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ABSTRACT A method for obtaining the three-dimensional
distribution ofchemical shifts in a spatially inhomogeneous sample
using Fourier transform NMR is presented. The method uses a
sequence of pulsed field gradients to measure the Fourier trans-
form ofthe desired distribution on a rectangular grid in (k,t) space.
Simple Fourier inversion then recovers the original distribution.
An estimated signal/noise ratio of 20 in 10 min is obtained for an
"image" of the distribution of a 10 mM phosphorylated metabolite
in the human head at a field of 20 kG with 2-cm resolution.

There has been considerable recent interest in obtaining images
from animals and humans by using NMR spectroscopy (1-9).
A recent review (10) summarizes and compares many of these
methods. With few exceptions (11, 12), previous workers have
used protons for NMR imaging because of signal/noise (S/N)
considerations and because the proton signal from tissue comes
predominantly from water and therefore is at a single resonant
frequency. The latter condition is necessary because most im-
aging methods are unable to cope with a distribution ofresonant
frequencies. We present here a method that determines the
frequency (chemical shift) distribution at each spatial point with
an optimum S/N ratio. As shown below, by suitably pulsing
magnetic gradients across a specimen contained within a single
pick-up coil, an "image" can be constructed consisting of high-
resolution NMR frequency distributions averaged over the res-
olution volume. This is possible because a pulsed gradient en-
codes positional information in the initial phases of the free in-
duction decay but does not affect the resonant frequency
distribution in space after the gradient has been turned off.
Thus, by sampling the free induction decay after a gradient
pulse, information about spatial variation can be separated from
information about frequencies. The net effect is to measure the
Fourier transform ofthe spatial and frequency distribution func-
tion of the spins. This is then inverted to obtain the spatial dis-
tribution of frequencies (chemical shifts) over the sample.

THEORY
We wish to observe an object that has a spatially varying fre-
quency distribution. Let p(x, 8) be the distribution ofchemically
shifted frequencies, 8, at the point x in such an object, as shown
in Fig. 1. Ifwe apply a rfpulse in the presence ofa uniform stat-
ic field, Ho0, the resultant free induction decay (FID) will be

S(t) = f p(x,8)eidxd8,
assuming the entire object is excited and detected uniformly.
Obviously, in this case, there is no way to recover the original
distribution p(x,86) because the spatial information is inextricably
mixed with the frequency information. If, however, in addition
to the static uniform field, HOZ, we add a slowly (compared with

the resonant frequency of the spins) varying linear gradient,
[G(t) x]z, as shown in Fig. 1, how will this affect the FID? Under
these conditions, the phase of each spin at time t after a rfpulse
will depend on both x and 8 as its instantaneous frequency is

dOb
now given by - Ht= YHTt), where y is the gyromagnetic ratio

for the species under observation and HT(t) = [Ho + G(t)-x](1
+ E). Here we have just augmented the externally applied field,
Ho + G(t)-x, by (1 + E) to take into account the electronic shield-
ing that causes the chemical shift effect. The chemically shifted

frequencies, 8, are 'y(l + E)HO. Thus,d,A
= 8 + y(l +

E)G(t)-x = 8 + yG(t)-x to a very high accuracy since e 10-5
and the ratio of the gradient to the main field strength is also

"'10-5. Integrating our final expression for d-a. we obtain

4(x,t) = 8t + y JG(T)xdT.

Ifwe let

,(t) = -y fG(T)dT,

then the observed FID will be

S(t) = f p(x,8)e1[&-<t)>0dxd8.
This is just the Fourier transform of p(x, 8) in both space and

frequency. Let g(K,t) be this transform. Our final answer is then
S(t)==t)J].

This result simply states that the observed FID samples the
Fourier transform, p, of the original distribution along a curve
in (Kft) space described by the equation

dV -yG(t).

