In the mid-2000s, several

groups, including ourselves, began to report that short-distance

functional connectivity MRI correlations were strong in children

and tended to weaken over development, while long-distance

correlations were weak in children and tended to strengthen

over development (Fair et al., 2007, 2009; Kelly et al., 2009; Su-

pekar et al., 2009). In 2011, we and two other groups reported a

previously unrecognized aspect of motion artifact, which is that

spurious motion-related variance tends to be more similar at

nearby voxels than at distant voxels (Power et al., 2012; Sat-

terthwaite et al., 2012; Van Dijk et al., 2012). These studies

demonstrated that even relatively small amounts of motion

cause these effects and that several common denoising tech-

niques did not adequately remove motion-related variance.

These studies indicated that, all other things being equal, a

higher-motion group will have higher short-distance correlations

than a lower-motion group (and, depending on the denoising

strategy employed, the higher-motion group can also have lower

long-distance correlations). It is widely known that children tend

to move more than young adults, raising the possibility that

the previously described developmental effects were at least

partially due to motion. Indeed, several studies with improved

removal of motion-related variance now find much smaller

developmental effects (Power et al., 2012; Satterthwaite et al.,

2012, 2013). Increased scrutiny of motion artifact in resting-state

fMRI is also causing reappraisal of previously reported aging and

clinical effects (e.g., Tyszka et al., 2014; VanDijk et al., 2012). The

literature on techniques to identify and remove motion artifact is
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currently one of the most rapidly evolving fronts of functional

connectivity MRI (e.g., Bright and Murphy, 2013; Kundu et al.,

2013; Power et al., 2014; Yan et al., 2013), and multiple methods

now exist that have evidence for removingmuch or nearly all mo-

tion artifact from resting-state data sets. The problems caused

by small movements are unfortunately not limited to functional

connectivity MRI: previously unrecognized effects of small

movements, capable of causing spurious group differences,

have recently been reported in the structural connectivity MRI

literature (e.g., Koldewyn et al., 2014; Yendiki et al., 2013).

As these examples show, denoising is a critical issue in

resting-state MRI studies. Inadequate removal of artifact can

fundamentally change the conclusions one draws from a data

set. In the remainder of this Primer, we will mainly focus on

studies of healthy young adults, who generally move little. Here-

after, when we speak of denoised fMRI signal, it should be un-

derstood that we are ideally speaking of neurally driven BOLD

signal, though perfect isolation of such signal from other signals

does not occur in practice.

Measuring Brain Relationships via Spontaneous
BOLD Signal
Common Analysis Techniques

After a data set has undergone preliminary processing and

denoising, a wide variety of analyses can occur, including ana-

lyses of signal similarity, frequency content, dynamics, and

causal influences among signals. This Primer is mainly con-

cerned with ‘‘functional connectivity,’’ or the observed statistical

dependencies between signals, such as those measured by a

correlation. ‘‘Effective connectivity’’ concerns models of causal

influences consistent with the observed functional connectivity

and is discussed later in the Primer.

The simplest measure of signal similarity is the Pearson corre-

lation coefficient (hereafter, unless specified, ‘‘correlation’’ refers

to Pearson correlation), which measures the linear dependence

between two signals. For example, one voxel’s signal can be

correlated with another voxel’s signal tomeasure a pairwise rela-

tionship. Similarly, the signal averaged across some group of

voxels (a region of interest [ROI]) can be correlated with the

signal in another group of voxels. Commonly, a ‘‘seed’’ voxel

signal or ‘‘seed’’ ROI signal is correlated with the signal at every

other voxel to map out pairwise relationships throughout the

entire brain. These correlations are often represented as a heat

map (a ‘‘seed correlation map’’) superimposed on a high-resolu-

tion brain image; weaker correlations are often not shown. The

images in Figure 1 follow this convention, using a seed in motor

cortex in Figure 1A and a seed in the posterior cingulate in

Figure 1B. When many seeds (voxels or ROIs) are studied simul-

taneously, a common technique is to measure all pairwise corre-

lations and to represent these correlations in a seed-by-seed

matrix. This matrix defines a network—the set of pairwise rela-

tionships between a set of nodes—and can be used for several

types of analysis, including methods derived from network sci-

ence, such as graph theoretic analyses (discussed later).

Another common technique for measuring signal similarity

involves independent component analysis (ICA), already

mentioned as a tool for denoising. ICA is a matrix decomposition

technique, which, given a set of voxel signals, will attempt to
determine a subset of maximally spatially independent signals

that can be linearly combined to form the original signals. An

intuitive analogy is to imagine a cocktail party, where, at any

given location in the room, the sound heard (the actual signal)

comprises several voices (the neural sources) and perhaps mu-

sic or street noise (artifactual sources). ICA aims to separate

these various sources into components starting from the actual

signal. In functional connectivity studies, once the components

are determined, the spatial locations of the signal can be repre-

sented as maps, similar in principle to the seed maps, showing

the correlations of voxel signals with the signal of a particular

component.

The seed correlation and ICA methods represent distinct but

related approaches to analyzing functional connectivity data.

