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k-Space Data Preprocessing 
for Artifact Reduction 

in MR Imaging1

Fourier transforms are ubiquitous in nature; magnetic resonance (MR) imaging 
is just one of many examples. Music is perhaps the best-known example. Standard 
scores represent pitch in the Fourier, or frequency, domain but leave duration in the 
time domain (Fig 1). If we were to Fourier transform with respect to time, the results 
would be a two-dimensional (2D) frequency × frequency representation—the direct 
analog to 2D k-space!

To a fi rst-order approximation, MR imagers measure the Fourier transform of the 
density of (typically hydrogen) nuclei. This assumption is, strictly speaking, false (1), 
but clinical imagers are often within just a few “parts per million” of sampling the 
true Fourier transform. In MR lingo, Fourier space is often referred to as k-space, and 
we use the terms interchangeably. The imaging chain consists of many small steps 
grouped into four main steps: acquisition, preprocessing, reconstruction, and post-
processing. The data acquisition step collects information particular to that patient. 
Preprocessing steps apply a priori information to correct or modify the measured 
patient data, making the data more consistent with MR physics and reconstruction 
theory. Subsequent steps merely modify and, at best, preserve the combination of 
patient data and a priori information. Therefore, it is critical that each step be accurate 
in order to generate diagnostic images and renderings.

Computed tomographic (CT) systems sample Radon data, which can be directly 
related to MR imaging data. We begin by exploring the differences between MR and 
CT imaging data—and the differences in fi nal reconstructed images. Large errors, 
such as those created by gradient nonlinearity that result in image warping, are typi-
cally corrected by means of postprocessing (2,3). For most non-Cartesian MR images, 
data preprocessing consists of resampling measured data onto a Cartesian lattice suit-
able for inversion via fast Fourier transform (FFT).

This chapter gives a brief—and by no means exhaustive—overview of different 
MR imaging techniques and their data preprocessing requirements. Currently, the 
lion’s share of clinical images sample Fourier space on a Cartesian lattice that is im-
mediately invertible via FFT, as depicted in Figure 2. We start by examining artifacts 
suffered by all MR images. Gibbs ringing is the result of sampling over only a fi nite 
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region of k-space; k-space apodization (smoothing) 
reduces ringing artifacts. We then consider spiral scan-
ning, one of several non-Cartesian data acquisition 
schemes, and examine the process by which data sam-
pled on a non-Cartesian set of points are resampled 
onto a Cartesian set suitable for FFT. Why this process 
works especially well for MR imaging data and how it 
can fail are discussed. Finally, we consider PROPELLER 
(periodically rotated overlapping parallel lines with 
enhanced reconstruction), a relatively new hybrid 
technique (4–7). PROPELLER fi lls Fourier space by 
sampling multiple rotated Cartesian data sets using 
fast spin-echo MR imaging, a standard (ie, slow) ac-
quisition scheme, as depicted in Figure 3. The effec-
tive temporal resolution of PROPELLER is improved 
by exploiting relationships among the redundant 
measurements to minimize motion artifacts.

DIFFERENCES BETWEEN CT AND 
MR IMAGING DATA

CT scanners measure (essentially) the Radon trans-
form with great accuracy, whereas MR imagers sample 
the Fourier transform. Although these transforms are 
directly related via the projection slice theorem, their 
properties are drastically different, resulting in impor-
tant differences in image quality. Although one could 
spend a semester studying the fi ne points of these 
transforms, most of the essentials are captured in a 
simple example.

In Figure 4, we compare the raw and fi ltered CT 
data of a simple disk with the analogous MR imaging 
data. Notice that the raw Radon projections are con-
tinuous but have “corners.” High-pass fi ltering coars-
ens CT data prior to backprojection, particularly at the 
corners. This sharply contrasts with the MR k-space 
data, which are extremely smooth and always have 
the largest variations in the center of k-space.