Consider the case in which G(t) is merely a constant, G. Then

S(t) = p(-yGt,t).
So, by measuring the FID in the presence ofthe gradient G,

we have measured the Fourier transform of the desired distri-
bution function along the straight line k = - yGt in (k,t) space.
If it were possible to measure along all such lines, we could
reconstruct the original distribution as its transform would be
known everywhere. It is clear, however, that we are limited in
k space by the maximum possible gradient, Gm.. In addition,
the nonuniform sampling in k space is usually inefficient in
terms of S/N ratio as a higher density ofsamples near the origin

Abbreviations: S/N, signal/noise; FID, free induction decay; Fru-6-P,
fructose 6-phosphate; P-creatine, phosphocreatine.
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FIG. 1. An object that has a spatially varying chemical shift dis-
tribution in a magnetic field gradient. M(x,t) is the local magnetization
density at point x at time t and is equal to fp(i,8)e*t t)d8. Lines in-
dicate constant frequency at time t. The total signal, S(t), is the in-
tegral of M(x,t) over the sample volume.

than needed results from the need to sample adequately near
tm'.. This sampling problem has been reviewed by Klug and
Crowther (13) in a theoretical analysis of different reconstruc-
tion algorithms.
An easier method would be to measure the transform on a

rectangular mesh in (kt) space, eliminating the nonuniform
sampling problem. To accomplish this, we simply turn off the
gradient after a short time, to. The FID now is

S(t) = A-yGtt);
= A(-yGtot);

t < to

t > to.

Thus, for times t > to, we are sampling # parallel to the t axis
with k equal to - yGto.

By measuring S(t) at various values of Gto (set by the size of
the object and the degree of spatial resolution desired), we will
have sampled the Fourier transform of the original distribution
inside a box limited by the maximum values of Gto and by the
maximum and minimum sampled times. If we then Fourier
transform these values to obtain a filtered version ofthe original
distribution, how closely will it agree with the original? Since
the k-space sampling can be uniform and extended to large k,
its transform will have only the well-known errors associated
with aliasing or frequency foldover and the minimum resolution
of a finite sampling period. In this connection, we should point
out that in this method all the eigenvalues discussed by Klug
and Crowther are 1, thus leading to a reconstructed image in
which all the data are used with no loss ofhigh spatial frequen-
cies. The transform in time has, in addition to these, the errors

coming from the loss of information for t < to. This attenuates
broad frequency features of width 1/to Hz. This should not
be serious as to can be =1 ms or less in most cases. For example,
for 31P (y = 1,720 Hz/G), a gradient strength of3 G/cm, pulsed
for 1 ms, would correspond to a resolution of 1 mm in the

sample.
Before turning to a specific example, the S/N ratio in general

should be considered. Perhaps the simplest way to determine
the overall S/N ratio is to consider the case in which only a single

resolution element is present in the coil at some arbitrary lo-
cation. Then, as various gradients are applied, the same fre-
quency distribution is observed in the coil each time but with
various initial phases. Assume the noise is dominated by coil
losses and is independent ofthe signal. Under these conditions,
the Fourier transform in k space simply untangles the various
initial phases so that the different measurements can be added
together coherently. Thus, after n different measurements, the
signal will be n times larger while the noise will only increase
as n112. The S/N ratio is then n"12 times the S/N ratio for a single
pulse. This is, of course, just the expected increase due to the
longer observation time. Therefore, since the system is linear
and the series ofoperations on each individual volume element
is unchanged if the entire specimen is present, the S/N ratio
for the entire specimen is equal to that which would be obtained
for each element separately. Hence, the only loss over normal
high-resolution Fourier transform NMR is that due to the
smaller filling factor occupied by the spatial resolution element.
This appears to us to be the optimum possible for imaging meth-
ods of this type (i.e., using NMR).
To demonstrate the feasibility of this method, we have ap-

plied it to a simple one-dimensional phantom consisting of two
parallel cylinders, one containing Pi and the other containing
fructose 6-phosphate (Fru-6-P). The demonstration was re-
stricted to one dimension because of computational size limi-
tations; with sufficient memory, three dimensions could be
done with the same algorithms.

METHODS
The data were taken at 145.7 MHz on a Bruker 360 HX spec-
trometer that had been modified to allow the room tempera-
ture y-gradient shim coils to be pulsed by the computer con-
trolling the spectrometer through a digital-to-analog converter.
The sample consisted of two 100-1.l pipettes, one filled with
0.2 M Pi and the other filled with 0.2 M Fru-6-P, placed ap-
proximately at the center ofa standard 10-mm sample tube. The
ends ofthe pipettes were sealed and the rest ofthe sample tube
was filled with water to improve the magnetic field homogene-
ity. The pipettes were 1.5-mm inside diameter and their centers
were separated by =2.5 mm. The sample was rotated in the
magnet until the maximum effect of a static y gradient was ob-
served. We estimate the plane between the cylinders to be
aligned with the y-gradient axis to ± 150. The volume of each
pipette sampled by the coil is =20 Al (i.e., 1 cm in the vertical
direction).