Hundreds of thousands of neurons are represented in a voxel,

and these neurons participate in multiple processes at a variety

of spatial scales and frequencies, some of which have low-fre-

quency representations in the BOLD signal. A seed map repre-

sents all of these processes at once, whereas ICA attempts to

separate these processes into components. It is important to

note that the accuracy of a seed correlation depends upon the

success of prior denoising and correct placement of the seed,

while the accuracy of an ICA component depends upon suc-

cessfully separating artifactual variance from neurally driven

BOLD variance in the components and also upon choosing a

proper number of components to model relative to the number

of signals that actually exist (the number of components gener-

ated by ICA must be prespecified but can be optimized using

cost functions). Additionally, note that we have described only

one (common) way in which ICA is applied to resting-state

data; other possibilities are reviewed in Beckmann (2012).

On the Meaning of Resting-State BOLD Signal Similarity

The reader has seen some of the findings that stimulated interest

in functional connectivity MRI and the basics of resting-state

data sets and analysis (e.g., Figure 1). Before turning to some

of the more recent applications of resting-state fMRI, it is appro-

priate to consider a set of bedrock questions for the field: what

brain property is being captured in these studies? Up until this

point, we have purposefully used the vague term ‘‘relationship’’

to describe similarities in low-frequency BOLD signal. What is

the nature of these ‘‘relationships’’? What causes them? What

do they mean? What is actually being measured by signal simi-

larity? A full answer cannot be given, but several relevant points

follow.

At the most basic level, high BOLD signal similarity creates a

strong suspicion that the signals represent related processes

across regions. Two decades of resting-state studies have

now built a substantial empirical basis for the claim that brain re-

gions that are coactive during a task tend to have correlated low-

frequency fMRI signal (e.g., Smith et al., 2009). An influential

model of cognition, proposed by Donald Hebb, is that mental

representations (elements of a sensation, an emotion, a thought,

etc.) occur via activity in ‘‘ensembles’’ of neurons, and, critically,

that these neurons are organized such that they can reinforce

their tendency to coactivate by recurrent, self-excitatory

strengthening of connectivity (thus refining and distinguishing

the ensemble) (Hebb, 1949). The flexibility and variety of mental

representations is thought to arise by combining ensembles in
Neuron 84, November 19, 2014 ª2014 Elsevier Inc. 685
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different ways. Over time, such a general mechanism yields a

hierarchy of ensembles, representing function, sculpted by his-

tories of coactivation and capable of efficient but flexible mental

representations. A possible hypothesis is that statistical histories

of coactivation between neurons shape functional connectivity

MRI relationships via Hebbian mechanisms (Fair et al., 2007).

Consistent with this hypothesis, practice-induced changes in

resting-state functional connectivity that correlate with behav-

ioral performance have been observed between task-involved

regions after motor learning (Vahdat et al., 2011), perceptual

learning (Powers et al., 2012), reasoning training (Mackey

et al., 2013), and in other contexts (see Guerra-Carrillo et al.,

2014 for review).

In the first years of functional connectivity MRI, it was natural

to suspect that the stream-of-consciousness thoughts that we

all have when resting quietly (about eating, errands, plans,

worries, etc.) substantially shaped the signal fluctuations. This

concern is lessened by several findings across states of con-

sciousness and animal models. First, in humans, the low-fre-

quency correlation structure is similar at rest and in the early

stages of sleep (Horovitz et al., 2009; Larson-Prior et al., 2011).

Second, organized low-frequency fluctuations in fMRI signal

are also found in awake and anesthetized macaques (Hutchison

et al., 2011; Moeller et al., 2009; Vincent et al., 2007), marmosets

(Liu et al., 2013), rats (Hutchison et al., 2010; Liang et al., 2011),

mice (Jonckers et al., 2014; Jonckers et al., 2011; Sforazzini

et al., 2014), and awake pigeons (De Groof et al., 2013). In animal

models, different anesthetics have different effects on functional

connectivity, as does the depth of anesthesia, but in general,

light anesthesia produces relatively little alteration in patterns

of functional connectivity. Findings in humans under anesthesia

are mixed across studies and resting-state networks, with some

studies reporting little change in correlations under light anes-

thesia, and others reporting more substantially changed func-

tional connectivity (see Heine et al., 2012 for review; note that

most rodent and primate studies utilize head posts or bite bars

to immobilize the head, whereas in human studies the head is

almost never immobilized). Deep anesthesia unambiguously al-

ters patterns of functional connectivity. Third, there are sugges-

tive similarities between the spatial organization of the correla-

tions in macaques and humans, such as putative homologs of

the default mode network and the attention networks (Hutchison

et al., 2012; Vincent et al., 2007). Several groups now believe that

they have identified a default-mode-like network in both rats (Lu

et al., 2012) and mice (Sforazzini et al., 2014). Collectively, these

observations indicate that low-frequency resting-state fluctua-

tions are at best weakly related to consciousness or conscious

thought, since they are present and similar in light sleep and

light anesthesia. These observations also raise the possibility

that low-frequency fluctuations may share an evolutionarily

conserved mechanistic basis and/or function across clades

spanning humans, rodents, and birds (though it is possible the

fluctuations arose independently or have different bases or func-

tions across species).

Measures of functional connectivity MRI are related to but

distinct from measures of structural connectivity. High correla-

tions are often found between brain regions known to be

anatomically connected, but high correlations also occur be-
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tween regions that are not monosynaptically connected. For

example, in macaques there are high correlations between the

eccentric representations in V1 in both hemispheres, which

have no known direct physical projections (Vincent et al.,

2007). An additional example is found in the cerebellum, which

displays correlated activity with cortical regions that are sepa-

rated from the cerebellum by several synapses (Krienen and

Buckner, 2009). Lesions at the mediating synapses, for example

in the pons, perturb corticocerebellar correlations in predictable

ways (Lu et al., 2011). The observed correlation between any two

regions probably reflects weighted representation of many or all

possible pathways between those regions, many of them medi-

ated by other brain regions (Adachi et al., 2012). Indeed, some of

the most successful computational models that predict

observed functional connectivity from known structural connec-

tivity do so by considering paths other than the shortest anatom-

ical pathway between two brain regions (whether measured by

distance or synapses) (Goñi et al., 2014).