CT scanners must always resample data onto data 
points required for image reconstruction. Most MR 
pulse sequences are designed to sample data at exactly 
the Cartesian lattice points required for image recon-
struction via FFT. Non-Cartesian k-space trajectories, 
such as spirals and PROPELLER, permit higher tem-
poral resolution and/or correction for patient motion, 
respectively, and require resampling the data onto a 
Cartesian lattice.

The interpolation, or “gridding,” of CT data there-
fore suffers the greatest errors around the edges of the 
object, whereas MR imaging gridding errors are larg-
est in the center of k-space. This difference results in 
drastically different types of artifacts in reconstructed 
images, as depicted in Figures 4 and 5. CT scans tend 
to suffer streaks and Gibbs ringing off high-contrast 
objects, whereas MR images frequently suffer low-
frequency shading due to interpolation errors in the cen-
ter of k-space. The k-space data are the Fourier transform 

of the imaging function ƒ. We use the notation Fƒ(k) 
for k-space data and ƒ(x) for the reconstructed image.

APODIZATION

Even MR pulse sequences that sample data on 
Cartesian lattice points at the Nyquist rate result in 
imperfect images. This unfortunate fact is related to 
Heisenberg’s uncertainty principle: A function cannot 
be both space and band limited (8). The patient 
occupies only a fi nite region in space, so the imaging 
object is space limited. This means that its Fourier 
transform (ie, measured k-space data) has infi nite 
support. By sampling over only a fi nite region of 
k-space, we abruptly cut off high-frequency informa-
tion. This is equivalent to multiplying the infi nite-

Figure 1. Top: Musical score represents the NBC jingle in pitch-
time. Note that pitch is in units of frequency (Hz). Middle: Same jingle 
represented as a 2D pitch-time image. Bottom: Representation in 
pitch-frequency domain. For simplicity, only magnitude is displayed.
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support k-space data by an indicator function, I, that 
is identically 1 on the sampling region and 0 outside, 
effectively convolving the image with an approximate 
delta function. We mention the most important as-
pects of convolutions below and then delve into their 
effect on image quality.

CONVOLUTION

Convolving two functions is essentially a “shift-and-
sum” procedure. For each point, x, at which we want to 
evaluate the convolution of two functions ƒ and e, we 
fi rst shift the function e(−y) by x, multiply with the un-
shifted ƒ, and then integrate to “sum up” the result:

 (ƒ*e)(x)  = ∫ƒ(y)e(x−y)dy . (1)

This is depicted in Figure 6. Notice that convolving a 
function against a delta function yields the very same 
function:

 (ƒ*δ)(x)  = ∫ ƒ(y)δ(x−y)dy  = ƒ(x) . (2)

Another fundamental property of convolutions that 
has a dramatic effect on MR image reconstruction is 

the fact that the Fourier transform of a convolution is 
the product of Fourier transforms,

 F(ƒ*e)(k)  = Fƒ(k)Fe(k) , (3)

and, conversely,

 F −1(Fƒ*Fe)(x)  = ƒ(x)e(x) . (4)

GIBBS RINGING

When MR data are simply reconstructed by FFT of the 
measured data, the reconstructed image suffers Gibbs 
ringing near sharp discontinuities, as shown in Figures 
4 and 7. Such artifacts are removed by convolving the 
image with a smoothing function δsmooth, or multiply-
ing the k-space data by Fδsmooth. One choice for apo-
dization is the Tukey window, shown in Figure 8 (9).

SPIRALS

Spiral scanning is faster than conventional Cartesian 
scanning for two reasons. First, spirals naturally collect 

Figure 2. Left: Apodized k-space 
data sampled on an evenly spaced 
Cartesian lattice permits immediate 
inversion via FFT. Log of k-space 
magnitude data is displayed. Right: 
Reconstructed image. The image’s 
checkerboard pattern corresponds 
to strong signal along the x and y 
axes in k-space.

