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Partiial Fourier reconstruction algorithms exploit the redun- 
dancy in magnetic resonance data sets so that half of the data 
is c,alculated during image reconstruction rather than ac- 
quired. The conjugate synthesis, Margosian, homodyne de- 
tection, Cuppen and POCS algorithms are evaluated using 
spatial frequency domain analysis to show their characteris- 
tics and where limitations may occur. The phase correction 
used in partial Fourier reconstruction is equivalent to a con- 
volution in the frequency domain and the importance of accu- 
rately implementing this convolution is demonstrated. New 
reconstruction approaches, based on passing the partial data 
through a phase correcting, finite impulse response (FIR), 
digital filter are suggested. These FIR and MoFIR algorithms 
have) a speed near that of the Margosian and homodyne de- 
tectilon reconstructions, but with a lower error; close to that of 
the CuppenlPOCS iterative approaches. Quantitative analysis 
of the partial Fourier algorithms, tested with three phase es- 
timation techniques, are provided by comparing artificial and 
clinical data reconstructed using full and partial Fourier tech- 
niqules. 
Key words: partial Fourier; phase correction; FIR filter. 

INTRODUCTION 

Part la1 Fourier reconstruction algorithms exploit the re- 
dundancy in the magnetic resonance (MR) data set. Such 
algorithms are useful when asymmetric data sets arise in 
spin and gradient echo MR imaging. The algorithms dis- 
cussed here are the conjugate synthesis (I), Margosian et 
al. (:?, 3), homodyne detection (4), Cuppen et al. (5) and 
Projection onto Convex Sets (POCS) methods (6, 7). The 
recent review paper by Liang et al. (8) has provided an 
explanation and qualitative comparison of these algo- 
rithms. The alternative spatial frequency domain view- 
point used in this paper indicates both the limitations of 
the existing methods and a faster approach to implement- 
ing POCS. This analysis suggests new reconstruction ap- 
proaches, based on passing the partial data through a 
phase correcting, finite impulse response (FIR),  digital 
filter. All the partial Fourier reconstruction algorithms 
will be evaluated in conjunction with three phase esti- 
mation techniques: Margosian’s low frequency filtered 
estimate (Z), the generalized series (9) and a 2D polyno- 
mial model estimate (10, 11). A quantitative comparison 
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of the partial Fourier reconstructions with the full Fou- 
rier images is obtained using both artificial and real clin- 
ical data. 

THEORETICAL ANALYSIS OF EXISTING PARTIAL 
FOURIER ALGORITHMS 

Partial Fourier algorithms perform considerable data ma- 
nipulation in either (or both) the image and spatial fre- 
quency (original data) domains. A number of limitations 
can be exposed by providing a complete analysis of the 
algorithms in a single domain. This new information can 
be used to suggest new algorithms or at least new direc- 
tions to take to overcome deficiencies. 

For easy ID and 2D image comparison, all 2D images, 
p(x, y), will be displayed with the partial data dimension 
placed horizontally. It is therefore convenient to assume 
that the original data, s(u,  v); -N/2 5 v < N/2 is inverse 
discrete Fourier transformed (DFT) in the v dimension to 
give a new data matrix, sy( u) .  Each row of sy( u ) ,  non-zero 
for -rn 5 u < Nl2, must be reconstructed to form the 
corresponding image row of p(x, y), and can be consid- 
ered as an independent data set. 

Conjugate Synthesis, Margosian, and Homodyne 
Detection Imaging 

Conjugate synthesis imaging (1) attempts to reconstruct a 
full data matrix based on the assumption that the final 
image p(x, y) has only real components (i.e., no phase 
terms). The procedure uses the complex conjugate of the 
known data [O I u < N/2] to fill in the unknown data. The 
image is reconstructed using an inverse DFT on the com- 
pleted sy(u)  data set. 