Ultimately, low-frequency fluctuations in BOLD signal are of

interest for what they reveal about neural activity. The mecha-

nisms linking neural activity to hemodynamic responses are

not fully known, but some salient points are mentioned here.

Simultaneous intracortical electrophysiological recording and

fMRI in macaques reveals that both spiking activity and synaptic

activity (measured by local field potentials [LFPs]) can predict

BOLD responses, with a lag of several seconds between neural

activity and the BOLD response (Logothetis et al., 2001). LFPs,

loosely speaking, represent the aggregate membrane potentials

of cells near an electrode (subject to cell orientation, location,

type, size, and other factors). Importantly, at times where LFPs

and spiking become dissociated, LFPs predict BOLD signal in

the absence of spiking. These results therefore indicate that

BOLD signal at a region reflects inputs and local processing

more than outputs of the region (see Logothetis, 2008 for review).

Local processing (e.g., neurotransmitter recycling, etc.) is ener-

getically costly and is intimately linked with metabolic processes

thatmodulate blood flow (Raichle andMintun, 2006).With regard

to ongoing spontaneous fMRI signal, several studies have found

positive correlations between the BOLD signal and fluctuations

in band-limited power in the upper gamma range of LFPs

(�50–90 Hz) (Leopold et al., 2003; Niessing et al., 2005; Schöl-

vinck et al., 2010; Shmuel and Leopold, 2008). Thus, when

BOLD signal increases synchronously at multiple locations,

one contribution to such correlations may be a shared increase

of LFP amplitude at particular frequencies, which may reflect

increased synchrony of membrane potential modulation at those

frequencies (and vice versa for decreases). Other links between

electrophysiology and BOLD signal exist and are reviewed in

Schölvinck et al. (2013).

We have surveyed evidence that spontaneous low-frequency

fMRI correlations are modified, to some extent, by experience,

that they are present in some sleep and unconscious states,

that they are found in many animals, and that they reflect certain

aspects of ongoing neural activity. Additionally, it should be

mentioned that the fluctuations underlying these correlations

are comparable in magnitude with task-evoked activations

(Damoiseaux et al., 2006; Fox et al., 2006b). Further, much of

the organization of the correlations persists, largely unchanged,
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in a variety of task states (Cole et al., 2014) (though changes do

occur, see Rehme et al., 2013; Sepulcre et al., 2010). Interest-

ingly, ongoing signal fluctuations appear—on a moment-to-

moment basis—to influence whether and how stimuli are

perceived, as well as reaction times and motor responses (see

Sadaghiani et al., 2010 for review). Although the ultimate function

of these ongoing fluctuations remains unknown, they are ener-

getically costly, and it is tempting to speculate that they serve

some basic and important role in the brain (Buzsáki et al.,

2013; Raichle, 2010).

Using Resting-State Relationships to Explore Brain
Organization
Refining System-Level Descriptions

Once it was realized that targeted studies could be used to map

out targeted systems (e.g., the motor, visual, auditory, and

default mode systems [Biswal et al., 1995; Cordes et al., 2000;

Greicius et al., 2003; Lowe et al., 1998]), a next logical step

was to map out relationships across the brain in a data-driven,

untargeted fashion. The development of ICA methods enabled

whole-brain partitioning of variance into components. Initial

studies determined low numbers of components but as data

quality and analysis methods improved, the number of compo-

nents has increased (e.g., the number of ‘‘neural’’ compared to

‘‘determined’’ [neural + artifactual] components is 10 of 25

in Damoiseaux et al., 2006; 8 of �30 in Sorg et al., 2007; 10

of 20 and 45 of 70 in Smith et al., 2009; and �23 of �200 in Mar-

cus et al., 2013). An illustration of a whole-brain partitioning of

variance using ICA is shown in Figure 2. Another method of

data-driven analysis involves calculating pairwise correlations

between all voxels and using clustering algorithms to identify

groups of highly correlated voxels. Note that this approach is a

seed-based approach, in contrast to the ICA-based approach

above. Following such approaches, the brain has been parti-

tioned into somewhere around 15–20 large-scale clusters (e.g.,

Power et al., 2011; Yeo et al., 2011, shown in Figure 2). There

is evident similarity in the clustering structure found across these

two studies, and many of these clusters correspond to ICA com-

ponents identified in other studies.

In many cases, functional connectivity reflects relationships

between brain regions that have long been known to be related.

For example, it is not surprising that visual processing regions

are grouped or that auditory processing regions are grouped.

Other sets of functional relationships, reflected in functional con-

nectivity correlations, would have been unknown 20 years ago.

For example, a shared functional characteristic of the default

mode regions (task-induced deactivation) was only discovered

in 1997. Other recognitions of functional commonalities among

brain regions are even more recent, such as the recognition in

2006 of shared executive characteristics between anterior insula

and anterior cingulate cortex (that distinguished these regions

from other executive regions in lateral frontal and parietal cortex)

(Dosenbach et al., 2006). Both default mode relationships and a

distinction between cingulo-opercular and frontoparietal regions

are reflected in the resting state (Dosenbach et al., 2007; Grei-

cius et al., 2003; Seeley et al., 2007). In the examples just

mentioned, unifying functional characteristics were known for

each of the systems prior to the discovery that the systems
exhibited correlated low-frequency BOLD signal, lending intelli-

gibility to the observed patterns of correlations.