Figure 3. PROPELLER fi lls in k-space by acquiring rotated Cartesian data sets, typically with a fast spin-echo pulse sequence. Left: 
Blade 1 fi lls in a horizontal rectangle throughout k-space. Middle: Blade 2 measures the same low-frequency information as blade 1 but 
different high-frequency information. Right: Most of k-space is sampled by one of 12 blades.
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Figure 4. Top left: Original disk. Top middle: CT reconstruction. Top right: MR imaging reconstruction with exaggerated gridding errors in 
the center of k-space. Bottom left: CT projection, fi ltered CT projection, and MR imaging (MRI) k-space projection. Bottom middle: Profi le 
through CT reconstruction. CT reconstruction suffers artifacts due to Gibbs ringing and interpolation errors. Bottom right: Profi le through 
MR imaging reconstruction. MR imaging reconstruction suffers Gibbs ringing as well as low-frequency shading due to interpolation errors 
in k-space.

Figure 5. MR PROPELLER 
images (top) and spiral CT im-
ages (bottom). Top left: Gridding 
errors result in low-frequency 
shading across the MR image. 
Top right: Gridding is decon-
volved to improve contrast. Bot-
tom left: High-order interpolation 
between CT detectors results in 
streaks off bone (arrows). Bottom 
right: Apodized interpolation re-
duces streaking. (Reprinted, with 
permission, from reference 15.)
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only the circular center of k-space, reducing the sam-
pling area by a factor of (4−π)/4 ∼ 1/4 (see Fig 9). 
Second, spiral scans take far better advantage of hard-
ware limits and therefore travel through k-space faster 
than most Cartesian acquisitions.

The costs of improved temporal resolution in spiral 
scanning include the following:

1. Resampling, or “gridding,” the measured data 
from spiral trajectories onto a Cartesian lattice.

2. Gross trajectory errors due to fi eld inhomogene-
ity. The image quality effects are far more benign in 
Cartesian scans than in spirals, as depicted in Figures 
9 and 10.

3. Blurring due to off-resonance effects.
Because it is fundamental to all non-Cartesian pulse 
sequences, we focus on gridding in the following sec-
tion and simply mention that high-order data correc-
tions may also improve spiral image quality.

GRIDDING

“Gridding” is MR imaging lingo for data resampling 
or data fi tting. Interpolation is simply one form of 
gridding. There is a slew of literature on gridding tech-
niques, in many scientifi c fi elds besides MR imaging 
(10–14). As depicted in Figure 4, gridding of k-space 
data is far more forgiving than gridding of CT data. 
Furthermore, MR data tend to contain more random 
noise than CT sinograms. Most non-Cartesian MR 
data sets are therefore gridded by convolving against a 
severely space-limited kernel.

The fi rst implication of gridding convolution is that 
when data happen to already be sampled on a Carte-
sian lattice, we can easily—and accurately—sinc inter-
polate onto another Cartesian lattice by taking FFTs. 
This is done on a PROPELLER blade in Figure 11.
The second implication for non-Cartesian data ac-
quisitions is that when gridding, we convolve the 
measured data against an approximate delta func-
tion, Fe(k), so the reconstructed image is therefore 
multiplied by e(x). In other words, gridding smooths 
k-space data, introducing low-frequency shading in 
image space.

Interpolation is a form of gridding, and we will ex-
amine linear interpolation in one dimension before 
moving on to sinc and jinc interpolation. Finally, we 
will consider interpolation kernels that are currently 
used in clinical MR imaging systems.

Linear Interpolation

Linear interpolation in one dimension is the sim-
plest form of gridding, in which data are estimated 
at desired sample points by evaluating the function 
obtained by drawing straight line segments between 
the measured data points, as shown in Figure 12. This 
is equivalent to convolving measured data with the 
tent function, which is the convolution of an indica-
tor with itself:

Figure 6. Convolution over the interval (−π,π) of sinc(16x) = sinc16(x) with sin(x); (sinc16 * sin)(x) is computed by multiplying sinc(x−16y) 
pointwise against sin(y) and integrating the result. Left: (sinc16 * sin)(0) = ∫sinc(0−16y) sin y dy; dashed line is sinc(0−16y); solid thin 
line is sinc16(y); and thick black line is sinc(−16y)sin(y). Middle: (sinc16 * sin)(−π/2) = ∫sinc(−π/2−16y) sin y dy; dashed line is sinc(−π/
2−16y); solid thin line is sin(y); and thick black line is sinc(−π/2−16y) sin(y). Right: (sinc16 * sin)(x) evaluated throughout the interval 
(−π,π). Dots denote values of (sinc16*sin)(−π/2) and (sinc16*sin)(0).

