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Magnetic Resonance Imaging (MRI) is an essential technology in modern medicine. However, one of its
main drawbacks is the long scan time needed to localize the MR signal in space to generate an image.
This review article summarizes some basic principles and recent developments in parallel imaging, a
class of image reconstruction techniques for shortening scan time. First, the fundamentals of MRI data
acquisition are covered, including the concepts of k-space, undersampling, and aliasing. It is demon-
strated that scan time can be reduced by sampling a smaller number of phase encoding lines in k-
space; however, without further processing, the resulting images will be degraded by aliasing artifacts.
Nearly all modern clinical scanners acquire data from multiple independent receiver coil arrays.
Parallel imaging methods exploit properties of these coil arrays to separate aliased pixels in the image
domain or to estimate missing k-space data using knowledge of nearby acquired k-space points. Three
parallel imaging methods—SENSE, GRAPPA, and SPIRiT—are described in detail, since they are employed
clinically and form the foundation for more advanced methods. These techniques can be extended to non-
Cartesian sampling patterns, where the collected k-space points do not fall on a rectangular grid. Non-
Cartesian acquisitions have several beneficial properties, the most important being the appearance of
incoherent aliasing artifacts. Recent advances in simultaneous multi-slice imaging are presented next,
which use parallel imaging to disentangle images of several slices that have been acquired at once.
Parallel imaging can also be employed to accelerate 3D MRI, in which a contiguous volume is scanned
rather than sequential slices. Another class of phase-constrained parallel imaging methods takes advan-
tage of both image magnitude and phase to achieve better reconstruction performance. Finally, some
applications are presented of parallel imaging being used to accelerate MR Spectroscopic Imaging.

� 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Magnetic Resonance Imaging (MRI) is an essential technology
for modern medicine. MRI can be used to generate high-
resolution anatomical and functional images, and it is relatively
safe due to the lack of ionizing radiation. Furthermore, MRI is sen-
sitive to many physical properties, including the relaxation times
T1 and T2, diffusion, and flow. Image contrast can be weighted by
these properties by adjusting the scan settings to highlight differ-
ent anatomical or physiological features.

However, the flexibility of MRI comes at the expense of long
scan times compared to other imaging modalities. Spatial localiza-
tion of the MRI signal is one of the main reasons for this long scan
time. The basic steps of every pulse sequence – radiofrequency
excitation, gradient encoding, and data acquisition – must be
repeated many times to generate an image. The time needed to
acquire an image can range from hundreds of milliseconds or less
for certain scans, such as fast gradient echo or echo planar imaging
(EPI), up to several minutes for spin echo or diffusion-weighted
sequences.

This review summarizes key recent developments in parallel
imaging, a class of image reconstruction methods that can be used
to reduce scan time. Parallel imaging reconstructions are employed
in nearly every clinical MRI scan to enable fast data collection, a
necessity for many applications. These methods can be used to
shorten the total scan time to improve patient compliance, which
is vital for pediatric patients [1] and patients with neurodegenera-
tive [2] diseases. Many abdominal and cardiac scans are acquired
while patients hold their breath, and faster imaging makes breath
holds easier to perform, particularly for sick patients. Savings in
scan time can be invested in enhancing the spatial resolution or
increasing the volumetric coverage. Some sequences, such as EPI
and turbo spin echo (TSE), are prone to artifacts because many k-
space lines are collected after each excitation pulse. Parallel imag-
ing methods reduce the echo train length, which decreases blur-
ring from T2⁄ or T2 effects and geometric distortion [3,4]. Rapid
imaging is critical for dynamic imaging, such as real-time visual-
ization of organs or interventional procedures [5], dynamic con-
trast enhanced MRI [6], and functional MRI (fMRI) for monitoring
brain activity [7].

The goal of this manuscript is to provide the reader with a fun-
damental understanding of parallel imaging, and to explore some
recently developed extensions to these techniques and their appli-
cations. First, a review of MRI data acquisition including the basics
ideas of k-space, undersampling, and aliasing artifacts is presented.
Next, SENSE, GRAPPA, and SPIRiT are introduced; these techniques
form the foundation for other advanced parallel imaging methods.
Finally, more recent developments including simultaneous multi-
slice (SMS) imaging, CAIPIRINHA, non-Cartesian parallel imaging,
and parallel imaging in conjunction with spectroscopic imaging
are presented.

2. Data acquisition in MRI

MRI is a form of Nuclear Magnetic Resonance (NMR), its distinct
feature being that MRI localizes signals in space to generate an
image. The positions of spins are determined by linking their pre-
cession frequencies to their spatial locations, which is accom-
plished by employing magnetic field gradients. After exciting
spins with a radiofrequency (RF) pulse, a magnetic field gradient
is applied along one direction while signal is collected, a process
called ‘‘frequency encoding”. The gradient introduces a linear vari-
ation in spin precession frequency so there is a one-to-one corre-
spondence between frequency and position, neglecting chemical
shift effects. The receiver coils used in MRI acquire signals over
the entire imaging volume, so the net received signal contains a
mixture of many frequencies. The Fourier Transform is used to
decompose the signal into its component frequencies in order to
create a 1D projection image. However, frequency encoding can
only localize signals along one spatial dimension; other dimen-
sions are localized using a mechanism known as phase encoding.
An additional gradient is briefly applied along a direction perpen-
dicular to the frequency encoding direction after RF excitation.
The gradient imparts a position-dependent phase across the object,
which depends on the gradient strength and duration. This phase
does not change while the frequency encoding gradient is applied
in the perpendicular direction, resulting in data that are encoded in
two spatial dimensions. A 2D image is formed by repeating the
processes of RF excitation, phase encoding, and frequency encod-
ing many times, stepping through different values for the phase
encoding gradient. Note that a third spatial dimension may also
be localized using a second phase encoding gradient to image a
3D volume.

The raw MRI data resulting from these applied magnetic field
gradients form a matrix of spatial frequencies called k-space, and
an image can be generated by applying the 2D discrete Fourier



Fig. 1. MRI data are acquired in k-space, and an image is generated by applying a 2D discrete Fourier Transform to these data. The field-of-view (FOV) along x and y is
inversely related to the spacing between adjacent k-space points, Dkx and Dky . Likewise, the spatial resolution Dx and Dy is inversely related to the farthest excursion in k-
space that is sampled, kmax

x and kmax
y .

Fig. 2. Examples of different k-space trajectories and their associated aliasing artifacts. Acquired k-space data are indicated by solid lines, while missing data are depicted
with dashed lines. (a) Fully-sampled Cartesian data produces a full FOV image. (b) Uniformly undersampled Cartesian k-space with an acceleration factor of R = 3 leads to
coherent aliasing artifacts. (c) With variable density sampling, a higher concentration of lines is acquired near the k-space center, and the imaging artifacts are more diffuse.
(d) Radial data can be undersampled by skipping radial spokes at regular intervals, which leads to diffuse streaking artifacts. (e) Spiral k-space can be undersampled by
skipping spiral arms, which produces incoherent swirling artifacts.

J. Hamilton et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 101 (2017) 71–95 73
Transform to these data [8]. The desired spatial resolution and
field-of-view (FOV) dictate how much k-space data should be
acquired (Fig. 1). The spacing between adjacent k-space lines is
inversely related to the FOV:

FOV ¼ 1
Dk

ð1Þ

To increase the FOV along one direction, the spacing between
sampled k-space points must decrease. The Nyquist Sampling The-
orem states that the FOV should be larger than the object size to
avoid aliasing. If this condition is not satisfied, high-frequency sig-
nals will falsely appear as lower frequency signals. Because fre-
quency information is used to determine spatial position, any
part of the object outside the encoded FOV will be superimposed
on signals from within the FOV, producing aliasing artifacts.

The spatial resolution is inversely proportional to the distance
between the origin and the maximum extent of k-space (kmax)

Dx ¼ 1
2kmax

ð2Þ
To improve the spatial resolution, k-space points farther from the
origin must be sampled.

Usually, k-space points are sampled on a Cartesian grid by col-
lecting one phase encoding (ky) line each repetition time (TR). The
total acquisition time (TA) is determined by the TR, the number of
acquired phase encoding lines (Ny), and the number of signal aver-
ages (NA)

TA ¼ Ny � TR � NA ð3Þ
Note that in imaging, the number of averages is usually set to

one for the sake of speed, and thus this is not a parameter that
can typically be further reduced. Thus, this equation suggests
two ways to reduce the total scan time. First, the TR may be short-
ened. However, the TR affects image contrast and is restricted by
the type of pulse sequence used for imaging. Fast gradient echo
scans use TRs on the order of milliseconds, while spin echo or
diffusion-weighted sequences require much longer TRs. Rapid gra-
dient switching is needed to attain short TRs, which risks inducing
peripheral nerve stimulation [9–11]. Short TR sequences may



Fig. 3. The signal received by each coil in a receiver array consists of the magnetization weighted by the coil’s sensitivity profile. The single-channel images can be combined
to yield a single coil-combined image (right).