In some cases, however, functional connectivity has grouped

regions that were not so widely recognized as a functional sys-

tem. A medial parietal cluster encompassing the precuneus is

an example of this phenomenon (see Figure 3; this cluster also

has lateral parietal representation, data not shown). In 2011,

several resting-state studies, both seed-based and ICA, group-

ed a set of medial parietal regions (Doucet et al., 2011; Power

et al., 2011; Yeo et al., 2011). In light of this grouping, it became

easier to recognize the significance of patterns in prior task

studies and other concurrent and subsequent literature. For

example, spatially similar regions had exhibited differential re-

sponses to old versus new stimuli in previous studies (Konishi

et al., 2000; Shannon and Buckner, 2004; Wagner et al., 2005),

and memory-related effects have been seen in these regions in

more recent studies (Nelson et al., 2013; Power et al., 2011).

Additionally, spatially similar regions have exhibited strong acti-

vation at the beginning of task blocks, a signal consistent with

processes instantiating task parameters (Dosenbach et al.,

2006). Spatially similar regions also appear to have higher myelin

content than surrounding tissue (Glasser and Van Essen, 2011).

And interestingly, this group of regions, unlike nearby tissue in

the default mode system, seems to lose its distinctness in terms

of resting-state correlations with age (Yang et al., 2014). Thus,

resting-state correlations grouped a set of regions and made it

easier to recognize that they shared a variety of specific charac-

teristics, bolstering the case that these regions form a functional

system.

In all of these examples, the pattern of resting-state correla-

tions respects many distinctions in function and structure. The

large-scale (system-level) patterns in resting-state activity there-

fore serve as a useful organizing framework for interpreting re-

sults and patterns in other modalities. After becoming familiar

with the brain-wide patterns of resting-state fMRI correlations,

it is now difficult for us to read the literature without noticing

spatial patterns congruent with the resting-state patterns.

Refining Area-Level Descriptions

The structure (and therefore function) of neural tissue is orga-

nized at multiple spatial scales. At the level of millimeters to

centimeters, the resolution of fMRI, ‘‘area-level’’ organization is

evident in the cortex, at least in many locations. Areas are

sections of the cortex, much like patches in a quilt, that contain

specific sets of neurons, arranged with specific layering, with

specific sets of incoming and outgoing projections from and to

other locations in the brain and body. Areas therefore are ex-

pected to exhibit specific functional capabilities. Some areas,

especially those most proximal (in terms of synapses) to sensory

andmotor organs, have a readily mapped topographic organiza-

tion: neuron response properties form retinotopic maps in

several early visual areas, tonotopicmaps in early auditory areas,

or maps of the body in primary motor and somatosensory areas.

With great effort, roughly 100 areas per hemisphere have been

defined after a century of intense study in the macaque (see

Figure 4) (Van Essen et al., 2012a). The best-defined areas are

visual areas in occipital, parietal, and temporal cortex, auditory

areas in temporal cortex, and somatosensory and motor areas

near the central sulcus. But even in this best-studied model,
Neuron 84, November 19, 2014 ª2014 Elsevier Inc. 687



Figure 3. A Medial Parietal Resting-State Network Exhibits Specific Functional, Structural, and Lifespan Properties
A grouping of regions mainly in medial parietal cortex that has been identified in multiple resting-state analyses exhibits memory-related and oldness-related
activations, activity at the beginning of a task block, specific age-related decreases in resting-state correlations, and increased putative myelin content relative to
surrounding tissue. Images modified from Yeo et al. (2011), Power et al (2011), Doucet et al. (2011), Wagner et al. (2005), Nelson et al. (2013), Dosenbach et al.
(2006), Yang et al. (2014), and Glasser and Van Essen (2011). Note that the illustration from Yeo et al. (2011) is the 17-cluster partitioning, not the 7-cluster
partitioning shown in Figure 2.
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the area-level organization in much of the macaque brain is only

somewhat understood, especially in frontal cortex or other loca-

tions where well-behaved maps are difficult to define.

In humans, considerably less is known about area-level orga-

nization than in macaques, though certain sensory and motor

areas have been defined by multiple criteria. It is expected that

humans will exhibit more areas than macaques, perhaps on

the order of 200 areas per hemisphere (Van Essen et al.,

2012b). Many of the techniques used to study macaque area-

level organization are inapplicable to humans (e.g., tracer injec-

tion), and human studies are limited mainly to postmortem

studies, noninvasive imaging such as MRI, and a relatively small

number of neurosurgical cases. Because resting-state correla-

tions reflect, to some extent, anatomical connectivity, and are

strong between functionally related tissue, it is possible that

these correlations could be used in ways analogous to tracers

to identify a ‘‘connectivity fingerprint’’ of tissue and that this

‘‘fingerprint’’ could be used to help delineate areas in the brain.

A major effort of several groups has been to use resting-state

functional connectivity to map out area-level distinctions in the

human cortex. For brevity, we will only describe the approach

that we have taken, emphasizing that many other approaches

have been used (e.g., Blumensath et al., 2013; Craddock et al.,

2012; Shen et al., 2010). The general idea is that signals within
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an area should be relatively homogeneous and that signals in

different areas should be somewhat different. Topographic influ-

ences are a complicating factor, because they should increase

signal similarity, across areas, in topographically corresponding

locations.