The Margosian partial Fourier algorithm (2) multiplies 
the data set, s,(u), by a merging filter, with a frequency 
response H( u) ,  to produce a new data set s’,,( u )  with its 
lower and negative frequencies filtered. This filtering 
smooths the transition between calculated and known 
data to reduce Gibbs’ ringing during the DFT operation 
which follows. The data are then inverse Fourier trans- 
formed to the image space and each pixel multiplied by 
the phase estimator function, 0,(x) = e-j+y(x), where 
$y (x) is the phase estimate. In the frequency domain, this 
is equivalent to convolving the filtered data with the 
Fourier transform (FT) a,( u )  of the phase estimate 0,(x) 
giving 

Si(u) = {s,(u)H(u)} 8 Oy(u)  where O,(u) = FT(B,(x)). 
111 

The reconstructed image is taken to be the twice the real 
part of the image. This is equivalent to adding the fre- 
quency domain data to the reflected conjugate of itself. 
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The frequency domain analysis of the Margosian method 
is shown in Fig. 1. 

'The Margosian image is normally displayed using a 
magnitude display. One of the problems with the magni- 
tude display of images is the noise bias which leads to a 
decreased detectability for low intensity objects. This can 
be avoided by displaying a phase corrected real image 
(12-14) provided that the phase estimator is not corre- 
lated to the noise (10). Since the images obtained from a 
partial Fourier reconstruction are commonly displayed 
using a magnitude display, it is not often realized that 
these images are phase corrected if properly recon- 
structed. If these images were displayed as a real data set, 
then the improved low intensity detectability suggested 
by Berstein et al. (13) would become available. This is the 
essence of the homodyne detection approach (4) which is 
equivalent to a Margosian reconstruction with a real 
rather than a magnitude display of the reconstructed 
image. 

Cuppen and POCS Methods 

These iterative approaches attempt to overcome the 
shortcomings of the Margosian method. The Lindskog 
Cuppen implementation (15) inverse Fourier transforms 
the original data to the image domain where it is conju- 
gated and multiplied by eJZm'(x). This new image is then 
Fourier transformed back into the spatial frequency do- 
main to be used to fill in the missing data points. The 
process is then iterated until a suitable convergence is 
found. 

ORIGINAL 
DATA SET 

MULTIPLY - 
CONVOLVE 

The frequency domain analysis of this Cuppen imple- 
mentation is shown in Fig. 2. Conjugating the data in the 
image domain is equivalent to conjugating and reflecting 
the spatial frequency domain data around the zero fre- 
quency point. This also reverses the sign of the phase 
error in the image domain, which must be corrected by 
multiplying with the function O;(x) = e'2'r(x). The image 
phase correction operation corresponds to a convolution 
in the frequency domain with the Fourier transform 
of O'Jx). Finally the new data set is placed in the original 
data set locations where no data had been collected, and 
the process iterated. 

POCS (6, 7) is based on the principle that the correct 
image is the intersection of all images whose Fourier 
transform agrees with the measured partial data and all 
images whose phase is the same as the phase estimate. To 
find the intersection of these two images sets, the data set 
is first inverse Fourier transformed into the image do- 
main, where the complex values of the image are pro- 
jected onto a line that is at an angle equal to the phase 
estimate, 

The new image is then Fourier transformed back to the 
spatial frequency domain where it is used to replace the 
unknown data. The process is repeated and on the last 
iteration, instead of substituting the new data into the 
data set from the previous iteration, a merging filter is 
used. 

The relationship between the POCS and Cuppen's al- 
gorithms is more obvious if the projection operation is 
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FIG. 1. Frequency domain analysis of the Margosian/homodyne 
detection partial Fourier reconstruction method. Removal of the 
phase correction stage provides the analysis for the conjugate 
synthesis approach. 

FIG. 2. Frequency domain analysis of the Cuppen's partial Fou- 
rier reconstruction algorithm. The POCS algorithm is equivalent to 
averaging the Cuppen's corrected data with the original data until 
the final iteration, when a merging filter is applied. 
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reworked (10) 

This simpler form contains constant trigonometric terms 
that need only be calculated on the first iteration, and no 
magnitude operations, so that it executes twice as fast as 
the original POCS algorithm. The first term of the re- 
worked equation is equivalent to Cuppen’s algorithm. 
The POCS projection operation then averages this “Cup- 
pen” output with the original data, limiting the change in 
the new estimate and the convergence, but improving the 
ovendl stability. The merging operation between the orig- 
inal and derived data that occurs on the last step reduces 
the Gibbs’ ringing in the image associated with the dis- 
continuity in the frequency domain. 