Figure 7. Gibbs ringing shown near the edge of the disk seen 
in Figure 4. Solid line is k-space data sampled on 512 × 512 
grid; dashed line is on 128 × 128 grid; and dashed-dotted line 
is on 64 × 64 grid.
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Fƒ lin(k) = [(k−ki)Fƒ(ki+1)+(ki+1−k)Fƒ(ki) ]

(5)

(ki+1−ki)
= [Fƒ*dΛ](k)
= [Fƒ*d(I*I) ](k) ,

where * denotes standard, or continuous, convolu-
tion, *d denotes discrete convolution, Λ denotes the 
tent function, and I denotes the indicator function. 
Linear interpolation in k-space smooths the k-space 
data, resulting in low-frequency shading across the 
image, because convolution in k-space corresponds to 

multiplication in image space:

 ƒ lin(x)  = ƒ(x) sinc 2(x) . (6)

This effect is depicted in Figure 12 and is discussed 
in detail in the “Gridding Deconvolution” section 
later in this chapter. To avoid aliasing, we typically 
interpolate onto a Cartesian lattice with a smaller step 
size than the original sampling step size, creating a 
reconstructed image with a larger fi eld of view (FOV). 
This pushes many artifacts out of the desired FOV, as 
depicted in Figure 11.

Figure 8. Tukey window func-
tion with cutoff kc = 108 and roll-
off window of w = 20. Left: Win-
dow function in k-space. Right: 
Point spread function in image 
space. (Reprinted, with permis-
sion, from reference 16.)

Figure 9. Simulations to show 
effect of fi eld inhomogeneity 
on spiral MR imaging. Top left: 
Spiral trajectories as designed. 
Top right: Spiral trajectories drift 
when pushed by a linear gradient 
in the background magnetic fi eld. 
Bottom left: Uniform disk recon-
structed from ideal spiral data. 
Bottom right: Reconstruction from 
distorted spiral measurements.
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Sinc Interpolation

The ideal situation is to choose a gridding technique 
that causes no shading across the image. Because we 
typically grid onto a more finely discretized lattice that 
increases the FOV, the “ideal” interpolator is convolution 

with the Fourier transform of the indicator function 
over the desired FOV. In other words, ideal interpola-
tion is convolution of measured data against the Fourier 
transform of the function that is identically 1 inside the 
desired FOV and is zero outside. These functions are 

Figure 10. Simulations show 
that Cartesian acquisitions are 
more robust to fi eld inhomogene-
ity. Top left: Field inhomogeneity 
translates and distorts k-space 
sampling more coherently than in 
spiral scans. Top right: Magnitude 
image suffers fewer artifacts than 
spiral, despite severe phase roll 
(bottom left). Bottom right: Image 
distortion displayed in difference 
image between magnitude im-
ages with and without fi eld inho-
mogeneity.

Figure 11. PROPELLER MR image is regridded onto a Cartesian lattice that increases the FOV by a factor of up to four in each direc-
tion. Left: Image at the desired FOV. Middle: Cropped image at two times the desired FOV shows severe ringing artifacts pushed outside 
the FOV. Right: A second ring of aliasing artifacts is barely visible in a 4× FOV.
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called “sinc” functions and have the form, sinc 
(x) = sin x/x. Suppose the final reconstructed FOV 
is 4L; then ideal interpolation is discrete convolu-
tion of k-space data with a sinc function evaluated 
at lattice points, as shown in Figure 13:

ƒ ideal(x) = [ƒ I](x)  = F −1(Fƒ*d F I)(x)
(7)

= F −1(Fƒ*dsinc)(x) .