To identify borders between areas, we have used gradient-

based techniques that measure the rate of change of signal sim-

ilarity between nearby locations. The underlying presumption is

that signals should change little and slowly within an area but

rapidly at a border between areas (again, topographic influences

challenge this procedure, since adjacent maps sometimes have

mirrored orientations with corresponding topography immedi-

ately on either side of the border). This boundary-mapping

approach, based on local changes in connectivity, was first

developed in structural connectivity data (Johansen-Berg

et al., 2004) and was later adapted to and refined in resting-state

fMRI data in a series of studies (Barnes et al., 2012; Cohen et al.,

2008; Nelson et al., 2010a, 2010b; Wig et al., 2014a, 2014b).

The boundary-mapping technique defines roughly 200 regions

in each hemisphere and has yielded several notable results.

First, the boundaries defined in the resting state recapitulate

some boundaries of functional distinctions during tasks (Nelson

et al., 2010a; Wig et al., 2014a, 2014b). Second, the borders

respect the large-scale systems described in the previous



Figure 4. Area-Level Mapping of Cortex in Macaques and Humans
At top, several macaque cortical parcellation schemes show the refinement of area-level maps over the last century, modified from Van Essen et al. (2012a). At
bottom, a parcellation of the human cortex based on resting-state functional connectivity. The insets show posteromedial views of the occipital lobe of the left
hemisphere, with cytoarchitectonic locations for Brodmann areas 17 and 18, and corresponding resting-state boundaries. The white arrows denote borders that
align well with the predicted area borders, and the red arrows denote boundaries that may be byproducts of unremoved artifact at the occipital pole. Modified
from Wig et al. (2014b).
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section but subdivide large, contiguous swathes of those sys-

tems into multiple putative areas, as expected (Wig et al.,

2014a, 2014b). Third, the boundaries seem to respect some cy-

toarchitectonic distinctions between well-known cortical areas

in humans, such as those between V1 and V2 (Figure 4) (Wig

et al., 2014b). Fourth, there are instances where borders are

probably being driven by artifact (e.g., borders running on the

crowns of gyri, borders outlining regions of signal dropout,

etc.) (Wig et al., 2014b). Corroboration of borders with distinc-

tions in other modalities, such as structural connectivity, cy-

toarchitectonics, or function will help clarify the neurobiological

meaning of these borders (Amunts et al., 2013). Suchmultimodal

analyses are a key aim of the Human Connectome Project.

Resting-state correlations are modulated, within known areas,

by topographic representations. One example of this is that

correlations across visual areas are linked by their eccentric-

ity—foveal representations in V1 exhibit increased correlations

with foveal representations in other areas such as V2, MT, etc.

and likewise for peripheral representations (Yeo et al., 2011).

Another example is in somatosensory (and motor) cortex, where

Brodmann areas 1–3 occupy the posterior bank of the central

sulcus in long, narrow, vertically oriented strips that run from

lateral cortex to the midline. Within these areas exist well-known

representational maps of the body, organized such that the legs

are on the midline, the hands are superior, and the face is inferior

and lateral. The functional connectivity signal along the central

sulcus ismodulated strongly by its position in the body represen-

tation in two notable ways. First, the signal in facial representa-
tions is sufficiently distinct from the signal in the rest of the

body that these signals form separate clusters (see the orange

versus cyanmodules of Power et al., 2011 in Figure 2), potentially

distinguishing the dorsal column/medial lemniscal system from

the trigeminal lemniscal system. Second, the homotopic correla-

tions (between mirrored locations in each hemisphere) between

face representations are higher than those between the leg

representations, which are higher than those between the hand

representations (Yeo et al., 2011). These apparent within-area

distinctions are reminiscent of ‘‘domain’’ distinctions recently

described by Kaas and colleagues for separate reach and grasp

regions within primary motor cortex (Kaas, 2012).

These three examples of topographic distinctions can be inter-

preted in terms of the topographic specificity of projections

among different visual areas, in terms of input from different

thalamic nuclei (the face and body representations receive pro-

jections from different thalamic nuclei), and in terms of differing

densities of callosal crossing fibers between representations of

various body parts. But these topographic distinctions are also

amenable to speculative interpretations based more on statisti-

cal histories of coactivation than on anatomical projections

(remember that correlations can be modulated, at least for

several days, by statistical experience [Guerra-Carrillo et al.,

2014]). For example, when considering homotopic correlations,

the two hands are relatively independent compared to the halves

of the tongue or face. Or, part of the reason that signals at facial

representations differ from signals in representations of the rest

of the body is that facial signals correlate strongly with signals at
Neuron 84, November 19, 2014 ª2014 Elsevier Inc. 689



AAL atlas Clusters
(40,100 voxels)

Clusters
(264 functionally-defined ROIs)

Clusters
(90 AAL parcels)

Seed maps

Figure 5. Considerations in Resting-State Networks: Node Definition
The 90-parcel AAL atlas is shown, as are seed maps from sites within two of the parcels. The clustering structure of resting-state networks with nodes of voxels,
functionally defined ROIs, and the AAL parcels are shown. Image at left is modified from http://www.prefrontal.org and the images at right are modified from
Power et al. (2011).
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auditory regions. This finding may reflect physical proximity and

fMRI signal blurring to some extent, but it also may reflect the

fact that facial and auditory representations must be frequently

coordinated in the service of language.