Fig. 4. The effects of an inhomogeneous receiver profile can be modeled in the image domain as a multiplication of the magnetization and the coil sensitivity profile. In k-
space, this corresponds to a convolution between the coil sensitivity spectrum and the Fourier Transform of the image, which smears information throughout k-space.
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deposit large amounts of RF energy into the patient [12]. There are
also hardware limitations that restrict the minimum TR, like max-
imum gradient amplitude and slew rate.

Rather than shortening the TR, another option would be to
reduce the number of lines collected in the phase encoding direc-
tion (i.e. acquire fewer ky lines). One simple form of undersampling
is to decrease kmax by collecting a smaller number of k-space lines
all near the center of k-space. However, this will degrade the spa-
tial resolution, which may lead to non-diagnostic images. Another
option is to skip phase encoding lines at regular intervals (Fig. 2).
The amount of undersampling is described by the acceleration fac-
tor R, defined as the ratio between the number of k-space points in
the fully-sampled data compared to the undersampled data.
Undersampling increases the spacing between adjacent k-space
lines, which decreases the effective FOV. This results in coherent
aliasing artifacts where replicates of the object appear at equally
spaced intervals in the reduced FOV image, with the number of
replicates equal to the acceleration factor (Fig. 2b).

The goal of parallel imaging is to remove the aliasing artifacts
that result from undersampling phase encoding lines in k-space.
There are a number of different parallel imaging techniques,
although they all share the same basic principles, which are
described below.

3. Phased array coils and basic principles of parallel imaging

Parallel imaging requires special hardware known as phased
array coils that are now supplied with nearly every modern clinical



Fig. 5. Schematic of a SENSE reconstruction for a uniform Cartesian acceleration of R = 3 with four coils. Signal from three equally spaced pixels in the object (left) are aliased
onto the same pixel in the reduced FOV images.
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scanner. Phased arrays contain multiple independent receiver
channels [13]. Each coil element is most sensitive to the magneti-
zation closest to it and less sensitive to magnetization further
away. The spatial sensitivity can be visualized as the coil’s sensitiv-
ity profile (Fig. 3). Note that in these maps, the coil sensitivity falls
off rapidly with increasing distance from the coil. Individually,
each coil has high local signal-to-noise ratio (SNR) but inhomoge-
neous coverage. To expand the FOV while maintaining high SNR,
several coils are organized in an array. The images from each chan-
nel are usually combined into a single image with relatively homo-
geneous intensity by taking a root sum-of-squares combination or
using more advanced methods that preserve SNR [14]. Dedicated
surface coil arrays are provided for different parts of the body. Coil
arrays can have up to 32 [15,16], 64 [17], or 96 [18] channels for
brain imaging or 128 channels for cardiac imaging [19], although
most high-count arrays are still in research development.

Intuitively, every coil can be used to generate a unique view of
the object, which provides additional spatial information that can
partially replace gradient encoding to reduce scan time. Each coil
detects signals from the object weighted by the coil’s sensitivity
profile (Fig. 4). This weighting can be modeled as a multiplication
of the coil sensitivity profile and the magnetization. The use of a
coil with an inhomogeneous sensitivity also affects k-space. Multi-
plication in the image domain is equivalent to convolution in the
frequency domain. Therefore, in k-space the Fourier Transform of
the image is convolved with the spectrum of each coil’s sensitivity
profile.

Theoretically, the maximum acceleration factor is limited by the
number of coils, as will be explained in the SENSE section. For par-
allel imaging to be successful, each coil must have a unique sensi-
tivity variation along the direction that is accelerated. For example,
an array with four coils arranged in a line may be able to attain a
maximum R = 4 along one direction, but no acceleration would
be possible in the perpendicular direction.
4. Representative parallel imaging techniques: SENSE, GRAPPA,
and SPIRiT

Parallel imaging techniques fall into one of two classes, depend-
ing on whether aliased pixels are separated in the image domain
(as in SENSE) or missing phase encoding lines are reconstructed
in k-space (as in GRAPPA). These methods are described next, as
they are the techniques most commonly used in clinical practice.
SPIRiT and its extensions will also be covered to highlight the con-
nection between image domain and k-space reconstructions.

4.1. SENSE

SENSitivity Encoding (SENSE) is a parallel imaging technique
which unfolds superimposed pixels in the image domain [20]. Con-
sider an example with Cartesian k-space sampling, a uniform
acceleration factor of R = 3, and a receiver array with four coils
(Fig. 5). Undersampling reduces the FOV threefold, such that three
pixels from the fully-sampled image fold onto the same pixel in the
aliased image. SENSE uses prior knowledge of the coil sensitivity
profiles to separate folded pixels and recover the full FOV image.

The first step in the SENSE reconstruction is to form a sensitivity
matrix S for a given pixel in the aliased image. This matrix has size
nc � np, where nC is the number of coils and np is the number of
aliased pixels, which is equal to the acceleration factor. Let the sig-
nal at location ðx; yÞ in the aliased dataset received by coil j be

denoted Ialiasedj ðx; yÞ. It can be expressed as the sum of three pixels
in the full FOV image that have been weighted by their coil sensi-
tivities and are separated by distance FOV=3.

Ialiased1 ðx;yÞ
Ialiased2 ðx;yÞ
Ialiased3 ðx;yÞ
Ialiased4 ðx;yÞ

2
66664

3
77775
¼

S1ðx;yÞ S1 x;yþ 1
3FOV

� �
S1 x;yþ 2

3FOV
� �

S2ðx;yÞ S2 x;yþ 1
3FOV

� �
S2 x;yþ 2

3FOV
� �

S3ðx;yÞ S3 x;yþ 1
3FOV

� �
S3 x;yþ 2

3FOV
� �

S4ðx;yÞ S4 x;yþ 1
3FOV

� �
S4 x;yþ 2

3FOV
� �

2
6664

3
7775

Ifullðx;yÞ
Ifull x;yþ 1

3FOV
� �

Ifull x;yþ 2
3FOV

� �

2
64

3
75

ð4Þ

This equation can be written more compactly as

a ¼ Sv ð5Þ
where v has size np � 1 and contains the unfolded image pixels, and
a has size nC � 1 and contains the signals at one location from all
coils in the aliased image. When the sensitivity matrix is square
and invertible, the equations can be solved by multiplying each side
by S�1. Otherwise, the pseudoinverse of the sensitivity matrix
(called the unfolding matrix) is used

v ¼ ðSHSÞ�1
SHa ð6Þ

If the acceleration factor exceeds the number of coils, then the
SENSE equations will not be invertible. In practice, the largest
achievable acceleration factor is usually smaller than the theoreti-
cal limit because coil sensitivities overlap and are not orthogonal.



Fig. 6. In TSENSE and TGRAPPA, dynamic data are acquired using a time-interleaved sampling scheme that collects different phase encoding lines for each image frame. Coil
sensitivity information for TSENSE or calibration data for TGRAPPA are obtained by merging adjacent k-space frames using a sliding window to produce a fully-sampled
dataset, albeit with lower temporal resolution.
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As mentioned earlier, the coil sensitivities must have variations
along the accelerated direction for them to provide the spatial
encoding required by the parallel imaging reconstruction.

The coil sensitivities needed for SENSE are typically measured
during a prescan. Because sensitivity profiles usually have gradual
intensity and phase changes, they can be measured quickly at a
low spatial resolution. One approach is to acquire uncombined
channel images at the full FOV and divide them by a root sum-
of-squares image; a second option is to divide them by an image
obtained with a body coil, which should have homogeneous sensi-
tivity. The division removes anatomical features and only leaves
the coil sensitivity information. Next, the sensitivity profiles may
be lowpass filtered or fitted to a polynomial model to reduce noise,
and they can be extrapolated beyond the object and into areas with
low signal.

Some variants of SENSE use coil maps extracted from the accel-
erated data and are termed auto-calibrating. In time-adaptive sen-
sitivity encoding or TSENSE, k-space is undersampled using an
interleaved trajectory (Fig. 6) [21]. Several undersampled k-space
frames are merged to produce a fully-sampled k-space, which
has a longer temporal footprint but is sufficient to estimate the coil
sensitivities. TSENSE is effective even if the coils move slightly dur-
ing the acquisition, for example due to breathing, since the sensi-
tivities are updated dynamically. In other auto-calibrating
techniques like mSENSE, coil sensitivities are estimated by acquir-
ing a few additional lines near the center of k-space to generate
low-resolution reference images [22].