So far, we have considered interpolation in one 
dimension. The concepts are easily extended to two 
dimensions, either by taking tensor products or by 
extending to radial functions. An example of tensor 
product sinc interpolation is shown in Figure 14. We 
examine the perfect 2D radial interpolator next.

Jinc Interpolation

MR imaging requires gridding data in 2D—or some-
times 3D—k-space. For head images, the patient’s head 

is contained within the head coil and cannot occupy 
corners of a full-FOV image, so the ideal interpolator 
may be the Fourier transform of an indicator on a 
disk. The Fourier transform of a radial function is 
radial, so in this case we convolve with a radial func-
tion, as depicted in Figure 15:

ƒ ideal(x) = [ƒ I|x|2<¼](x)

= F −1([Fƒ*d F I|x|2<¼])(x)

= F −1[ Fƒ*d (2J1(π|k|))](x) ,

(8)

π|k|

where (x,y) = x. The trouble with sinc and jinc inter-
polation is that although both produce great image 
quality, both are computationally costly because 
convolution kernels have support throughout all of 
k-space, as shown in Figures 13 and 15. Convolv-
ing with a kernel that has “small” support reduces 

Figure 12. Top left: “Tent” func-
tion by which k-space data are 
convolved during linear interpola-
tion. Top right: Image shading due 
to interpolation. No interpolation 
causes no shading, as denoted 
by solid line. Linear interpola-
tion onto a fi ner k-space lattice 
with one-quarter of the spacing 
creates a reconstructed image 
over four times the FOV, with 
shading denoted by dashed line. 
Higher-order cubic interpolation 
creates a reconstructed image 
with shading denoted by dashed-
dotted line. Bottom left: k-Space 
data sampled at x’s and linearly 
interpolated onto points desig-
nated by dots. Bottom right: Ideal 
image, without interpolation (solid 
line). Four-times-FOV image from 
data interpolated with linear and 
cubic interpolation (dashed and 
dashed-dotted lines, respectively) 
suffers severe shading.

Figure 13. Left: Ideal image 
shading, where image FOV is 
doubled to prevent aliasing ar-
tifacts. Right: Sinc interpolator, 
which when convolved with mea-
sured data puts exactly the data 
values back onto sampled points, 
because the sinc is a Kronecker 
delta function when evaluated 
only at the x’s.
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gridding time, and if the kernel is carefully chosen, 
image quality is largely preserved (see Figure 16).

Density Compensation

Convolution of discretely sampled data is written as 
a sum,

(ƒ*e)(x)  = ∑ ƒ(yj)e(x−yj)∆yj, (9)
j

Trajectory and Density Compensation Formulas for 
Projection Reconstruction and Archimedes Spiral 
Acquisitions

Formula
Projection

Reconstruction
Archimedes

Spiral

k-Space point K (t, θ) = te i θ K (θ, shot) 
= θ (t)ei (θ+2π shot/N shots)

∆K, density 
 compensation

∆K (t, θ) = t ∆K (θ, shot) 
= (θ  dθ/dt )(t )

where the sum runs over all sample points yj such 
that (x − yj) lies inside the support of e, and ∆yj is 
the discrete analog of dy, running roughly inversely 
proportional to sampling density. For simple non-
Cartesian trajectories such as projection reconstruc-
tion and Archimedes spirals, the sampling density can 
be calculated analytically, as listed in the Table and 
depicted in Figure 17. For more complicated k-space 
trajectories, the density compensation may require 
numerical calculation.

Deconvolution

Equation (4) implies that any gridding scheme 
multiplies the true image by the Fourier transform of 
the gridding kernel. This can be seen in the one-di-
mensional example presented in Figure 12. Typically, 
gridding kernels are approximate delta functions, so 
their Fourier transforms are slowly varying functions 
introducing low-frequency shading across the recon-
structed image. Dividing the reconstructed image by 

Figure 14. Left: MR image from 
a single phase-corrected PRO-
PELLER blade with an echo train 
length of 36 and a readout length 
of 320. Right: MR image sinc in-
terpolated up to 64 × 512.