Further studieswill be needed to determine the dominant influ-

ences on within-area and between-area resting-state signal dif-

ferences. But the discussion thus far should demonstrate that

resting-state signals can yield information likely relevant to the

area-level and within-area organization of the brain.

Building Network Representations of the Brain

Network studies of the brain represent a departure from the an-

alyses mentioned thus far. When viewing a complex system as a

network, the focus is less on the properties of a single element of

the system and more on the role and contextualization of that

element within the larger system. Additionally, overall properties

of the system that emerge from the arrangement of interactions

among elements are of interest. The brain, itself a network of

neurons organized at many levels, is a natural candidate for

this type of analysis.

Many aspects of network analysis are intuitive to anyone who

rides a subway. The network is defined by a set of nodes (the el-

ements of the system, e.g., stations) and a set of edges (the pair-

wise relationships between nodes, e.g., the tracks between the

stations). Nodes with many or strong connections (many tracks,

a train every 6 min) are generally more important than nodes

with few or weak connections (few tracks, a train every 20 min).

Nodes that connect distant parts of a network (stations with ex-

press lines) or that link distinct parts of the network (stations

withmultiple lines) or that definebottlenecks (stations connecting

a tunnel under a bay) are especially important for network traffic.

All of these properties, intuitive to someone studying a subway

map, can be determined algorithmically. Themathematical study

of networks is called graph theory, and graph is another name for

a network,when representedasaset of nodes andaset of edges.

The prospect of creating comprehensive network representa-

tions of the brain is very attractive, as evidenced by large federal
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initiatives such as the Human Connectome Project or the Brain

Activity Map Project. At present, large-scale networks with

whole-brain coverage, at least in humans, are only feasible

via MRI-based techniques such as diffusion tensor imaging

(DTI) (which measures diffusion of water, presumably along

axons) or resting-state functional connectivity. Arguably, at

the moment, resting-state methods yield the most complete

and fine-grained network representations available, due to

well-known difficulties in DTI fiber reconstruction techniques

whenmapping long fibers, and the tendency for fiber reconstruc-

tion techniques to funnel fibers to the tips of gyral blades and not

the banks of gyri (Johansen-Berg and Behrens, 2013, Chapter

16, Van Essen and colleagues). There are, however, many diffi-

culties with forming network representations using resting-state

MRI data. Difficulties exist with node definition, edge definition,

and the interpretation of network measures. Each of these topics

represents issues that can fundamentally alter the results or

interpretation of a study.

Node definition is a major challenge for human neuroimaging

network studies. Unlike the subway stations in the example

above, the appropriate nodes of the human brain are not

obvious. As mentioned, area-level organization is amenable to

fMRI resolution, but the area-level organization of the human

brain is largely unknown. Investigators must therefore choose

nodes in the absence of ground truth. Common node choices

include voxels, random parcellations, anatomically driven brain

atlases (e.g., parcellations based on gyral anatomy), or function-

ally defined ROIs (e.g., task-defined ROIs). These node choices,

like the denoising choices mentioned earlier, can fundamentally

alter the results of a study. For example, one common node defi-

nition scheme is the Automated Anatomical Labeling (AAL) atlas,

a set of 90 parcels defined in large part by gyral anatomy. The

parcels of the AAL atlas are large and most parcels probably tra-

verse multiple true underlying areas. Figure 5 shows, as an

example, some of the signals within the left precentral and left

middle temporal parcels of the atlas. Most nodes in the AAL atlas

http://www.prefrontal.org
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probably blend several signals (and, by extension, divide sig-

nals), rendering these representations both inaccurate and rela-

tively nonspecific. The blending of signals is evidenced by the

fact that AAL-based networks usually contain three to five clus-

ters (e.g., Gratton et al., 2012; He et al., 2009; Meunier et al.,

2009; Power et al., 2011), often not reflecting the specific pat-

terns known from ICAor seed correlationmaps. In contrast, clus-

tering in voxel-wise and functionally defined networks returns

more clusters, most of which visibly respect correlation patterns

known from ICA or seed map analyses (Figure 5). This issue of

misdefining nodes has elicited unusually strong language from

several groups (e.g., Power et al., 2011; Smith et al., 2011; Wig

et al., 2011), perhaps best encapsulated by Stephen Smith and

colleagues, ‘‘The most striking result [with regard to confounds

in our study of network modeling methods] was that the use of

functionally inaccurate ROIs (when defining the network nodes

and extracting their associated time series) is extremely

damaging to network estimation; hence, results derived from

inappropriate ROI definition (such as via structural atlases)

should be regarded with great caution’’ (Smith et al., 2011).

Even if perfectly defined nodes were available, investigators

would still face difficult decisions about edge definition in

resting-state fMRI. The basic issue is this: Pearson correlations

are widely used and widely understood and are measurable in

all data sets and for large numbers of nodes. But Pearson corre-

lations cause difficulties of interpretation since they represent

both direct and indirect associations of nodes. However, other

measures that might better isolate direct associations between

nodes (‘‘effective connectivity’’ methods such as dynamic

causal modeling, Granger causality, etc.) often scale poorly

with network size. Many of these techniques do not estimate

connectivity well between a dozen nodes, much less hundreds

of nodes. And those techniques that appear able to handle larger

networks (e.g., partial correlations) cannot practically be used in

many data sets because the time series are not long enough to

support the technique (the demand for degrees of freedom

scales with network size). Some groups have advocated using

techniques that use a penalty factor (akin to a threshold) to esti-

mate sparse inverse covariance matrices (i.e., partial correla-

tions) from data with limited degrees of freedom. The graphical

lasso method is one such approach. However, such methods

are intended for signals with normal distributions (i.e., the values

of all time points behave as if sampled from a random variable).