FIR AND MOFlR RECONSTRUCTIONS 

One reason that partial Fourier reconstruction algorithms 
are not as successful in practice as in theory is associated 
with distortions introduced during the phase correction. 
Multiplying an image with a phase correction Oy(x) in the 
spatial domain is equivalent to circularly convolving the 
spatial frequency domain sy( u )  with @(u) = FT[B,(x)l. 
Figure 3 schematically illustrates this operation. Many of 
the points in sy(u)  are invalid since they were not col- 
lected. The phase correcting convolution smears these 
invalid points into the legitimate data, decreasing the 
size of the valid data. The problem is greater for large data 
asymmetries since the data, sYoctual( u) ;  u - -m, will then 
have a large amplitude. The application of the merging 
filter, typically a shifted Hanning filter, in the Margosian 
partial Fourier method would further decrease the size of 
the valid data. In addition, the phase correction operation 
distorts the characteristics of the filter so that its merging 
action is less than ideal. 

The first pass through the Cuppen algorithm has the 
same distortion problems with the convolution operator 
as does the Margosian incomplete data set with its zeros 
in the range u < -m. Each successive iteration however 
produces a better estimate of these values and typically 

U 
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FIG. :3. Phase correction in the image domain corresponds to a 
circular convolution operation in the frequency domain. Edge effect 
data distortions will occur because of the incomplete data set. The 
distortions are reduced by having a low bandwidth phase estimator. 

three or four iterations are sufficient to reconstruct the 
image (5). A further complication occurs after the first 
iteration with the Cuppens and POCS algorithms as the 
circular convolution mixes (distorts) the high (valid) pos- 
itive and negative frequency components responsible for 
high resolution image characteristics. The importance of 
this effect (not shown in Fig. 2) depends on the ampli- 
tude of the high frequency components. 

The degree of distortion introduced by the phase cor- 
rection is directly related to how (and when) the merging 
filter is applied, the bandwidth of the phase correction 
operation, eJu), and whether the phase correction is 
applied by multiplication in the spatial domain (circular 
convolution) or by direct convolution in the frequency 
domain where the edge effects of the convolution can 
possibly be more easily controlled. This direct convolu- 
tion is equivalent to passing the partial data through a 
finite impulse response filter (FIR) digital filter. 

Preliminary work by McGibney ef al. (10) has shown 
that it is possible to directly obtain a narrow bandwidth 
2D polynomial phase estimate (11) for spin-echo images. 
For gradient-echo images, a narrow bandwidth phase es- 
timator could be obtained using a windowed version of 
the phase estimator, 

@wjndowe,Ju) = @ ( ~ ) w ( ~ l ;  w ( ~ )  = 1; 1~11 5 p 

= 0; lul > p 
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where 2p + 1 is the window length (bandwidth) of the 
phase estimator. The data set is then passed through (con- 
volved with) this FIR filter to phase correct the positive 
data frequencies. The short filter length implies that di- 
rect convolution would be computationally efficient 
(Order(2pN) complex operations). The negative frequen- 
cies can be determined simply by applying conjugate 
symmetry to the phase corrected data. 

However, this simplistic approach would lead to prob- 
lems if the phase was not completely corrected as the 
associated discontinuity would create low frequency 
ringing in the image as with the other algorithms. Instead 
a merging filter (e.g., a shifted Hanning filter) is applied 
to the phase corrected data before it is reflected and 
added to itself. The merging filter’s transition should be 
kept narrow enough to ensure that little of the distorted 
edges of the phase corrected data is introduced into the 
image. (There is a trade off between the need to ensure 
smooth data merging and the requirement to reject data 
distorted during the phase correction. It may be possible 
for the merging filter to have a narrower transition that 
used in the Margosian filtering since the phase correction 
has already occurred.) The data is then added to the time 
reversed conjugate of itself to produce a full Fourier data 
set which can be transformed to produce an image. The 
frequency domain analysis of the FIR partial Fourier al- 
gorithm is shown schematically in Fig. 4. 

A closer look at the spatial frequency domain expres- 
sion of the Margosian (Fig. 1) and FIR approaches (Fig. 4) 
shows that the only difference in the algorithms is the 
order of phase correction and filtering. This difference is 
significant since these operators do not commute, despite 
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statements to the contrary by Nolls et al. (4). The differ- 
ence between the two methods becomes greater as the 
phase shifts become larger. 