Figure 15. Perfect radial interpolation requires convolution of k-space data by the Fourier transform of an indicator function on the disk. 
Top left: Disk of radius FOV/2. Bottom left: Plot of jinc(r). Top middle: Disk of radius FOV/4. Bottom middle: Plot of jinc(r/2). Right: Jinc ideal 
radial convolution kernel.



 
Pa

tc
h

82

the Fourier transform of the gridding kernel decon-
volves the gridding kernel, improving low-contrast 
detectability, as shown in Figure 5 (top).

PROPELLER 

From an image reconstruction point of view, PRO-
PELLER can be thought of as an extension of pro-
jection reconstruction imaging. PROPELLER is a 
relatively new hybrid technique that fi lls in k-space 
by sampling multiple rotated Cartesian data sets 
by using a standard (ie, slow) acquisition scheme, as 
depicted in Figure 3. In the limit as the blade width 
approaches one k-space line, PROPELLER turns into 
projection reconstruction. However, for blade widths 

much greater than one k-space readout line, PRO-
PELLER samples redundant data in the center of 
k-space, permitting several data corrections. Indeed, 
reconstruction of PROPELLER data requires far more 
data correction steps than most other MR imaging 
data sets.

Correction steps include the following:
1. Phase correction, which refocuses each echo and 

makes each blade’s image nearly real. It also serves to 
recenter blades that may not have been exactly cen-
tered in the middle of k-space.

2. Rotation correction, which corrects for in-plane 
patient rotation.

3. Shift correction, which corrects for in-plane pa-
tient translation.

Figure 16. Left column: Jinc in-
terpolation with only kernel points 
within k < FOV/16. Right column: 
“Perfect” jinc interpolation pro-
vides a minor improvement over 
a compactly supported kernel. 
Top: Reconstructed MR images. 
Middle: Convolution kernels. 
Only the nonzero portion of the 
fast(er) kernel with small sup-
port is displayed. Bottom: Fourier 
transforms of convolution kernels. 
Reconstructed image = true im-
age × F(ker).
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4. Data correlation, which correlates low-frequency 
data across blades and then assigns low priority to 
blades with low correlation values.

5. Density correction, for regridding onto a single 
Cartesian lattice.

6. Gridding onto a single Cartesian lattice.
Finally, the image is reconstructed via FFT, and grid-
ding is deconvolved. The six preprocessing steps are 
detailed in the following sections.

Phase Correction

Blades are combined to fi ll in k-space for fi nal re-
construction, so errors that vary from blade to blade 
must be eliminated. For instance, eddy currents may 
be different for different blade orientations, the 

patient may move between blade acquisitions, and 
so on. This fi rst data correction step serves to refo-
cus the echo within each blade, ensuring that each 
blade is centered in k-space. Low-frequency phase 
rolls are essentially removed from each blade image, 
making k-space blades essentially Hermitian sym-
metric (4). This is done in the image domain. Each 
blade is transformed into image space by means of 
FFT. A low-pass fi ltered version of the same blade is 
also subjected to FFT, creating a low-frequency blade 
image. The phase of the low-pass image is removed 
from the full-bandwidth blade image, which is sub-
sequently returned to k-space by means of inverse 
FFT, as follows:

 w(kx, ky) = Λ(kx)Λ(ky) , (10)

so

 F −1w(x, y) = sinc 2(x) sinc 2(y) , (11)

ƒwin(x, y) = F−1[(Fƒ)w](x, y)
 ,  (12)= |ƒwin(x, y)|eiφwin(x, y)

 ƒ corr(kx, ky) = F[ƒe−iφwin](kx, ky). (13)

Pre- and postcorrection blade images are shown in 
Figure 18.