Due to the slow hemodynamic response, fMRI signal is autocor-

related for several seconds, leading to a nonnormal distribution

of signal. To satisfy requirements for signal normality, data can

be ‘‘prewhitened’’ by using autoregressive approaches to elimi-

nate the dependency between successive time points. However,

it is not easy to implement such approaches without also distrib-

uting the effects of (temporally limited) artifact in the time series.

Additionally, since low-frequency modulation of BOLD is the

signal of interest, care must be taken that removing the effects

of prior time points on a current time point does not also remove

the low-frequency modulations of interest. It should be noted

that the effects of autocorrelation impact the statistics of all

edge measures since autocorrelation decreases the actual

(effective) degrees of freedom relative to the apparent degrees

of freedom. For example, if 600 s of data are obtained, but
hemodynamic autocorrelation spans 6 s, there are roughly 100

degrees of freedom in the data, regardless of how rapidly the

data are sampled. Clearly, complicated and difficult issues arise

when defining network edges. Because most work on large-

scale brain networks has used Pearson correlations, we will

focus on issues related to edges defined by this measure.

Interpreting Network Representations of the Brain

The point of a network analysis is to discover properties of the

system,presumablyones thatwouldhavebeendifficult or impos-

sible to find usingother approaches. A large number of properties

can be calculated in graph theory (see Rubinov and Sporns, 2010

for review). Of these, we consider three for the purposes of dis-

cussion: nodedegree (thenumber of edgesonanode), thepartic-

ipation coefficient of a node (the extent to which a node’s edges

are distributed amongmany clusters versus limited to the node’s

own cluster), and the path length between two nodes (howmany

nodes lie between two nodes). In the context of the subway sys-

tem, the meaning of these measures is unambiguous: a station

with high degree has many sets of tracks or trains, a station

with high participation coefficient links many segregated parts

of the subway system (clusters, probably different subway lines),

and a pair of stations with a high path length are separated by

many stations (and probably a lot of track).

Interpreting these properties in a Pearson correlation network

is not straightforward. Recall that the Pearson correlation be-

tween the resting-state fMRI signals of two brain regions very

likely reflects both directly shared and many mediated pro-

cesses involving the regions. On this view, two of the measures,

degree and path length, become hard to interpret. Path length

is supposed to describe the distance between two nodes,

measured by the number (or weights) of edges that must be

traversed to travel between nodes. If the correlation coefficient

is substantially affected by mediated relationships, the idea of

measuring serial steps between nodes becomes problematic.

Indeed, the correlation itself can be viewed as a path length of

sorts, though the existence of negative correlations complicates

this view, since one would not view negative relationships as

‘‘less’’ than nothing (and actually, one suspects that negatively

correlated regions are more related than regions with correla-

tions near zero). In short, though it is not unreasonable to think

that information might pass serially along chains of highly corre-

lated nodes, path length measures are not nearly as easy to

interpret in resting-state correlation networks as they are in

many other types of networks.

Node degree is used in many networks to identify influential

nodes: an airport with many flights is probably more important

than onewith few flights, and a personwithmany sexual partners

is more likely to acquire and spread disease than a person with

few partners. Node degree, however, can also be complicated

to interpret in resting-state correlation networks. The interpreta-

tion is complex because, unlike in transportation or communica-

tion networks, the degree of a node scales with cluster size

in correlation networks (because most nodes in a cluster all

correlate with each other) (Power et al., 2013). In other words,

in a correlation network, a node with high degree may not be

an especially influential node but rather may just be part of a

large cluster. At the voxel level, voxel degree will be influenced

by area size, topographic influences, and system size. In accord
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with this view, the voxels with the highest degree in resting-state

fMRI data are found in the posterior cingulate, the angular gyrus,

and ventromedial prefrontal cortex, all members of the largest

resting-state cluster in the brain, representing the default mode

system (Buckner et al., 2009; Power et al., 2013).

In contrast with the previous two measures, the meaning of

participation coefficient seems interpretable in resting-state

data. A node with a low participation coefficient correlates

strongly, mainly with other nodes in its cluster, whereas a node

with high participation coefficient correlates strongly with nodes

in multiple clusters. Nodes with high participation coefficients

would therefore seem to be participating in several types of pro-

cesses that are segregated into and represented within different

systems. In contrast, nodes with low participation coefficients

would seem to be participating in a more restricted set of pro-

cesses that are found mainly in a single system. Note that partic-

ipation coefficients depend upon cluster definition and that

various network definitions can yield quite different clustering

(Figure 5).