The merging filter using in the Margosian and homo- 
dyne techniques was designed to smooth the transition 
between known and zero values to avoid Gibbs' ringing 
during reconstruction. The merging filter in the FIR al- 
gorithm also smooths the transition, but is designed more 
to remove the data distorted by the phase correction edge 
effects. The differences are schematically demonstrated 
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FIG. 4. Frequency domain analysis of the N R  and MoNR partial 
Fourier reconstruction algorithms. 

FIG. 5. Schematic diagram showing 
the distortions introduced into the 
Margosian/homodyne partial Fourier 
reconstructed data set as the merging 
filter is applied prior to the phase cor- 
rection. The FIRalgorithm removes this 
distortion and accounts more accu- 
rately for the edge effects (shaded ar- 
eas) associated with the phase correc- 
tion operator's bandwidth. 

ORIGINAL DATA 

k 

in Fig. 5 which represents some simplistic data that is 
shifted in the frequency domain by the effect of a simple 
linear phase term. The phase correction operation is rep- 
resented by O ( u )  = 6(u  - n). The merging filter is illus- 
trated using a ramp filter although a shifted Hanning 
filter would actually be used. The shaded areas in Fig. 5 
schematically show the edge distortions that would be 
present if the phase correction operator had a bandwidth 
of 2 p  + 1. It can clearly be seen that the amount of data 
affected by the convolution edge effects is considerably 
lower in the FIR approach. The Cuppen/POCS algorithms 
achieve a similar reduction in edge effects by virtue of 
their iteration. The reason that the homodyne detection 
and Margosian reconstructions are limited to images 
with slowly varying phase (small p )  can be seen by the 
large shaded area for these algorithms. The use of a merg- 
ing filter prior to the phase correction means that the 
errors are introduced directly into the large amplitude 
terms around 1u1 = 0 ,  maximizing the distortion. 

As will be seen in the reconstructed images, the sim- 
plistic approach of the FIR reconstruction is degraded by 
the windowing operation on the phase estimates which 
introduces truncation artifacts if the true bandwidth is 
high. This is a problem for gradient echo images where a 
really narrow bandwidth phase estimator has not yet 
been found (10). These artifacts are reduced in the mod- 
ified FIR (MoFIR) approach which uses all the phase 
correction function, e( u ) ,  without truncating it. This 
however reintroduces some of the convolution edge ef- 
fects discussed earlier. However if the phase estimator is 
properly chosen, its values outside the range +- p are still 
small so that the smearing of the noncollected data will 
not extend too far into the valid data and will be effec- 
tively removed by the use of the narrow transition merg- 
ing filter. When successful at reconstruction, this algo- 
rithm phase corrects the data so that the image can be 
displayed with a real display to obtain increased low 
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intensity detectability mentioned for the homodyne 
technique. 

The MoFIR phase correction convolution can be imple- 
men ted directly in the frequency domain. However, the 
long length of the phase estimator means that it is more 
computationally efficient (Order(Nlog,N) compared to 
Order(2pN) complex operations) to inverse Fourier 
transform the partial data into the image domain, multi- 
ply by the phase correction, Fourier transform back to the 
frequency domain to apply the merging filter before re- 
flecting the data and reconstructing. Thus the MoFIR re- 
construction is “2 FFTs” slower than the Margosian ap- 
proach, but computationally more efficient than the 
Cuppens and POCS approaches which are more than “21 
FFTj” slower, where I is the number of iterations. 

TEST METHODS AND RESULTS 

Two test images were evaluated. The first was an artificial 
image, a simple box shape (see Fig. 6A) generated in the 
spatial frequency domain from a truncated sinc function. 
This, artificial image was modified with a quadratic glo- 
bal phase error and two rapid localized phase changes 
( 0 . 1 ~  and 0 . 5 ~  high, 5 pixels wide, respectively). These 
phase errors represent static field and instrumentation 
effects and a small and large flow induced phase changes. 
Both exact and inaccurate (quadratic only) phase esti- 
mates were supplied to the partial Fourier algorithms. 
This was intended to correspond to practical situations 
where the exact phase is not determined because of the 
effect of image noise or the nature of the phase estimation 
algorithm. 