Data were taken at 64 different values of the y gradient in
the following manner. A 300 rfpulse was applied simultaneously
with turning on the gradient and initiation of data collection.
After 5 ms, the gradient was removed and the remainder of the
FID was sampled. This was repeated 10 times for each gradient
value after which the FID was stored and the computer initiated
the same sequence for the next gradient value. Each gradient
step corresponded to 0.1 G/cm. Total time for data accumula-
tion was 2.3 min.

After acquisition, the FIDs were zeroed during the first 5 ms
and then Fourier transformed with respect to time to obtain a
frequency distribution and the region ofinterest around the two
resonances was selected. The spectra were then Fourier trans-
formed again with respect to the gradient values.

RESULTS
A two-dimensional plot ofthe doubly transformed data is shown
in Fig. 2. The horizontal axes are space and frequency. The spa-
tial scale was calculated from the known strength of the gra-
dients and corresponds to 0.3 mm per point. The origins of
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FIG. 2. Distribution in one spatial dimension and frequency (chemical shift) of a phantom consisting of two parallel 1.5-mm (inside diameter)
cylinders spaced 2.5 mm apart. Solid lines at the left and rear are sums over space and frequency, respectively. The dotted line is the theoretically
expected spatial profile normalized in height to the larger peak.

both axes are arbitrarily chosen. The lower wider peak is from
Fru-6-P, the other is from Pi. To visualize directly the spatial
distributions one would like to sum the data at a given point over
frequency. Unfortunately, because the initial 5 ms of the FID
was zeroed, a sum of just the real part must necessarily give
zero. To overcome this, we have used the amplitude of each
point-i.e., the square root ofthe sum ofthe squares of the real
and imaginary parts-as the vertical displacement in the figure.
The solid curves at the edges are the sums over space and fre-
quency. The dashed curve is the theoretically expected spatial
profile normalized to the Pi peak in amplitude and position. The
Fru-6-P intensity is lower than that of the Pi because its extra
width in frequency due to the higher viscosity ofthe 0.2 M Fru-
6-P solution causes proportionately more of its intensity to be
lost when the first 5 ms of the FID is zeroed.
We have also simulated this technique on a computer by

using theoretically calculated FIDs in both one and two di-
mensions. The one-dimensional simulations agree quite well
with our data. The two-dimensional simulation is shown in Fig.
3 for two compounds in two different regions. We have plotted
the two peak amplitudes as a function ofspace together with the
sum of all frequencies on the lower graph. As expected, we can
resolve the two separate components even in the case in which
the physical regions overlap.

or so different values in the T2 time of 250 ms. This can be ac-
complished by pulsing the gradient coils, in each 50-ms interval,
in such a way that G(t) is an antisymmetric function with respect
to the middle of the interval where the refocusing 1800 pulse
occurs. Then by varying the strength or direction ofG(t) in each
interval, we can measure a different k value. In this scheme,
corrections are needed for the effects of the true T2 decay on
the Fourier components measured in the later intervals. As
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DISCUSSION
To estimate reasonable resolutions and imaging times in a three-
dimensional object such as an animal or a human, we use the
fact that the S/N ratio expected in the high-resolution chemical
shift spectrum from a given volume in a three-dimensional sam-
ple obtained by this method is the same as that obtained if only
that region were contributing signal to the pickup coil. In the
case of a small animal or an isolated organ, such as a perfused
heart, which have been studied in static fields up to 80 kG, we
can estimate S/N ratios from the observed spectra.

For example, =2 ml of skeletal muscle in a static field of 60
kG gives after one 900 pulse a S/N ratio of 20 for the 10-Hz-wide
resonance due to the phosphocreatine (P-creatine) present at
20 mM (14). Spin echo measurements on these muscles give a
T2 of 0.25 s for P-creatine (unpublished results). Since the 10-
Hz-wide resonance rings down in 50 ms (72PP = 30 ms), if there
were some way to sample different k values while simulta-
neously refocusing the spins, we would be able to measure five
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FIG. 3. Computer simulation of a two-dimensional object that has
spatially varying chemical shifts.
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these T2s are known, such corrections should be straightfor-
ward. To sample again, one must now wait a time on the order
of T1, which is 2.5 s for P-creatine under these conditions (14).
We can then reasonably expect to measure one k value in 0.5
s on the average.