Rotation Correction

Rigid body motion of an object affects its Fourier 
transform in a well-behaved fashion. Rotation of an 
object rotates its Fourier transform,

Figure 18. Top left: Real part of 
phase-corrected blade image. Top 
right: Real part of image from raw 
blade. Bottom left: Imaginary part 
of phase-corrected blade image. 
Bottom right: Imaginary part of 
image from raw blade. Note scale 
difference; phase-corrected blade 
is essentially real.

Figure 17. Archimedes spirals sample low frequencies far more 
densely than the Nyquist rate. (Reprinted, with permission, from 
reference 16.)
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 F[bl (Rθ x)](k)  = [Fbl](Rθ k) , (14)

where Rθ is a rotation matrix that rotates vectors x and k 
by angle θ, and bl represents a blade image. The goal is to
use redundant data from the center of k-space to deter-
mine first how much in-plane rotation the object under-
goes between blade acquisitions. For each blade, we have 
hundreds of low-frequency k-space samples from which 
we recover a single rotation value. This is done as de-
scribed by Pipe (4), and rotation values are used during 
subsequent correction steps and the final regrid of all 
blades onto a single Cartesian lattice. Figures 19 and 20 
show an extreme example in which a three-bottle phantom 
is manually rotated midway during image acquisition.

Translation Correction

Translation of an object results in a phase roll 
across its Fourier transform:

 F[bl (x + ∆x)](k)  = [Fbl](k)e−2π ik ⋅ ∆x. (15)

This allows us to use the same redundant low-fre-
quency data to estimate in-plane translation between 
blade acquisitions. This computation assumes that no 
rotation has occurred. Therefore, rotation correction 
must be applied before translation correction. Fur-
thermore, tricks used during the rotation correction 
to minimize errors caused by T2 decay cannot be ap-

Figure 19. Three-bottle phan-
tom images from a 23-blade 
acquisition. Brightest circle is 
from a bottle fi lled with vegetable 
oil. Other bottles contain solu-
tions designed to simulate white 
and gray matter. White matter: 
NiCl2, 1.532 mmol/L, with 1.09% 
agarose gel and 0.1% potassium 
sorbate (percentages by weight). 
Gray matter: NiCl2, 0.904 mmol/L, 
with 0.95% agarose gel. Top: 
Phantom positioned on left (left 
image) and right (right image) 
sides of the FOV. Bottom: Blades 
1:12 from fi rst data set combined 
with blades 13:23 from second 
data set to simulate motion dur-
ing imaging. Reconstructions 
are shown without (left) and with 
(right) motion correction. Correla-
tion correction yields drastically 
different values, as shown in Fig-
ure 20. Remaining artifacts are 
primarily due to errors in estimat-
ing positions for blade 1.

Figure 20. Top left: Average 
blade weights. Solid ovals in-
dicate weights without motion 
correction; open ovals indicate 
weights with motion correction. 
Bottom left: Rotations in degrees 
per blade plotted against blade 
number. Right: Shifts in pixels 
plotted against blade number. 
Outlying shift is from blade 1.
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Figure 21. Magnitude of blade convolved against conjugate of 
reference blade. Notice that the function is reasonably smooth but 
does have a single well-defi ned peak.

Figure 22. Image quality phantom was physically shifted midway through a 12-blade PROPELLER MR acquisition. Left: Data recon-
structed without motion correction. Middle: Image reconstructed with motion correction. Right: Plots of the shifts computed for each blade 
(in pixels).

plied directly to the translation computations, making 
shift estimates less accurate than rotation estimates. 
The method exploits Equation (3):

 F −1[Fbl conj(Fref)](x) = [bl*ref ](x) . (16)

In the ideal case, each blade is simply a translation 
of the reference blade. The convolution of a function 
with its complex conjugate achieves its maximum 
magnitude at the origin, and the convolution of the 
reference blade with a ∆x translate of its complex 
conjugate achieves its maximum magnitude at ∆x.