Analysis on artificially generated data can be rightly 
criticized as being unrealistic and not representing the 
true clinical picture. However, when artificially gener- 
ated data is used in conjunction with clinical data, it can 
give an insight on the reasons why certain distortions 
appear on the clinical data. The final test was on a high 
signal-to-noise clinical image: an axial view of the head 
acquired with a spin echo series and a data set size of 256 
X 256 (Fig. 6B). The phase of the image was slowly vary- 
ing with sharp local phase changes associated with blood 
flow near the bottom of the image and in several locations 
around the circumference of the brain. 

Partial data sets were generated by setting the values 
for u < -m equal to 0 in the full data sets. Each partial 
Fourier algorithm was tested on the clinical images with 
the filtered (low frequency), the generalized series (GS) 
and the 2D polynomial estimate. The low frequency 
phase estimate ( 2 )  uses as a phase estimate the image 
generated by zero padding the center portion of the data 
-m 2 u < m to -Nl2 2 u < Nl2 and reconstructing using 
the standard Fourier technique. By contrast, the general- 
ized series (9) attempts to model all the known frequency 
information using a separable function where one com- 
ponent contains only image amplitude terms (based on 
an edge enhanced magnitude image) and the other only 
phase information. Further details may be found in the 
review by Liang et al. (8). 

MacFall et al. (16) have attempted to generate a phase 
estimate using a 1D polynomial. This work was extended 
first by Berstein and Perman (12) to low order polynomi- 
als in both data directions and then by McGibney et al. 
(10, 11) to a true 2D polynomial fit. A major advantage of 

FIG. 6. (A) Artificial box data with a 
several discontinuities superirn- 
posed on a general quadratic phase 
shift. The heavy line indicates the 
area used for local error deterrnina- 
tion. (B) Full clinical image with sev- 
eral location of large (rapid) phase 
changes. The box indicates the 
area used for local error deterrnina- 
tion. 
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the polynomial estimators is that they give “smooth” 
phase estimates. This generates a narrow band-width 
phase estimator, which should reduce the edge effects 
associated with the phase correction operator. For the 
images used in this analysis the full width at tenth max- 
imum of the phase estimators for the 2D polynomial, 
filtered and GS algorithms was 5, 17, and 217 pixels, 
respectively. For a gradient echo image, the Margosian 
phase estimate would have the lowest bandwidth as 
there currently is not a suitable smooth phase estimator 
for this class of image (10). A quantitative comparison of 
the phase estimators used with both spin and gradient 
echo images is to be the subject of a future paper. 

A quantitative analysis was made to evaluate the effec- 
tiveness of the partial Fourier algorithms. Difference im- 
ages, determined by subtracting the magnitude of the 
partial Fourier image, ppartlol(x, y), from the magnitude of 
the full Fourier reconstruction, pfull(x, y ) ,  were evaluated. 
All tests were done using partial Fourier data sets with m 
= 16. The short length of the symmetrically sampled data 
will tend to emphasize any reconstruction problems. To 
further emphasize the phase effects, both data sets were 
deliberately offset by 2 pixels to ensure that the data was 
asymmetrically positioned relative to the expected “cen- 
ter.” The power error measure, 

indicates the relative size of the difference image to the 
full Fourier image. It was applied over regions, R, that 
covered the full image and a small region. The full image 
measure is a global estimate of the overall quality of the 
phas’e fit, including regions of rapid phase change where 
phase estimation can be difficult. The second small re- 
gion evaluation measures the quality of the reconstruc- 
tion away from these difficult regions. Any increased 
error in the local error measure indicates that image dis- 
tortion has been introduced by the poor reconstruction of 
ot:her areas. 

Figure 7 provides a comparison of the partial Fourier 
reconstruction of the artificial box image when used with 
the various phase estimation algorithms. The corre- 
sponding quantitative error measures are given below the 
figures. The degree to which inaccuracies in one image 
portion affect other image areas should be examined. The 
local error area is indicated by the thick line in the fig- 
ures. Figure 8 show the difference images together with 
the quantitative measures for the full image data. The 
local area chosen for quantitative evaluation is indicated 
by a small box in the full image (Fig. 6B). 

The conjugate synthesis results are included for com- 
pleteness. All test images indicated that when any phase 
terms are present, the basic assumption of this method is 
invalid and unacceptable reconstruction occurs. 

