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The nonadiabatic transitions which a system with angular momentum J makes in a magnetic
field which is rotating about an axis inclined with respect to the field are calculated. It is shown
that the effects depend on the sign of the magnetic moment of the system. We therefore have
an absolute method for measuring the sign and magnitude of the moment of any system.
Applications to the magnetic moment of the neutron, the rotational moment of molecules, and
the nuclear moment of atoms with no extra-nuclear angular momentum are discussed.

IN a previous paper! the effect of a rapidly
varying magnetic field on an oriented atom
possessing nuclear spin and extra-nuclear angular
momentum. It appeared that it was possible to
deduce the sign of the magnetic moment of the
nucleus from the nature of the nonadiabatic
transitions which occur if the field rotates an
appreciable amount in the time of a Larmor
rotation. This effect was applied experimentally?
with the method of atomic beams to measure the
sign of the proton, deuteron, K3, etc. The
evaluation of the sign was possible because the
experiment decided whether the h.f.s. level was
normal or inverted. Since the sign of the electronic
moment is known to be negative a normal level
meant positive nuclear moment and an inverted
level negative moment.

Clearly it is desirable to find another effect
which will make it possible to find the sign of the
nuclear moment in cases where the normal state
of the atom is one in which there is no electronic
angular momentum as in the alkaline earths.
Spectroscopic methods where applicable will
yield this information, but there are numerous
important instances in which molecular and
atomic beam methods are the only ones available.
For example, it would be very desirable to
measure the sign of the moment of the neutron
directly. Although it would be very difficult to
apply atomic beam methods to the neutron, the
polarization effect of magnetized iron suggested
by Bloch may possibly be useful in this con-
nection as a device for measuring the degree of
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depolarization caused by the nonadiabatic transi-
tions to be described below. Another example is
the sign of the moment arising from molecular
rotation which results in a positive contribution
from the motion of the nuclei about the centroid
and a negative contribution from the electrons.

The following considerations should make it
possible to make the same sort of observations
with simple systems as are made in the Einstein-
de Haas and Barnett experiments: namely, the
magnitude and sign of the gyromagnetic ratio.

Consider a simple system such as a neutron
with magnetic moment u= — guoJ, where g is the
Landé g factor, J is the total angular moment
due to all causes. If g is positive the total moment
is negative as in the spinning electron. If g is
negative the moment is positive. In a magnetic
field H the system precesses with the Larmor
frequency v=guoH/h. If g is positive the pre-
cession is in the positive direction and if negative
in the negative direction. We shall now consider
our system initially quantized with magnetic
quantum number » in a field / which is constant
in magnitude but rotates with a frequency w/2r
about some direction which is at an angle ¢ with
respect to the direction of the field.

This problem was solved by Giittinger? for the
particular case when the angle is 7/2. He found
that transitions will occur to other magnetic
levels with quantum number m’ when /27 is of
the order of magnitude of ». The transition
probabilities in this case do not depend on the
direction of the field. It will be shown that in the
more general case the direction of rotation
introduces an asymmetry into the problem and
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as a consequence with the same |»| and |w| the
transition probabilities will be different depend-
ing on whether g is positive or negative. The
Majorana and Giittinger arrangements do not
possess this property.

It will suffice to consider only the case where
J =1 since the solution of more general problems
depends only on the solution of this simple case.
The Schrodinger equation for this case is

i =3Cy, »
3C=g(uo/2) (o1 H 1+ 0oHs+03Hs).
If we set
y=Ciy+C_y (2)

we obtain from (1)

dC,/dt= (—1g,u0/2h) [I{3C;+ (Hl —'L]{2) C_;], 3
dC_y/dt=(—1guo/2h) [ — IsC_y+ (I1+iH2) Gy ].

With the substitutions

H,=Hsin ¢ cos ¢, IHs=H sin ¢ sin o,

Hjz=H cos ¥,
4)

MDH

Uo
g——cosd=a, g—Hsind=b, ¢=uwi,
2 h 2%

which represents a field H constant in magnitude
and precessing about the z direction with angular
velocity w, we have

dCy/dt= —iaCy—ibe=i'C_,, )
dC_,/dt=iaC_,—ibe™'C,. )
Therefore

d
d2C;/dt2+iwgC;+(02+b2—wa)C;=0. (6)
¢

The solution of this familiar equation is
C§=Aeip1t+Beip2t’

+P1Aeim’+a+

a
Ca= —ei“"[ Pze"”‘],
@)

pr=—(0/2)+3(w?+4a%+4b*— 4wa)},
pa=—(w0/2) =} (w?+4a+4b*— 4wa)t.