One common feature of parallel imaging is that noise in the
reconstructed image is amplified, and the degree of amplification
varies over the image. The geometry factor, or g-factor, describes
the spatial pattern of noise enhancement. The g-factor depends
on many variables, including the number of coils, array configura-
tion, coil loading, and scan plane orientation. The signal-to-noise
ratio in the reconstructed SENSE image (SNRaccelerated) is related
to that of the fully-sampled image (SNRfull) according to
SNRacceleratedðx; yÞ ¼ SNRfullðx; yÞ
gðx; yÞ

ffiffiffi
R

p ð7Þ

In addition to g-factor losses, SNR decreases with the square
root of the acceleration factor. This effect is known as Fourier aver-
aging in signal processing, where SNR scales with the square root
of the number of measurements. This loss in SNR is not unique
to SENSE and is an unavoidable feature of all parallel imaging
methods.

There are several optional processing steps that can improve
images reconstructed with SENSE. Noise properties of the receiver
array can be incorporated into the reconstruction to improve the
SNR and lower the g-factor. Tikhonov or total variation regulariza-
tion can also be performed to improve the conditioning of the
inverse problem [23–25]. Regularization reduces noise amplifica-
tion but may lead to residual aliasing if applied too heavily.

SENSE is one of the two main parallel imaging methods used
routinely in the clinic (the other is GRAPPA). The reconstruction
is provided by most MRI scanner manufacturers, and many scans
are customarily accelerated by a factor of two or three. Most ven-
dor implementations are able to display the reconstructed images
immediately after data collection. The following is a sampling of
clinical applications where SENSE is used to reduce scan time or
improve spatial resolution. SENSE has been applied to accelerate
whole-brain dynamic contrast enhanced exams [26]. Retrospective
cardiac CINE images have been generated using TSENSE with
motion correction [27] and SENSE combined with compressed
sensing [28]. Real-time cardiac imaging can be performed with
temporal resolutions as high as 13 ms per frame [29], and SENSE
can enable whole-heart visualization of coronary arteries [30].
One study found that scan time for musculoskeletal exams can
be reduced by half without compromising diagnostic quality
[31]. SENSE is also used in MR Angiography (MRA) exams to visu-
alize intracranial vessels [32], abdominal vasculature [33–35], and
peripheral vessels [36].
4.2. GRAPPA

Whereas SENSE unfolds aliased signals in the image domain,
GeneRalized Partially Parallel Acquisitions (GRAPPA) synthesizes
missing data points directly in k-space [37]. As described above
and shown in Fig. 3, collecting data with multiple inhomogeneous
receiver coils weights the magnetization by each coil’s sensitivity
profile. In k-space, the use of inhomogeneous receiver coils effec-
tively ‘‘spreads” information from one k-space point to nearby k-
space points (Fig. 4). GRAPPA exploits these k-space redundancies
across coils to reconstruct missing k-space data using neighboring
acquired points.



Fig. 7. Schematic of the GRAPPA reconstruction. (a) An example GRAPPA kernel for the reconstruction of Cartesian data undersampled by a factor R = 3. The kernel contains
source points from three readout points and two phase encoding lines (a so-called 3 � 2 kernel). Although not shown in the diagram, the kernel uses source points from all
coils to synthesize target points in one coil. (b) For GRAPPA calibration, several additional lines are collected at the center of k-space (the ACS region) to estimate the GRAPPA
weights (Step 1). The weights are then used to synthesize the undersampled parts of k-space (Step 2).
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In GRAPPA, a single missing k-space data point, called a target
point, is synthesized as a linear combination of acquired neighbor-
ing k-space points, called source points. The spatial arrangement
of source and target points is called the GRAPPA kernel. Each
acquired source point is multiplied by a coefficient, or GRAPPA
weight, and the results are added to estimate the target point. A
single target point for one coil is reconstructed using source points
from all other coils. This process can be represented mathemati-
cally as

starg;iðkx; ky þ DkyÞ ¼
Xnc
j¼1

X
sx

X
sy

wði; j; sx; syÞ � ssrc;jðkx þ sx; ky þ syÞ

ð8Þ
Fig. 8. Robustness of SENSE and GRAPPA to respiratory motion during calibration. Two
inspiration and end expiration. The data collected at end inspiration were retrospective
derived from the inspiration (top left) and expiration (top right) scans. Likewise, a GRAP
lines) from the inspiration (bottom left) and expiration (bottom right) scans. The coil sen
residual aliasing in SENSE; less disruptive aliasing artifacts are seen in GRAPPA.
where i is the coil index for the target point, j is the coil index for the
source point, sx and sy denote the position of the source points
within the kernel, and w is the weight for a given source point.
For Cartesian acquisitions, the weights are shift invariant to a first
approximation, so the same GRAPPA weights can be applied
throughout k-space. For every unacquired k-space point, the recon-
struction may be written in matrix form as

Starg ¼ W � Ssrc ð9Þ
In this equation, Ssrc is a vector of source points with size

ncnk � 1 (where nk is the kernel size, or number of k-space source
points included in the kernel), Starg is a vector of target points with
size nc � 1, and W is a matrix of the GRAPPA weight set with size
nc � ncnk.
fully-sampled Cartesian scans were acquired under breathhold conditions in end
ly undersampled by a factor of R = 2. SENSE was performed using coil sensitivities
PA reconstruction was performed using the ACS data (the center 40 phase encoding
sitivity mismatch between calibration and undersampled scans leads to noticeable
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The reconstruction can be visualized as convolving or sliding
the GRAPPA kernel throughout k-space; as the kernel moves from
point to point, the weights are multiplied by the kernel source
points to reconstruct the kernel’s target points (Fig. 7). A typical
kernel may consist of six source points from each coil, with three
in the readout direction and two in the phase encoding direction,
centered around a target point. Including more source points tends
to improve the reconstruction quality [38] but may require addi-
tional calibration data, as discussed below.

While SENSE uses additional information in the form of coil
sensitivity profiles to unfold aliased pixels, GRAPPA requires extra
data to estimate the weight set. GRAPPA is considered to be ‘‘auto-
calibrating” because several additional phase encoding lines, called
the auto-calibration signal or ACS, are collected near the k-space
origin for calculating the weights. The GRAPPA kernel is moved
to every possible position within the ACS to accumulate many
instances where the source points and target points are both
known. Then the GRAPPA equation can be inverted to solve for
the unknown weight set. To have an overdetermined system of
equations, there must be more than ncnk instances of the kernel
geometry within the ACS. The GRAPPA weights will be more robust
if more calibration data are collected since the system of equations
will be more overdetermined and less susceptible to noise. If the
ACS lines are collected as part of the accelerated scan, they may
be included in the final reconstruction to improve image quality.
Alternatively, the ACS data can be collected as a separate low-
resolution scan, which will improve the temporal resolution of
the undersampled data. GRAPPA has the interesting property that
the weight sets are robust even if the calibration and undersam-
pled scans have different sequence parameters. This is important
for applications such as diffusion imaging or fMRI where the
sequence requires long repetition times, but a fast sequence, such
as Fast Low Angle Shot (FLASH), can be used for calibration [39].

The GRAPPA weights can also be calibrated dynamically during
the scan using methods such as TGRAPPA [40]. Like TSENSE, k-
space data are acquired with a time-interleaved sampling pattern
(Fig. 6). Data from adjacent time frames are merged using a sliding
window to form a low temporal resolution, fully-sampled k-space
for calibrating the GRAPPA weights. The GRAPPA weights are then
applied to the undersampled k-space frames to reconstruct images
at the nominal temporal resolution. TGRAPPA allows for dynamic
updates of the GRAPPA weights and is well-suited for free-
breathing or real-time applications.

The SNR of images reconstructed using GRAPPA is also reduced
according to Eq. (7). As in SENSE reconstructions, it is possible to
generate g-factor maps for GRAPPA that quantify the amount of
noise enhancement across the image. Whereas SENSE g-factor
maps are derived from the sensitivity matrix, GRAPPA g-factor
maps can be computed analytically from the GRAPPA kernel [41].
The g-factor maps can aid in choosing an optimal kernel size for
a given coil configuration and loading.

Because GRAPPA does not require an explicit estimate of the
coil sensitivities, it tends to be more robust than SENSE to inconsis-
tencies between the calibration and undersampled data. Fig. 8
shows an example of an abdominal scan acquired at end inspira-
tion with an acceleration factor of R = 2. Separate calibration data
were collected at end expiration after the coil array had moved,
which were used to estimate coil sensitivities for SENSE and the
weight set for GRAPPA. The residual aliasing is much more pro-
nounced in the images reconstructed with SENSE compared to
GRAPPA, especially near the center of the image. It can also be dif-
ficult to measure coil sensitivities in areas with low signal, such as
the lungs or sinuses. In addition, it is possible to use GRAPPA to
reconstruct images even when the FOV is smaller than the size of
the object [42]. SENSE reconstructions do not perform well in this
case because the coil sensitivities themselves contain wraparound
artifacts from parts of the object that lie outside the FOV. However,
both techniques rely on the same basic information, namely coil
sensitivity variations, to enable the reconstruction of unaliased
images from undersampled data.