‘The Margosian and homodyne detection reconstruc- 
ticins are equivalent except that they display a magnitude 
and a real component image respectively, which should 
have no effect on the measures for the high SNR images 
analyzed. When any phase term is present, the systematic 
errors caused by the phase convolution distortions dis- 

FIG. 7. Artificial box data reconstructed using the different partial 
Fourier reconstruction algorithms in conjunction with various phase 
estimation algorithms. The global and local error values are indi- 
cated. 

cussed earlier can be seen in all test images as errors in 
the DC and very low frequency image components. How- 
ever, these errors are greatly reduced from the complex 
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synthesis approach for only a small increase in compu- 
tation time. 

Given the exact phase terms, both the Cuppens and 
POCS iterative approaches quickly move to a line image 
that is equivalent to that of the full Fourier reconstruc- 
tion. In practice, the phase estimate will not be exact and 
the procedures have a tendency to become unstable in 
this situation if iterated too often. Given an inaccurate 
phase estimate (quadratic terms only), the Cuppen algo- 
rithm had large amplitude distortions in the regions of 
local rapid phase change which spread as low frequency 
oscillations into areas where the phase estimate had been 
corrwt. The rippling occurs because of the mismatch of 
the positive and negative data sets where they meet in the 
frequency domain; producing Gibbs' ringing artifacts in 
the image domain. This ringing is particularly evident in 
the full image when the phase estimate is generated from 
the generalized series algorithm as this approach is itself 
susceptible to ringing artifacts (10). The POCS conver- 
gence is slower than for the Cuppen's algorithm because 
of the averaging action. However, the local phase error 
effects do not spread as far through the image because of 
the s,moothing action of the averaging and the use of a 
merging filter. 

Because the high frequency bandwidth of the exact 
phase estimate invalidates its basic assumptions, the FIR 
method performs poorly on the artificial box data. With 
the lower bandwidth of the smoothed phase estimate, it 
provides a reconstruction on both the line and clinical 
data similar to the Cuppen or POCS algorithms, with 
artifacts near the rapid phase changes. Unlike Cuppen 
,and IPOCS reconstructions, these distortions are strictly 
localized to the area where the phase has been incorrectly 
determined (sharp changes). This localizing effect is also 
seen when the FIR is used on the clinical image with 
filterled and generalized series phase estimates, despite 
their larger bandwidth. 

The MoFIR reconstruction approach was designed to 
work with both the low bandwidth 2D polynomial and 

FIG. 8. Difference images for the 
clinical data reconstructed using 
partial Fourier reconstruction meth- 
ods in conjunction with various 
phase estimation techniques. Glo- 
bal and local error values are indi- 
cated. 

higher bandwidth filtered and generalized series phase 
estimates. This allows its use with both spin and gradient 
echo images, unlike the direct FIR approach. Errors from 
an inaccurate phase estimate are again localized, avoid- 
ing the systematic distortions found in the Margosianl 
homodyne detection reconstructions. 

An estimate of the calculation time required for the 
algorithms was obtained by implementing the algorithm 
on a TAAC application's accelerator connected to a SUN 
31160 workstation and does not include system overhead 
such as image movement. The results are given in Table 
1. The times for phase estimation plus partial Fourier 
reconstruction range over several orders of magnitude. 
The times for POCS reconstruction is for the faster algo- 
rithm suggested by McGibney (10). The actual times for 
the Cuppen and POCS algorithms depends on the num- 
ber of iterations required, which is image-dependent. 

Despite the fact that the FIR reconstruction used a 
small bandwidth filter during the direct convolution, it 

Table 1 
Comparison of the Times of the Partial Fourier Reconstruction 
Algorithms Both Individually and in Conjunction with the Phase 
Estimation Algorithms 

Partial Partial 

Fourier 
Partial Fourier 

Partial Fourier 
Fourier PIUS genera,ized plus 

only filtered polynomial 
(s) estimate estimate 

(S) 
(S) 

(s)  