From the discussion above, it should be clear that complicated

issues arise both in the formation and interpretation of resting-

state networks. A great variety of measures can be and have

been calculated in resting-state networks, with many reported

features of the networks (e.g., ‘‘hubs’’ measured by degree cen-

trality or other centrality measures) and many reported differ-

ences across clinical diagnoses and the lifespan (see Bullmore

and Sporns, 2012; Sporns, 2014 for review). Most of these mea-

sures have no proven biological interpretation. A critical chal-

lenge for the field is to move from simply reporting mathematical

features of resting-state networks to translating these features

into the realities of behavior and neurobiology. For example,

given a ‘‘hub,’’ what are the expected properties of the process-

ing performed at that region? What are the behavioral correlates

of these processes? What specific predictions do these mea-

sures make that can be falsified or verified? More links between

behavior, processing operations, and network properties are

needed to refine our understanding of how to interpret network

properties reported in resting-state networks (see, e.g., Warren

et al., 2014).
Conclusions
Resting-state functional connectivity analysis has grown from

an unexpected observation in fMRI ‘‘noise’’ into a major area

of human neuroimaging. Acquiring resting-state data is relatively

uncomplicated, but analysis of the data is not. Major questions

remain: what is the origin, and what are the functions, of the

spontaneous activity reflected in low-frequency BOLD signal?

How does the low-frequency activity relate to instantaneous ac-

tivity, perceptions, thoughts, and behavior?What are the genetic

influences on the spatial and temporal organization of resting-

state signals? How do the signals evolve over the lifespan?

Partial answers to some of these questions exist, but much

work remains.
ACKNOWLEDGMENTS

We thank Tim Laumann and Steve Nelson for comments and help with figures.
This work was supported by NIH F30 MH940322 (J.D.P.), by the Intellectual
692 Neuron 84, November 19, 2014 ª2014 Elsevier Inc.
and Developmental Disabilities Research Center at Washington University
(NIH/NICHD P30 HD062171), by NIH grant NS046424 (S.E.P.), and by a
McDonnell Foundation Collaborative Activity Award (S.E.P.).
REFERENCES

Adachi, Y., Osada, T., Sporns, O., Watanabe, T., Matsui, T., Miyamoto, K., and
Miyashita, Y. (2012). Functional connectivity between anatomically uncon-
nected areas is shaped by collective network-level effects in themacaque cor-
tex. Cereb. Cortex 22, 1586–1592.

Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau,
M.E., Bludau, S., Bazin, P.L., Lewis, L.B., Oros-Peusquens, A.M., et al. (2013).
BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–
1475.

Anderson, J.S., Druzgal, T.J., Lopez-Larson, M., Jeong, E.K., Desai, K., and
Yurgelun-Todd, D. (2011). Network anticorrelations, global regression, and
phase-shifted soft tissue correction. Hum. Brain Mapp. 32, 919–934.

Barnes, K.A., Nelson, S.M., Cohen, A.L., Power, J.D., Coalson, R.S., Miezin,
F.M., Vogel, A.C., Dubis, J.W., Church, J.A., Petersen, S.E., and Schlaggar,
B.L. (2012). Parcellation in left lateral parietal cortex is similar in adults and chil-
dren. Cereb. Cortex 22, 1148–1158.

Beauchamp, M.S., Argall, B.D., Bodurka, J., Duyn, J.H., and Martin, A. (2004).
Unraveling multisensory integration: patchy organization within human STS
multisensory cortex. Nat. Neurosci. 7, 1190–1192.

Beckmann, C.F. (2012). Modelling with independent components. Neuro-
image 62, 891–901.

Beckmann, C.F., DeLuca, M., Devlin, J.T., and Smith, S.M. (2005). Investiga-
tions into resting-state connectivity using independent component analysis.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1001–1013.

Behzadi, Y., Restom, K., Liau, J., and Liu, T.T. (2007). A component based
noise correctionmethod (CompCor) for BOLD and perfusion based fMRI. Neu-
roimage 37, 90–101.

Birn, R.M., Diamond, J.B., Smith, M.A., and Bandettini, P.A. (2006). Separating
respiratory-variation-related fluctuations from neuronal-activity-related fluctu-
ations in fMRI. Neuroimage 31, 1536–1548.

Birn, R.M., Smith, M.A., Jones, T.B., and Bandettini, P.A. (2008). The respira-
tion response function: the temporal dynamics of fMRI signal fluctuations
related to changes in respiration. Neuroimage 40, 644–654.

Biswal, B., Yetkin, F.Z., Haughton, V.M., and Hyde, J.S. (1995). Functional
connectivity in the motor cortex of resting human brain using echo-planar
MRI. Magn. Reson. Med. 34, 537–541.

Blumensath, T., Jbabdi, S., Glasser, M.F., Van Essen, D.C., Ugurbil, K., Beh-
rens, T.E., and Smith, S.M. (2013). Spatially constrained hierarchical parcella-
tion of the brain with resting-state fMRI. Neuroimage 76, 313–324.

Bright, M.G., and Murphy, K. (2013). Removing motion and physiological arti-
facts from intrinsic BOLD fluctuations using short echo data. Neuroimage 64,
526–537.

Buckner, R.L., Andrews-Hanna, J.R., and Schacter, D.L. (2008). The brain’s
default network: anatomy, function, and relevance to disease. Ann. N Y
Acad. Sci. 1124, 1–38.

Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T.,
Andrews-Hanna, J.R., Sperling, R.A., and Johnson, K.A. (2009). Cortical
hubs revealed by intrinsic functional connectivity: mapping, assessment of
stability, and relation to Alzheimer’s disease. J. Neurosci. 29, 1860–1873.

Buckner, R.L., Krienen, F.M., and Yeo, B.T. (2013). Opportunities and limita-
tions of intrinsic functional connectivity MRI. Nat. Neurosci. 16, 832–837.

Bullmore, E., and Sporns, O. (2012). The economy of brain network organiza-
tion. Nat. Rev. Neurosci. 13, 336–349.
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