GRAPPA is robust and widely used clinically (like SENSE) to
reduce acquisition time or improve spatial resolution. Like SENSE,
most vendor implementations of GRAPPA are able to display recon-
structed images almost immediately after acquisition. Some appli-
cations include cardiac CINE imaging with GRAPPA [43,44] or
TGRAPPA [45] and dynamic imaging of swallowing and pharyngeal
movement [46]. Interventional imaging requires high temporal
resolutions and rapid scan plane reorientations that can be
achieved with parallel imaging reconstructions like GRAPPA
[47,48]. Spine protocols are notoriously long but can be shortened
two- or threefold with GRAPPA [49–51]. GRAPPA has also been
used to accelerate MRA exams [52,53]. In hyperpolarized MRI,
GRAPPA is exploited to collect data quickly while polarization
levels are still high [54,55]. Sequences such as EPI and TSE, which
are commonly used for fMRI and diffusion imaging, are prone to
blurring, distortion, and signal dropout due to long echo train
lengths, which can be mitigated using GRAPPA [56–58]. Another
interesting application of parallel imaging techniques such as
GRAPPA is reducing acoustic noise for better patient comfort [59].
4.3. Self-consistent parallel imaging

4.3.1. SPIRiT
Iterative self-consistent parallel imaging (SPIRiT) [60] combines

features of SENSE and GRAPPA. Like GRAPPA, SPIRiT uses k-space
kernels to recover missing information by exploiting correlations
between neighboring k-space points. However, the reconstruction
is framed as an inverse problem like SENSE. Regardless of the orig-
inal sampling trajectory, the output of SPIRiT is a Cartesian k-space.
The SPIRiT reconstruction is typically initialized with the zero-
filled and undersampled k-space, and it is solved iteratively as an
optimization problem. On each iteration, the algorithm moves
toward a solution that minimizes and balances the errors between
two terms: calibration consistency and data consistency

The first error term is calculated using a k-space convolution
kernel or SPIRiT kernel and is called the ‘‘calibration consistency”
term. Recall that in GRAPPA, each target point is expressed as a
weighted sum of nearby acquired points. SPIRiT conveys this rela-
tionship more generally, where every point on the final Cartesian
grid is expressed as a weighted sum of all neighboring grid points,
including data points that were synthesized and not originally
acquired. This process is visualized as convolving or sliding the
SPIRiT kernel throughout k-space. An example of a 5 � 5 kernel is
shown in Fig. 9, which includes both collected and missing k-
space points. If the correct solution is found, convolving a given
k-space point with the SPIRiT kernel should produce the same k-
space data, and the first error term will be zero. Like GRAPPA,
SPIRiT requires additional calibration data to estimate the SPIRiT
kernel coefficients. For Cartesian scans, the center of k-space is
fully-sampled so that enough repetitions of the SPIRiT kernel can
be accumulated by moving the kernel throughout this region.

The second term in the optimization enforces consistency with
the undersampled data and is called the ‘‘data consistency” term.
In other words, the reconstruction is allowed to recover missing
k-space points but it should not change the acquired data points.
At the originally sampled k-space positions, the difference between
the reconstructed data and acquired data should be zero.

The SPIRiT reconstruction proceeds either for a fixed number of
iterations or until the change between iterations falls below a cer-
tain threshold. Additional constraints can be incorporated into the
cost function to improve the final image quality. These may include



Fig. 9. Schematic of the SPIRiT reconstruction. SPIRiT reconstructs data onto a Cartesian k-space grid. A SPIRiT kernel (left) is defined where each target point (shown in
yellow) is expressed as a linear combination of all surrounding grid points (shown in blue), including both points that were originally acquired and points that were
synthesized during the reconstruction. The SPIRiT kernel is calibrated using a fully-sampled region near the center of k-space (Step 1). Then a solution is found that satisfies
the SPIRiT kernel relationships and is consistent with the acquired data (Step 2). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 10. Important features of the ESPIRiT reconstruction. (a) ESPIRiT requires calibration data from the center of k-space. A calibration matrix is created by sliding a kernel
through this region and reshaping each kernel instance into a row of the matrix. (b) Many of the singular values of the calibration matrix are close to zero, meaning that this
matrix has a null space. (c) Eigenvector maps can be derived from the calibration data. The dominant eigenvectors (leftmost column) behave like coil sensitivity maps. The
non-dominant eigenvectors (all other columns) can be thought of as ‘‘soft” sensitivity maps and can be used in a relaxed SENSE reconstruction.
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terms for spatial regularization (e.g. wavelets as in l1-SPIRiT [61]),
off-resonance correction to reduce blurring, or noise correlations
between coils to enhance SNR.

4.3.2. ESPIRiT
ESPIRiT is an extension of SPIRiT that provides insights into the

connections between GRAPPA and SENSE [62]. Briefly, ESPIRiT uses
k-space kernel operations to derive a set of eigenvector maps that
behave like coil sensitivities, which can be incorporated in a gener-
alized SENSE reconstruction.
ESPIRiT requires additional calibration data in the form of a
fully-sampled region at the center of k-space. A k-space kernel is
moved to each possible position within this region, and each
instance of the kernel is reshaped to populate a row in a special
matrix. Many of the singular values of this matrix are small or close
to zero, meaning that it has a null space. The existence of a null
space implies that neighboring k-space points in the multichannel
data are correlated. Missing k-space data are reconstructed by rec-
ognizing that this relationship should be true not only over the cal-
ibration region but also over the entire k-space.
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The calibration matrix from ESPIRiT can be used to derive coil
sensitivity maps. An eigenvector decomposition of the calibration
matrix produces a set of eigenvector maps as shown in Fig. 10.
The eigenvectors behave like coil sensitivity profiles up to an arbi-
trary scaling factor. In most cases, there will be a set of eigenvec-
tors with eigenvalues equal to one. These eigenvector maps have
the appearance of conventional coil sensitivities and can be used
in a SENSE reconstruction. Sometimes additional eigenvectors will
have non-negligible eigenvalues, meaning that some data cannot
be described by the SENSE model. This may happen if there are
inconsistencies from motion or if the FOV is smaller than the
object. In this case, multiple sets of sensitivity maps can be
included in a relaxed or ‘‘soft” SENSE reconstruction. ESPIRiT with
soft SENSE is like GRAPPA in that aliasing can be resolved even for
small FOV imaging [42].

Although these techniques are not yet available on most MRI
platforms, SPIRiT and its extensions have been used clinically for
pediatric abdominal imaging and dynamic contrast exams, where
fast imaging reduces the chances of young patients moving during
the scan [63]. Unlike SENSE and GRAPPA, SPIRiT reconstructs
images iteratively and can require long computation times. How-
ever, this time can be drastically reduced using parallelized com-
puting and graphics processing units (GPUs). SPIRiT combined
with compressed sensing and at-the-scanner reconstruction using
coil compression has been explored for pediatric abdominal
dynamic contrast-enhanced (DCE) [64]. Additionally, real-time
free-breathing cardiac CINE imaging can be performed in under
20 s with SPIRiT [65].
5. Non-Cartesian parallel imaging

SENSE, GRAPPA, and SPIRiT were described for Cartesian sam-
pling to introduce the basic principles of parallel imaging. How-
ever, these methods can be extended to other k-space sampling
patterns, where the collected points do not fall on a rectangular
grid. Some examples of these non-Cartesian trajectories are shown
Fig. 11. (a) Non-Cartesian GRAPPA kernels change size and shape throughout k-space. Th
(b) Three methods for the calibration of non-Cartesian GRAPPA weights are illustrated. Al
be collected. First, the calibration k-space may be divided into segments (typically small
within each segment. Second, through-time calibration involves the collection of multiple
to generate enough data for calibration. Third, through-partition calibration can be used i
data are acquired with a 3D cylindrical trajectory.
in Fig. 2. Non-Cartesian scans are undersampled by skipping cer-
tain readout lines (called projections), which splits the acceleration
into both kx and ky directions. In contrast, Cartesian scans are typ-
ically accelerated along only one direction by skipping phase
encoding lines. Non-Cartesian aliasing artifacts therefore appear
noise-like and are less coherent than their Cartesian counterparts.
Visually, it may be easier to see through the artifacts to discern the
underlying image content. Non-Cartesian sampling may therefore
put less burden on the parallel imaging reconstruction and thus
permit higher acceleration factors.

Non-Cartesian trajectories have other attractive properties.
They are usually less sensitive to motion due to the denser sam-
pling near the center of k-space. Some trajectories, like spirals,
use the gradient fields efficiently and can cover k-space in a shorter
amount of time [66]. However, one disadvantage of non-Cartesian
sampling is that the image reconstruction becomes more techni-
cally demanding. For instance, non-Cartesian k-space data must
be transformed to images using the non-uniform Fourier Trans-
form (NUFFT) [67], or convolution gridding [68] followed by the
DFT. Similarly, parallel imaging reconstruction of accelerated
non-Cartesian data is significantly more challenging than the
reconstruction of Cartesian data.