Conjugate-symmetry 2.4 7.1 464 7.1 
Margosian-hornodyne 2.9 7.6 464 7.6 
Cuppen (4 iterations) 12.5 17.2 474 17.2 
POCS (4 iterations) 14.6 19.3 476 19.3 
FIR (direct) 9.6 14.3 471 14.3 
FIR (circular) 5.3 10.0 467 10.0 
MoFIR (circular) 5.3 10.0 467 10.0 
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was still considerably slower than the MoFIR reconstruc- 
tion which required a number of additional transforms 
between the frequency and time domains. This is a con- 
sequence of the 2pN and Nlog,N time relationship be- 
tween the direct and circular convolution methods. In 
retrospect, the FIR reconstruction, despite its shorter fil- 
ter length, could also have been determined this way. The 
current implementation of the Cuppen and POCS algo- 
rithms via the computationally efficient circular convo- 
lution must be balanced against the fact that the circular 
convolution mixes the high positive and negative data 
frequencies. Direct convolution can allow better control 
of the edge effects. By contrast, there is no difference in 
the FIR and MoFIR algorithms implemented by either 
approach. This is because there are not yet any negative 
frequency data components when the phase correction 
convolution is applied. 

CONCLUSIONS 

Five existing methods of partial Fourier imaging (conju- 
gate symmetry, Margosian, homodyne detection, Cup- 
pen, and POCS) were analyzed using equivalent fre- 
quency domain operations to determine how they 
introduced the missing data and what their weaknesses 
were. The analysis was used to suggest two new partial 
reconstruction techniques (FIR and MoFIR) in an attempt 
to obtain the best features of the other algorithms but in 
a faster implementation. 

Global and local quantitative measures of the algo- 
rithms was made using an artificial I D  image and a 2D 
clinical images. Similar distortion effects and systematic 
errors were seen for the algorithms whether reconstruct- 
ing artificial or clinical data with the conjugate symme- 
tr,y, Margosian and homodyne approaches giving the 
worst results. 

The Cuppen and POCS algorithms converged to the 
exact image (given enough iterations) if a true phase es- 
timate was provided. However, if the phase estimate was 
not exact, both algorithms produced major non-localized 
artifacts. However, their global performance was better 
than the other algorithms. 

The FIR and MoFIR methods are fast non-iterative al- 
gorithms implemented using an approach that allowed 
for the correction of edge effects associated with the 
phase correction operation. When the phase estimate was 
not exact, artifacts were produced as with the other re- 
construction approaches. Unlike the other reconstruc- 
tions, these inaccuracies were confined to the region of 
the error and did not produce significant ringing in the 
correctly phase estimated areas. The MoFIR algorithm 
was the more stable in the presence of high frequency 
phase components, making it applicable for both spin 
arid gradient echo reconstructions. 

All the algorithms performed the best with a low band- 
width phase estimator. Through frequency domain anal- 
ysis of the partial Fourier reconstruction algorithms we 
have shown the importance of properly accounting for 
the edge effects associated with the phase correction 
techniques used in existing partial Fourier algorithms. 
These edge effects can be minimized when only small 

values of the partial data width m are available by using 
a low bandwidth phase estimator and a narrow merging 
filter. In particular, the merging filter must be applied 
after the phase correction so that the merging filter char- 
acteristics are not distorted, and to ensure that the phase 
correction edge effects are removed. When only high 
bandwidth phase estimators are available, as in a gradi- 
ent echo image, a larger value of m is required for optimal 
reconstruction. After phase correction, a sharp transition 
merging filter is used in the MoFIR algorithm to remove 
(reduce) the data made invalid by the phase correction 
convolution operation, and then the data is reflected and 
reconstructed. 

However full removal of the edge effects can only be 
achieved by reconstructing using the undistorted data 
between [-m + p I u < Nl2 - 1 - Zp].  This implies some 
technique, such as modeling (8, 17), to implicitly or ex- 
plicitly extrapolate the data beyond u = N12 - 1 - 2p to 
avoid the convolution distortion associated with smear- 
ing the high positive and negative frequencies of the par- 
tial data set. In addition, since the phase estimator band- 
width may be greater than the partial data width, it will 
also be necessary to generate the data for u 5 -m + 2p. 
After these extrapolations, the partial Fourier reconstruc- 
tion can be completed. A number of papers (10, 18, 19) 
have reported early results from the combination of mod- 
eling and partial Fourier reconstruction, although those 
algorithms were not implemented with the intention of 
removing the phase correction distortions. The quantita- 
tive evaluation of the joint technique is to be the subject 
of a future paper. The evaluation is difficult as it is nec- 
essary to distinguish between the effects of modeling on 
both the full Fourier and partial Fourier reconstructions 
and the correction of the phase estimation edge effects. 
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