Because of the fast repeat times used, the S/N ratio of the
entire muscle for a single pulse is 10 instead of the 20 men-
tioned above. For a volume of 2 mm3, it would be 10-2 for one
pulse. If 103 k values are desired (resolving the muscle into re-
gions 10 x 10 x 10 on each side), then 500 s are required for
their accumulation. Each resolution volume would then be 2
mm3. The S/N ratio of each of the 2-mm3 resolution elements
after 500 s would be 30 [(103)1/2] times the S/N ratio of that vol-
ume in a single pulse, or 0.3, obviously too small to be useful.
However, by adding 100 such volumes together, a S/N ratio of
3 would be achieved from a volume of 0.3 ml. This volume, if
it were a cube, would be 6 mm on a side. But it need not be
a cube, as any of the three-dimensional elements can be added
together (for example, if one wishes to observe a long cylinder
or a thin disk).

Scaling such estimates down to 20 kG and large specimens
can be done by reducing the S/N ratio as the field to the 3/2
power. A further reduction is needed if an entire specimen is
to be observed as the pickup coil must be made larger, reducing
the S/N ratio linearly with its diameter.t

First, we estimate for one pulse the S/N ratio from a 10 mM
phosphorylated metabolite in a 2-ml volume inside a human
head (assumed to be 20 cm on a side) in a 20-kG static field, using
the previous S/N ratio of 20 for 20 mM P-creatine in 2 ml of
muscle. Then, for one pulse, we have

10 mM new field\
3

S/No =20 x x

20mm old field/

or

old coil radius
new coil radius

10mm 20\3a/ (2cm

20 mM (60) (20 cm/

If the same relative resolution of 10 x 10 x 10 is desired and
we assume the same sort of line widths as in skeletal muscle,
in 500 s we again would have measured 103 k values. The res-

olution volume now is -2 x 2 x 2 ml, so the S/N ratio in this
volume is 0.1 x 30 x 8 = 24. If a resolution of 1 cm is desired,
then 8 times as many k values are needed, requiring 1 hr ofdata
accumulation. In this case, the S/N per resolution volume of
1 ml is 0.1 x 90 x 1 = 9.

Although estimates of this sort must be regarded with some
caution until experimentally verified, they are usually correct
within a factor of 2 or so, provided there are no serious correc-

tions due to rf skin depth effects. At 20 kG, the resonant fre-
quency of 31p is 35 MHz, which corresponds to a skin depth of

10 cm in an aqueous solution of physiological salinity (100

t This reduction occurs because the amount of flux from a magnetic
dipole that intersects a coil of radius r decreases inversely with Vr.

mM). This will cause some phase distortion of the signals orig-
inating near the center of the head but not more than a factor
of2 loss in their amplitude. As each volume element ofthe sam-
ple can be phased separately as required, it should be no prob-
lem to correct the phases of the internal regions if necessary.
Thus, we feel that it is reasonable to expect that images of the
major phosphorylated metabolites in intact animals and humans
can be obtained in tens of minutes with spatial resolutions of
a few centimeters and S/N ratios of =10. In addition, the use
of surface coils (15) to image only regions of interest will reduce
the number of different k values needed to recover an image
and therefore result in faster data acquisition.

With regard to human observations, safety considerations are
quite important. As far as is known, brief exposures to static
fields of 20 kG cause no harmful effects. The average rf power
levels absorbed would be less than a few tenths of a watt deliv-
ered to the entire head. As this is less than 1% of the resting
heat generated in the head, it seems unlikely to cause any dif-
ficulties. Another consideration is the pulsed gradients re-
quired. As mentioned above, 3 G/cm for 1 ms corresponds to
a resolution of 1 mm, far smaller than anything required. A
more realistic gradient is 0.3 G/cm for 1 ms, corresponding to
1-cm resolution. If this is applied across 20 cm for 1 ms, then
a time-varying field of 6 kG/s would be applied to the object.
Again, this is within accepted limits (16).

In conclusion, we have presented a method for obtaining with
high S/N ratio the chemical shift distribution in a three-dimen-
sional object. The technique appears to be of general applica-
bility and is expected to produce an image of a phosphorylated
metabolite of 10 mM concentration in a human head in a 20-kG
static field in 10 min with a resolution of 2 cm and a S/N ratio
of 10-20.
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