5.1. Conjugate Gradient SENSE

Conjugate Gradient SENSE (CG SENSE) is a modification of
SENSE for non-Cartesian trajectories [69]. Due to the irregular
undersampling in k-space, each pixel in the aliased image can be
contaminated with signals from potentially every other pixel,
and the SENSE reconstruction becomes more challenging due to
the large number of overlapping pixels that must be separated.
The CG SENSE forward model can be written as

F ¼ Em ð10Þ

where F is the vectorized k-space data of size nknc (with nc coils and
nk total k-space points), and m is the vectorized image having size
erefore, different GRAPPA weights must be estimated for each missing k-space point.
l require that one or more fully-sampled 2D frames or 3D volumes of calibration data
er than illustrated here), and kernel instances are accumulated by sliding the kernel
fully-sampled calibration frames, and the kernel replicas are gathered through-time
n 3D imaging where the kernel geometry is repeated across each partition, assuming
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np � 1, where np is the number of pixels. The encoding matrix E
includes terms for coil sensitivities and spatial encoding. Theoreti-
cally, this equation could be inverted to solve for the unknown
image pixels. However, the encoding matrix is enormous even for
moderate image sizes, with size ncnk � np. Consider a 256 � 256
image with 12 coils, where data are collected using a radial trajec-
tory with 400 projections and 512 readout points. Then the encod-
ing matrix would have dimensions ð12Þð400Þð512Þ � ð256Þð256Þ, or
2;457;600� 65;536. Rather than explicitly writing E as a matrix, its
effects on the data can be implemented using NUFFT operations and
pixel wise multiplication by coil sensitivities. The reconstruction
can be solved efficiently using conjugate gradient descent. Starting
from some initial guess, typically a zero image or the undersampled
image after gridding, the solution will progressively improve at
each iteration until it converges.

CG SENSE has the advantage of being applicable to arbitrary k-
space sampling patterns. However, like its Cartesian counterpart,
CG SENSE requires accurate coil sensitivity maps. Any mismatch
between the coil sensitivities and the undersampled data (e.g.
due to motion) will lead to residual aliasing. Additional regulariza-
tion terms can be included to improve the conditioning of the
encoding matrix.
5.2. Non-Cartesian GRAPPA

In undersampled non-Cartesian datasets, there are different
geometric relationships throughout k-space between collected
(source) and missing (target) points (Fig. 11a). Thus, each missing
point requires a different GRAPPA kernel and weight set. The need
for a weight set for each missing point presents a challenge in col-
lecting ACS data that contain enough instances of each kernel to
solve for the unknown weight set. One approach is to collect
fully-sampled data separately from the acquisition of the acceler-
ated data (Fig. 11b). The instances for a particular kernel can then
be gathered by moving the kernel inside a small segment of the
fully-sampled k-space around the target point; by collecting sev-
eral repetitions before or after the undersampled acquisition and
gathering instances through time [70,71]; or by collecting
instances over many partitions of k-space, in the case of 3D data-
sets [72]. A combination of these techniques can also be used.

Early implementations of non-Cartesian GRAPPA only used k-
space segmentation [73,74]. These approaches were limited
because large segments had to be used to gather enough kernel
instances to estimate the weights, which led to less accurate recon-
structions. When collecting instances of the kernel within a seg-
ment, an assumption is made that the kernel geometry does not
vary over the segment. Therefore, k-space segmentation should
be used in moderation as the GRAPPA weights will become less
accurate if the segment size is too large and the kernel geometry
changes significantly within the segment. The most accurate cali-
bration method is to collect instances of the kernel over several
fully-sampled repetitions (through-time calibration), although it
may be time-consuming to collect enough repetitions [70].
Because of the tradeoffs between accurate weight estimation and
time required to collect enough calibration data, often a combina-
tion of small amounts of k-space segmentation and through-time
calibration is used.

As an alternative to collecting separate fully-sampled data for
calibration, several self-calibrating methods have been developed.
These methods use only the accelerated acquisition to estimate the
non-Cartesian GRAPPA weights [80–84]. These self-calibrating
methods may still use some segmentation in k-space to increase
the number of instances of each kernel.

Non-Cartesian GRAPPA algorithms have been developed for var-
ious trajectories, including radial [70], variable-density and
uniform-density spiral [71,74], rosette [75], and BLADE/PROPELLER
trajectories [76,77]. Although more computation is required for
non-Cartesian as compared to Cartesian GRAPPA, it is well-suited
to parallelization on graphics cards because each target point can
be reconstructed independently from other target points. For
example, 2D datasets acquired with a radial sampling pattern
can be reconstructed into images of matrix size 128 � 128 using
through-time radial GRAPPA in 35 ms [78].

5.3. Non-Cartesian SPIRiT

Unlike SENSE and GRAPPA, it is straightforward to generalize
SPIRiT for reconstructing non-Cartesian data. The output of SPIRiT
is always a fully-sampled Cartesian k-space, regardless of the orig-
inal sampling trajectory. The SPIRiT kernel convolutions are per-
formed in the reconstructed Cartesian k-space, and therefore
these operations are done as described above. Data consistency is
enforced by resampling the Cartesian k-space onto the undersam-
pled non-Cartesian trajectory using convolution interpolation. Ide-
ally the reconstructed (and resampled) k-space should agree with
the acquired data at the originally sampled k-space locations.

5.4. Applications of non-Cartesian parallel imaging

Non-Cartesian parallel imaging methods take advantage of effi-
cient use of the gradient coils and incoherent aliasing artifacts to
allow potentially higher acceleration factors than Cartesian parallel
imaging. However, non-Cartesian methods require more compli-
cated reconstruction schemes and are not used as frequently in
non-research settings as their Cartesian counterparts.

A combination of radial sampling, CG SENSE, and compressed
sensing called Golden-angle RAdial Sparse Parallel (GRASP) has
been demonstrated for contrast-enhanced liver, neck, and breast
scans [79]. An extension called XD-GRASP acquires data continu-
ously and reconstructs images corresponding to different motion-
resolved states (e.g. different cardiac cycles, respiratory cycles, or
stages of contrast enhancement) [80]. SENSE with spiral sampling
has been used to accelerate velocity-encoded MRI [81]. Through-
time non-Cartesian GRAPPA has been used to collect real-time car-
diac data without breathholds or electrocardiogram gating in
45 ms per 2D frame with radial sampling (Fig. 12) [70,82] and
35 ms per frame with spiral sampling [71]. Non-Cartesian GRAPPA
has also been applied for renal MRA [72], myocardial [83] and liver
perfusion [84], and abdominal T1 mapping [85]. Late gadolinium
enhancement (LGE) cardiac imaging with a 3D spiral trajectory
has been accelerated using SPIRiT to enable whole-heart coverage
in one breathhold [86]. Radial SPIRiT with compressed sensing has
been reported for velocity-encoded MRI [87,88] and real-time
imaging of the airway during sleep apnea [89].

In general, non-Cartesian parallel imaging methods require
longer reconstruction times than their Cartesian counterparts.
One of the most time-consuming steps is the NUFFT, which trans-
forms the non-Cartesian k-space data to the image domain. Pro-
cessing times are longer for iterative techniques since data are
repeatedly transformed between the image domain and k-space.
Parallel computing can be harnessed to speed up computation
and display images almost immediately after scanning. Such tech-
niques have been explored in research settings for CG SENSE [90],
non-Cartesian GRAPPA [78,91], and l1-SPIRiT [61].
6. Simultaneous multi-slice imaging

The previous sections have described how parallel imaging can
be used to reduce the number of phase encoding lines required to
generate a 2D image. These methods take advantage of coil sensi-



Fig. 12. Representative cardiac images acquired at 3 T with a balanced steady-state free precession sequence in a healthy volunteer and reconstructed with through-time
radial GRAPPA. Images were collected during free-breathing without ECG gating. Data were accelerated by a factor R = 9 (16 out of 144 projections), and through-time
GRAPPA was applied using 80 calibration frames and an 8 � 4 k-space segmentation (readout � projection). For comparison, the undersampled data were also gridded
without reconstruction to show the appearance of streak artifacts. Scan parameters: 128 � 128 matrix, 300 mm2 FOV, TR = 2.94 ms, flip angle 45�, temporal resolution 47 ms/
frame.
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tivity variations within the scan plane. However, parallel imaging
can also be used to disentangle aliased slices, so that several slices
can be imaged during the time it conventionally takes to acquire
Fig. 13. Diagram of a slice-SENSE reconstruction for a multiband factor of MB = 3 with fo
in the SMS image. However, because data are acquired with four coils, a SENSE matrix eq
Islice1ðx; yÞ, Islice2ðx; yÞ, and Islice3ðx; yÞ.
one slice. These Simultaneous Multi-Slice (SMS) techniques exploit
differences in coil sensitivity across the slice-encoding direction
but are still grounded in the same parallel imaging principles.
ur receiver coils. Signals at the same ðx; yÞ position from all three slices are collapsed
uation can be written to solve for the unknown pixel intensity in each slice, namely
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SMS techniques excite several slices concurrently using multi-
band radiofrequency pulses [92,93]. Analogous to the acceleration
factor, the number of slices acquired simultaneously is called the
multiband factor (MB). Multiband pulses consist of a sum of RF
waveforms that are each centered on a different frequency band.
The composite pulse is applied along with a slice-select gradient
to excite spins across multiple frequency bands and hence multiple
slices. Care needs to be taken to avoid exceeding specific absorp-
tion rate (SAR) restrictions or voltage limits on the RF amplifier.
SAR can be a concern when combining SMS with high-energy pulse
sequences like spin echo. More advanced multiband pulses, such as
VERSE [94], PINS [95], or multi-PINS [96], can be used to reduce RF
energy deposition.