653

The quantities 4 and B are determined from the
initial conditions and the normalization con-
dition |Cy|?+|C_i|?=1. If ¢, and y; are the
vectors which correspond to m=+4%, —3%, re-
spectively, in the direction of H we obtain*

Va=(22)7H(Be Yyt ay),

Y= (27) 7 (—Be "ty +vYy),
B=sin &,

(8)
a=1—cosd, y=1+4cos?d,

o’ =20, ~'+pB*=2r.

If ¢¥(0) =v.(0) at t=0 we start with the system
quantized in the direction of H with m=3%, and

4 +B =ﬂ/(2a) %’

at+ at+
iy
b b (2a)t
Utilizing these values of 4 and B and setting

n=(w?+4a?+4b*—4wh)* we obtain for the proba-
bility amplitudes

9

n
C= e—("‘”/”[ﬁ cos —¢
2a)? 2
(2ab+2Ba—Bw)  n
—f——————sin —¢|,
n 2
(10)
‘ n
C,= e““'“[a cos —t
(2a)?

sin —¢
2

(280 —2aa+ow) n]

n

The probability of finding the system in a state
with m = —% with respect to H is therefore

Py, —n=|¥s*Y|2= | —Be®tCy+vC4]? (11)

(4ory)*
with the values given in Eq. (12)

Bi?  m
sin? —£.

(12)

Py, =
n2

In terms of the Larmor frequency »=gueH/h, the

4 Dirac, Quantum Mechanics, p. 70.
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angle ¢ and the frequency of rotation r=w/2r

sin2 972

P(;, —-H= sin? 7t

v24v2—2vr cos &

X (v2+4v2—2vr cos 9).  (13)

This result reduces to Giittinger's formula
when ¢ =x/2. For other values of ¢ it is apparent
that the transition probability for given &, H
and w will be quite different depending on
whether g is positive or negative since v appears
linearly in the result. Expressed in another way
we may say that Pg, _3) depends on the direc-
tion of rotation of the field for a given sign and
magnitude of g.

Since rotating fields are usually realized by
allowing the system to pass through a field which
changes in direction from point to point, the
total change in direction is fixed. If we set
¢ =277t we obtain from (15) setting »/r=g¢q

sin? ¢ @
Py, -y =—————————sin?—
14-¢*—2q cos ¢ 2

X(14¢*—2q cos #)%:  (14)

If we set g=cos ¢ which can be arranged by
suitably varying the magnitude and direction of
the field,

Py, ) =sin? (3o sin 9), (15)

which can be made as close to unity as one pleases
by arranging experimental conditions so that
27> >w. If one were then to leave everything
unchanged but reversed the direction of rotation
we would get

sin? ¢ @
Py, _p= sin? [5(1 +3 cos? &) {,, (16)

143 cos? ¢

a very much smaller quantity.
It is clear therefore that from this qualitative
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difference and a knowledge of the sense of rota-
tion one can infer the sign of the moment. The
magnitude may be inferred from the absolute
value of the fields and their direction and the
angular velocity of its rotation.

It is unnecessary to consider the details of the
realization of these rotating fields and the de-
tection of these transitions since similar con-
ditions have already been obtained in the experi-
ments cited above. »

To generalize these results we apply the general
result of Majorana? ® for any value of J

P(a, m, m’') = (COS ‘12‘0[)4"(]—'—;”) |(J+m/) 1
X (J=m) (J—m')!
(—1)7(tan La)2r—mtm’

27 2
XL=0 v (v—m4+mHY N (J—m—v) (J—m' —v) !] ,

(17)

where the value of the parameter « is given by

(18)

sin? a=Pq, -y

and depends only on g and not on m or J.

It may be of interest to note that in cases
where we have a coupled system such as a
nuclear spin coupled to molecular rotation, in
which the coupling is weak and g small, the field
required for these transitions can be such that the
component systems are completely decoupled. As
was shown by Motz and Rose,® each system
would then make these transitions independently.
In particular, if the moments of the two systems
are opposite in sign it should be possible to
arrange conditions so that only one of these two
systems makes these transitions. In this case it
should be possible by means of the focusing
methods developed in this laboratory to measure
directly one moment in the presence of another
(rotational  and nuclear) with only slight
interference.

5 Motz and Rose, Phys. Rev. 50, 348 (1936).