The low-frequency k-space data for each blade are 
regridded onto the same Cartesian lattice points as 
the reference blade, by using rotation values corre-
sponding to the blade orientation and the patient ro-
tation estimates. Then the k-space data for each blade 
are multiplied pointwise by the complex conjugate of 
the reference blade. These are up-sampled and Fourier 
transformed into the image domain, computing the 
convolutions of each low-frequency blade image with 
the complex conjugate of the reference blade image. 
The peak magnitude of each convolution determines 
the blade’s in-plane translation relative to the refer-
ence blade, as depicted in Figure 21. The estimates of 

both patient rotation and translation are fed into sub-
sequent reconstruction steps, the next being comput-
ing correlations of blade data:

F −1[Fref(⋅+∆x)conj(Fref)](x)

(17)

 = F −1[Fref e−2π ik ⋅ ∆x conj(Fref)](x)
 = F −1[⎥ Fref ⎥ 2 e−2π ik ⋅ ∆x](x)
 = (F −1[⎥ Fref ⎥ 2]*δ ∆x)(x)
 = (F −1[⎥ Fref ⎥ 2])(x−∆x)
 = (ref *conj(ref))(x−∆x) .

Images reconstructed with and without shift correc-
tion are shown in Figure 22.

Data Correlation

As clean and stable as the rotation and translation 
corrections may be in theory, they have one severe 
fl aw in 2D PROPELLER imaging: Patient motion is 
rarely in plane. Patients typically make complicated 
motions spanning all three dimensions, and the mo-
tion correction steps described previously correct only 
for in-plane motion. Therefore, the lion’s share of 
patient motion remains uncorrected and can corrupt 
fi nal image quality simply because the data from dif-
ferent blades are not always consistent. Correlations 
of low-frequency k-space data are computed across 
blades, and blades with low correlation values are 
given low weight relative to blades that are well cor-
related. Severe out-of-plane patient motion during a 
particular blade’s acquisition creates a low correlation 
value, so PROPELLER essentially “throws out” low-
frequency data from that blade during fi nal image re-
construction, as shown in Figure 23. The combination 
of in-plane motion correction with blade correlation 
and weighting results in substantially improved image 
quality, as shown in Figure 24.
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Density Correction

The density of points sampled within any blade is 
constant, so the density correction must handle only 
overlapping blades. In practice, PROPELLER’s density 
correction at k-space point k combines this density 
correction with correlation values. These factors are 
combined into a weight for each data point in each 
blade. Phase-corrected k-space data are weighted by 
the combined density and correlation values prior to 
the fi nal regridding. Both in-plane rotation and trans-
lation are accounted for during the fi nal regridding, 
and the PROPELLER measurements are sampled onto 
a single Cartesian k-space lattice.

Final Grid

The last image preprocessing step is to grid the cor-
rected blades onto a single Cartesian lattice. This is 
done by using a gridding method like those described 
earlier. Earlier correction steps (motion correction and 
correlation) required regridding the center of k-space 
and also used standard MR gridding. One advantage 
of PROPELLER is that it regrids from Cartesian lat-
tices onto a Cartesian lattice. Therefore, “perfect” sinc 
interpolation can be used to up-sample each blade 

(or blade center) before less-perfect regridding onto 
the (rotated) common Cartesian lattice, as sketched in 
Figure 25.

Gridding Deconvolution

As with any non-Cartesian acquisition scheme, the 
gridding convolution must be deconvolved to remove 
low-frequency shading across the image. Examples of 
pre- and postdeconvolution PROPELLER images are 
shown in Figure 5.

Figure 23. Sev-
eral blades are 
completely thrown 
out during the fi nal 
gridding process, 
which fi lls in only 
the white region of 
k-space. Data were 
collected from a 
healthy volunteer 
who rotated her 
head ±90° during 
data acquisition.

Figure 24. Reconstructions of 
a single MR imaging data set col-
lected from a healthy volunteer 
who rotated her head ±90° dur-
ing acquisition. Top left: No cor-
rection. Top right: Correlation cor-
rection only. Bottom left: Motion 
correction only. Bottom right: Both 
motion and correlation correction.
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Figure 25. PROPELLER blades sample at points denoted by 
! and are up-sampled via sinc interpolation to the points de-
noted by •.
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