SMS techniques have several advantages. The most obvious
benefit is a reduction in total scan time, which is especially impor-
tant for lengthy acquisitions like diffusion tensor imaging or volu-
metric T2-weighted scans [97,98]. Whereas conventional parallel
imaging has an unavoidable SNR loss, the SNR in SMS scans
increases by the square root of the number of slices. Additionally,
slice acceleration and in-plane acceleration have different conse-
quences for sequences that acquire multiple phase encoding lines
after each RF excitation, like EPI and turbo spin echo (TSE). In-
plane acceleration shortens the echo train length by collecting
fewer k-space lines, which reduces geometric distortion and blur-
ring from T2 or T2⁄ decay. SMS techniques, on the other hand,
decrease the total scan time by acquiring data from several slices
in one TR; however, the sequence parameters remain the same
with no effect on blurring or distortion. SMS imaging has driven
new developments in RF pulse designs that have resulted in less
tissue heating [95,96]. SMS is also useful in time-resolved applica-
tions like fMRI, where dynamic brain processes can be probed at
faster temporal resolutions or with higher SNR [99–101].
6.1. A simple SMS SENSE example

The slice-collapsed SMS data acquired by the scanner are a sum
of the signals arising from each slice. Images for each slice can be
Fig. 14. Examples of slice-collapsed SMS images with MB = 3 acquired with three differe
degree phase results in coherent slice aliasing. (b) Cartesian k-space sampling with CAIPIR
top of one another. (c) Radial k-space sampling with CAIPIRINHA phase cycling caus
destructively and appear as background noise or streak artifacts.
separated using a standard SENSE reconstruction assuming there
are sufficient coil sensitivity differences between slices (Fig. 13)
[92]. A reference scan must be acquired for each slice to determine
the coil sensitivity profiles. For each pixel in the slice-collapsed
image, a sensitivity matrix S of size nS � nC is formed, where nS

and nC are the number of slices and coils, respectively. As described
in the SENSE section, the reconstruction is expressed as

v ¼ ðSHSÞ�1
SHa ð11Þ

where v contains the unfolded pixels for each slice with size nS � 1,
and a contains the signals at a given pixel location in the slice-
collapsed data with size nC � 1.

In practice, this simple SENSE reconstruction may result in
enhanced noise or residual slice aliasing. One reason for these
errors is that the adjacent slices may be close together in space
(on the order of tens of millimeters) so that the coil sensitivities
of the two slices are nearly identical, making the inversion highly
ill-conditioned. A second reason is that many coil arrays have less
encoding power along the slice direction with standard coil
geometries. Thus, alternative SMS parallel imaging methods have
been investigated.

6.2. Multi-Slice CAIPIRINHA

In multi-slice (MS-)CAIPIRINHA, the aliasing of the collapsed
slices is modified to make better use of coil sensitivity differences
[102]. In the previous example using SENSE (illustrated in Fig. 14a),
signals from each slice are superimposed directly on top of each
other. Parallel imaging methods can only exploit coil sensitivity
variations along the slice-encoding direction, which may be mini-
mal. With MS-CAIPIRINHA, signals are still summed over all slices,
but each slice is also shifted within the imaging plane (Fig. 14b).
MS-CAIPIRINHA thus makes use of sensitivity differences along
both slice and phase-encoding directions to separate slices more
easily.

The in-plane shifts in MS-CAIPIRINHA are made possible
through the Fourier Shift Theorem, which states that a translation
nt sampling schemes. (a) Cartesian k-space sampling where all RF pulses have zero-
INHA RF phase cycling shifts each slice within the FOV so they do not lie directly on
es signals from one slice to add coherently, while signals from other slices add



Fig. 15. Representative images from an SMS brain scan acquired with multiband factor MB = 3 (5 mm slice thickness, 30 mm slice gap) at 3 T with a 32-channel brain array.
Data were reconstructed using slice-SENSE. Reference scans for each slice were acquired separately to estimate the coil sensitivities. (Top row) Images reconstructed without
RF phase cycling show severe noise enhancement. (Bottom row) Data sampled using CAIPIRINHA RF phase cycling to shift the aliased slices within the FOV have less noise
enhancement.
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in the image domain is equivalent to a multiplication of the k-
space signals by a linear phase

qðy� DyÞ ¼
XN

2

m¼�N
2

SðmDkÞeimðDkÞðy�DyÞ ð12Þ
Dk ¼ 2p
FOV

ð13Þ

In these equations, m is the phase encoding index which varies
between –N/2 and N/2, and Dy is the number of pixels by which the
image is shifted. In Fig. 14b, slice 1 has zero shift, slice 2 is shifted
by FOV/3 pixels, and slice 3 is shifted by 2/3 ⁄ FOV pixels.

One way to implement in-plane shifts is using RF phase cycling.
Each phase encoding line in k-space for a Cartesian scan is given a
unique RF phase. Recall that multiband pulses are the sum of sim-
pler, single-band RF waveforms. The RF waveform for each slice is
modulated by a certain phase before the waveforms are added
together to create the multiband pulse. Fig. 14b shows an example
of RF phase cycling for a multiband factor of 3. This type of phase
cycling pattern was originally reported in a technique called POMP
[103] and can be generalized for any multiband factor. POMP-like
phase cycling will shift the slices in the collapsed image equidis-
tantly across the FOV. For a dataset with nS slices, the RF phase
modulation for the mth phase encoding step and slice l is

/ðl;mÞ ¼ ðl� 1Þðm� 1ÞFOV
ns

ð14Þ

It is not straightforward to apply MS-CAIPIRINHA to sequences
that already modify the RF phase. For example, balanced steady-
state free precession (bSSFP) sequences maintain steady-state con-
ditions by alternating the RF phase between 0 � and 180 � between
each TR. Rather than using the POMP-like phase cycles described
above, linear RF phase cycles are applied to both maintain
steady-state and shift each slice in the FOV [104]. Sequences that
read out multiple k-space lines after each excitation are also
incompatible with RF phase cycling to shift the aliased slices.
Instead, blipped CAIPIRINHA applies small gradient blips on the
slice-select axis to produce a phase difference between slices
[105]. Unlike an early implementation of this method [106], the
blips alternate in polarity to avoid phase buildup during the EPI
readout, which would otherwise lead to signal attenuation with
longer readouts.

Single slice images can be reconstructed using SENSE with
slight modifications to account for the shifted aliasing pattern.
Compared to the non-shifted SMS acquisitions, MS-CAIPIRINHA
results in lower g-factors and higher SNR by making more effective
use of 3D coil sensitivity variations. Fig. 15 shows an example of a
brain scan acquired with and without MS-CAIPIRINHA and recon-
structed using slice-SENSE. The images without MS-CAIPIRINHA
are degraded by noise amplification due to the insufficient sensi-
tivity variations along the slice encoding direction.

Although CAIPIRINHA outperforms SMS without phase cycling,
Cartesian sampling results in coherent artifacts which can be diffi-
cult to completely resolve using parallel imaging. Many non-
Cartesian trajectories, like radial and spiral, cross the center of k-
space with each excitation. When these sampling patterns are
combined with CAIPIRINHA, signals from one slice add coherently,
while signals from all other slices add destructively and appear as
background noise [107]. There is less aliasing energy in the slice-
collapsed data, which puts less strain on the parallel imaging
reconstruction. Fig. 14c shows an example of an SMS experiment
with radial sampling and a multiband factor of 3. The raw slice-
collapsed image only contains coherent signals from slice 1, while
the other two slices appear as incoherent background noise and
streak artifacts. Since the RF phase pattern is user-defined, an
image containing coherent signal from only slice 2 (or slice 3)
can be created by multiplying the SMS k-space data by the com-
plex conjugate phase pattern for slice 2 (or slice 3). This simple
conjugate phase reconstruction does not completely remove the
artifacts from other slices, which can be addressed using a modi-
fied CG SENSE algorithm.
6.3. GRAPPA methods for SMS imaging

Several variants of GRAPPA have been developed for SMS imag-
ing. One of the first techniques, termed SENSE-GRAPPA, was origi-
nally used for reconstructing 3D datasets with undersampling
along both phase and partition encoding directions [108]. Low-
resolution ACS images are acquired separately for each slice, and



Fig. 16. Overview of SENSE-GRAPPA for SMS imaging. First, low-resolution prescans are acquired for each slice separately. The images are concatenated to create an extended
FOV image. After applying a 2D-DFT, a GRAPPA weight set is estimated using these data. Next, the slice-collapsed SMS image is transformed to k-space in a similar fashion. A
standard 1D GRAPPA reconstruction is performed, and an inverse 2D-DFT is applied to yield an image containing the two separated slices.

Fig. 17. Schematic of a slice-GRAPPA reconstruction for SMS imaging. First, low-resolution calibration scans are collected individually for each slice. A different GRAPPA
kernel is estimated for each slice and applied to the SMS k-space to synthesize an entirely new k-space for each slice.
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they are concatenated in the image domain to create a 2D matrix
with an extended FOV along the phase encoding direction
(Fig. 16). The image data are transformed into a virtual ACS for esti-
mating the GRAPPA weight set. Next, the slice-collapsed images
are concatenated in a similar fashion, and a conventional GRAPPA
reconstruction separates the individual slices. As described in the
GRAPPA section, the calibration and SMS scans may be acquired
with different sequence parameters without affecting the stability
of the GRAPPA weights. SENSE-GRAPPA can be used to reconstruct
both in-plane and slice acceleration in a single step. However,
residual aliasing or discontinuities may occur for certain accelera-
tion and multiband factors. With CAIPIRINHA acquisitions, sharp
high-frequency transitions will exist in the extended FOV image
(due to the shifted aliasing pattern) that cannot be synthesized
by a GRAPPA kernel. The extended FOV image can be zero-
padded to alleviate this problem when combining SENSE-GRAPPA
with CAIPIRINHA sampling [105].

In Slice-GRAPPA [105], a separate calibration scan is acquired
for each slice and used to estimate a set of slice-specific kernels
(Fig. 17). The kernels are applied to the slice-collapsed data to syn-
thesize an entirely new k-space for each slice. This procedure is dif-
ferent from conventional GRAPPA, which only synthesizes missing
phase encoding lines. Unlike SENSE-GRAPPA, slice-GRAPPA can
only resolve slice aliasing, so a second parallel imaging step is
needed to rectify the in-plane aliasing. Despite the similar name,
slice-GRAPPA has different properties than conventional GRAPPA.
The slice-GRAPPA kernels depend somewhat on the underlying
magnetization, so the same sequence parameters and image con-
trast should be used for calibration and SMS scans. Artifacts may
sometimes be hard to interpret; since slices are calibrated and
reconstructed independently, residual aliasing may appear in some
slices but not others.

Analogous to the g-factor for conventional parallel imaging, the
amount of residual slice aliasing can be quantified using the slice
leakage artifact or L-factor [109]. For slice-GRAPPA, the L-factor
can be calculated analytically from the GRAPPA weights. Split
slice-GRAPPA uses the L-factor to optimize the weight calibration
to trade off slice leakage and in-plane artifacts [110].
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6.4. Applications of SMS imaging

While some vendors do support SMS imaging for clinical use,
many techniques are still mainly used in research settings. Neu-
roimaging is the most common application for SMS imaging, espe-
cially for diffusion-weighting imaging and fMRI [99]. For instance,
whole-brain fMRI scans can be performed in less than 200 ms per
volume using blipped CAIPIRINHA with spiral trajectories [101],
and more information can be gleaned from the blood oxygenation
level dependent (BOLD) signal at such high temporal resolutions
[111]. In body imaging, SMS has been applied to diffusion imaging
of the breast [112], real-time cardiac CINE [104] and first-pass
myocardial perfusion imaging [113,114], and real-time monitoring
of airway collapse during sleep apnea [115]. Imaging and navigator
slices for free-breathing abdominal imaging can be collected
simultaneously using SMS [116]. Multiple slices with different RF
phase cycling patterns can be acquired to reduce banding artifacts
in balanced steady-state free precession sequences [117].

7. 3D parallel imaging

Many of the techniques discussed previously have been gener-
alized for accelerated 3D imaging. Some distinctions should be
made between multi-slice and 3D MRI. In multi-slice imaging, a
stack of thin 2D slices separated by gaps is collected; only one
direction is phase encoded, and each slice is reconstructed using
a 2D DFT. Multiple slices can be acquired sequentially, in an inter-
leaved manner, or simultaneously using SMS techniques. In con-
trast, a thick slab of tissue is excited in 3D imaging. Spatial
encoding is performed using phase encoding gradients along two
spatial dimensions, and images are reconstructed using a 3D DFT.
Because a full 3D k-space is collected, the acquisition time is pro-
longed according to

TA ¼ TR � Ny � Nz � NA ð15Þ
where Ny is the number of phase encoding steps along ky, Nz is the
number of partition encoding steps along kz, and NA is the number
of signal averages (which typically equals one for many imaging
applications).

The decision of whether to use multi-slice or 3D imaging
depends on the clinical application. Three-dimensional imaging
can have different artifact properties compared to single-slice
imaging. For example, k-space inconsistencies due to motion will
corrupt the entire 3D volume, whereas the 2D slices in an SMS scan
can be acquired more quickly and are less likely to be corrupted by
motion. SMS scans require specialized radiofrequency pulses that
Fig. 18. Two approaches using GRAPPA to reconstruct 3D datasets with undersampling a
synthesized using a three-dimensional kernel with source points taken from a 3D neigh
reconstructed in a separate step using a two-dimensional kernel. In this diagram, missin
data are reconstructed in the second step. Acquired data points are shown in black, and
are not needed for 3D imaging. Because SNR is proportional to
the volume of excited spins, 3D imaging (like SMS) has high SNR
that can partially offset the SNR loss due to parallel imaging. Addi-
tionally, coil sensitivity variations can be harnessed along all three
directions. For 2D Cartesian scans with acceleration along one
direction, noise enhancement and residual aliasing tend to appear
above acceleration factors of 3 or 4 for most coil arrays. The net
acceleration factor for a 3D scan is the product of the acceleration
factors along each direction. Therefore, high total acceleration fac-
tors can be attained by combining a modest amount of undersam-
pling along each direction.

In broad terms, 3D trajectories can be classified as 3D Cartesian,
3D cylindrical (where the kx - ky plane is sampled in a non-
Cartesian fashion but kz is sampled along a Cartesian grid), and
3D spherical (where all points are sampled on a non-Cartesian
grid). Both partition encoding and phase encoding lines (or non-
Cartesian projections) can be skipped to reduce scan time, and then
subsequently reconstructed with parallel imaging.

7.1. 3D SENSE, GRAPPA, and SPIRiT

2D SENSE uses coil sensitivity information to unfold aliased pix-
els in a 3D volume (it is called ‘‘2D SENSE” because both phase
encoding directions may be subsampled) [118]. Prior to recon-
struction, an additional low-resolution coil sensitivity map is
obtained covering the whole volume. The sensitivity matrix can
be written the same way as for the 2D case using knowledge of
the undersampling pattern. For 3D Cartesian undersampling, the
SENSE reconstruction can be implemented with simple matrix
inversions, while iterative methods like CG SENSE are used for
3D non-Cartesian data.

Several approaches to 3D GRAPPA have been published. One
method, called 2D GRAPPA, uses a three-dimensional GRAPPA ker-
nel (Fig. 18) [119]. One target point in a single coil is synthesized as
a weighted sum of source points from all coils in a surrounding 3D
neighborhood. Calibration data are acquired as a contiguous 3D
block near the center of k-space. A second approach is to use a
1D GRAPPA operator method that sequentially reconstructs each
undersampled dimension with a two-dimensional GRAPPA kernel.
In such a reconstruction it is possible to tailor the calibration scan
by acquiring two sets of reference data for estimating each set of
GRAPPA weights independently. The 1D GRAPPA operator may
result in better image quality because the weight matrices are less
susceptible to motion and better determined—i.e. the three-
dimensional kernel has more source points than the two-
dimensional kernel, and thus is less overdetermined for a given
long phase and partition encoding directions. (a) In 2D GRAPPA, each target point is
borhood. (b) In the 1D GRAPPA operator approach, each subsampled dimension is
g partitions (white dots) are reconstructed first (gray dots); missing phase encode
the readout dimension (kx) is not illustrated for simplicity.



Fig. 19. Comparison of standard 3D Cartesian undersampling versus CAIPIRINHA. For simplicity, the readout dimension (kx) is not illustrated. (a) Fully-sampled images are
shown for reference in axial and coronal views. (b) R = 2 undersampling along ky produces foldover artifacts along the y-direction. (c) R = 2 undersampling along kz causes two
partitions to fold onto each other. (d) With R = 2 CAIPIRINHA undersampling, the k-space sampling pattern is staggered. Two partitions still fold onto each other, but the
images are also shifted by half the FOV, making them easier to unfold.
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amount of calibration data. However, the sequential nature of the
application of the two sets of GRAPPA weights may lead to error
propagation in the 1D GRAPPA operator approach which is not
seen in 2D GRAPPA.

SPIRiT and related methods can also be generalized for 3D
imaging. In this case, a SPIRiT kernel is employed that synthesizes
each 3D Cartesian k-space point as a weighted sum of grid points in
a surrounding 3D neighborhood. Likewise, data consistency is per-
formed using a 3D NUFFT operation.

7.2. 2D CAIPIRINHA

High net acceleration factors can be achieved by splitting the
undersampling along both phase encoding dimensions in a 3D
scan, which better exploits the differences in coil sensitivities
across the whole volume. 2D CAIPIRINHA takes this idea further
by shifting the k-space points from a standard rectangular grid
onto a sheared lattice [120]. This shift modifies the aliasing pattern
thereby leading to more robust parallel imaging reconstructions.
Note that 2D CAIPIRINHA is an extension of MS-CAIPIRINHA for
3D MRI.

In Fig. 19, several 3D undersampling strategies are compared.
For the case of R = 2 along ky, two equally spaced pixels along
the y-direction fold on top of each other in the aliased image. Like-
wise, for R = 2 along kz, two pixels along the partition direction are
superimposed. However, if the coil array does not have sufficient
encoding power along the accelerated direction, it will not be pos-
sible to separate the aliased pixels. One solution is to divide the
acceleration equally along both dimensions using an R = 2 CAIPIR-
INHA pattern, where the sampled points are offset from one phase
encoding line to the next. The two partitions still fold on top of one
another, but the aliased pixels are also shifted within each
partition.
Unlike MS-CAIPIRINHA, 2D CAIPIRINHA does not require special
hardware or RF pulses. The shifted k-space sampling is imple-
mented by simply adjusting the phase and partition encoding gra-
dients. Undersampled data can be reconstructed using standard
SENSE, GRAPPA, or SPIRiT with slight modifications to account
for the offset sampling.

Some research has been devoted to choosing an optimal CAIPIR-
INHA sampling pattern, which depends on scan-specific variables
including coil configuration, coil loading, and FOV [121]. Some
strategies for determining the best CAIPIRINHA shifts are to create
a g-factor map from a low-resolution reference scan or to perform
a principal component analysis of the coil sensitivities. Optimal
patterns tend to maximize the distance between aliased pixels,
as distant pixels often experience more differences in coil sensitiv-
ities than nearby pixels.

Several clinical applications of 2D CAIPIRINHA have been inves-
tigated. Breath-held liver scans with Cartesian CAIPIRINHA
(R = 2 � 2 in phase and partition encoding directions) can produce
similar image quality as R = 2 with standard GRAPPA [122]. In DCE
exams, CAIPIRINHA can improve the temporal resolution to cap-
ture arterial enhancement in breath-held scans of the liver
[123,124] and pancreas [125]. CAIPIRINHA can be combined with
view-sharing and Dixon water-fat separation to produce fat-only
and water-only images of the liver [126]. High-resolution 3D knee
images can be acquired in under 5 min using CAIPIRINHA [127].

7.3. Wave CAIPIRINHA

Most 3D parallel imaging techniques only exploit coil sensitiv-
ity variations along the phase and partition encoding directions
and ignore variations along the readout dimension. However, wave
CAIPIRINHA samples k-space along a trajectory that can take full
advantage of 3D coil sensitivity differences [128]. Data are



Fig. 20. Diagram of Wave CAIPIRINHA for 3D MRI. (a) Each non-Cartesian readout is a corkscrew along the kx axis, and multiple corkscrew trajectories are staggered
throughout the 3D k-space using CAIPIRINHA sampling. (b) The wave trajectory spreads the signal from one voxel across an entire row. As shown in the equation, this process
is modeled as convolving the magnetization at one point by a point spread function. When data are undersampled, signal from one point in the image is spread over multiple
rows.
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acquired using a 2D CAIPIRINHA sampling pattern so that signals
from aliased partitions are shifted with respect to each other. In
addition, sinusoidal gradients along y and z are applied during
the readout. The net effect is a trajectory that winds along kx like
a corkscrew (Fig. 20). Because of the CAIPIRINHA sampling, multi-
ple corkscrew trajectories are staggered in 3D k-space, and aliasing
energy is spread in three dimensions.

Although the wave trajectory is non-Cartesian, it has the unu-
sual property that images can be generated using DFT operations
without gridding or the non-uniform FFT. Images are reconstructed
by deconvolving the data with a point spread function (PSF), which
can be visualized by taking a DFT along the readout direction. The
sinusoidal gradients impose a phase in k-space, which leads to a
PSF that depends spatially on y and z. More blurring is induced
at rows farther from the center of the imaging volume. As shown
in Fig. 20b, signal from one voxel will be blurred across its entire
row (note that only the sinusoidal y-gradient is considered, and
the z-gradient is assumed to be zero for simplicity). In an example
with R = 2 undersampling in-plane, signal from one voxel will be
blurred across two rows. In other words, two entire rows of pixels
are aliased instead of two individual pixels. The blurring increases
the distance between folded pixels, which is beneficial for parallel
imaging. The reconstruction is more complex than this simple
example because there is voxel spreading across both y and z direc-
tions, and the aliasing pattern is shifted using 2D CAIPIRINHA. After
accounting for these effects, the undersampled data are recon-
structed using a SENSE model. Like Cartesian SENSE, the encoding
matrix is small and can be solved efficiently and in parallel.

Because Wave CAIPIRINHA makes use of the full 3D coil sensi-
tivities, it can be used to achieve high acceleration factors with
small g-factor penalties and less SNR degradation. Results have
been demonstrated with R = 3 � 3 (along phase and partition
encoding directions) to achieve whole-brain 1 mm3 isotropic reso-
lution in slightly over two minutes at 7 T [128].
8. Phase-constrained parallel imaging

The next section focuses on another branch of reconstruction
methods known as phase-constrained parallel imaging. MR images
have both magnitude and phase, and these techniques use knowl-
edge of the object phase to complement the spatial encoding pro-
vided by gradients and coil arrays. Phase-constrained methods can
sometimes achieve higher acceleration factors or exhibit less noise
enhancement compared to similar methods that do not incorpo-
rate phase. Inherent background phase exists from the receiver coil
phase profile, B0 field inhomogeneities, and many other sources
[129]. The following sections will briefly summarize several of
these techniques including phase-constrained SENSE, virtual con-
jugate coil methods, P-LORAKS, and phase-constrained SMS
imaging.
8.1. Phase-constrained SENSE

Conventionally in SENSE, the unknown variables are complex-
valued pixel intensities. Phase-constrained SENSE (PC-SENSE)
instead assumes that the magnetization is real-valued, which
reduces the number of variables by half [129,130]. This improves
the conditioning of the sensitivity matrix so it is more easily
inverted, and it decreases the overall g-factor. PC-SENSE requires
a prescan to determine both the receive coil profiles and the back-
ground phase distribution; these are lumped into one quantity
called the effective coil sensitivities. The prescans are typically
acquired at low resolution to decrease scan time. PC-SENSE is
prone to errors if there are high frequency phase variations that
are not captured in the prescan. Such phase discontinuities can
occur near air-tissue boundaries, in fatty tissues, or around blood
vessels. The phase constraints may be regularized to decrease arti-
facts at the expense of lower SNR [131], or high-resolution phase
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maps may be recovered iteratively and then used to reduce arti-
facts [132].
8.2. Virtual conjugate coils

In general, the performance of a parallel imaging reconstruction
improves with higher coil counts. The number of channels can be
artificially increased (as much as doubled) by creating ‘‘virtual
coils” [133]. Virtual coils are generated by taking the complex con-
jugate of signals in k-space from actual physical coils

SjþnC ðkÞ ¼ S�j ð�kÞ ð16Þ

where j is the coil index and nC is the number of physical coils.
Because the effective coil sensitivities are complex, the virtual coils
contain different information and hence improve the
reconstruction.

In virtual conjugate coil SENSE (VCC-SENSE), the sensitivity
matrix is populated using the physical and virtual coils, and the
magnetization is assumed to be real. Rather than reducing the
number of variables like PC-SENSE, VCC-SENSE doubles the num-
ber of equations, leading to a more overdetermined system. VCC-
SENSE is mathematically equivalent to PC-SENSE.

Virtual coils can also be applied to k-space-based reconstruc-
tions. Virtual k-space signals are created for both ACS and under-
sampled data points, which are then used in a standard GRAPPA,
SPIRiT, or ESPIRiT reconstruction. On the one hand, the virtual coils
improve the reconstruction quality by providing additional sensi-
tivity information; however, the GRAPPA or SPIRiT weights require
additional data for the calibration equations to be fully deter-
mined. The k-space methods have the advantage of not requiring
explicit estimates of the coil sensitivities or background phase.
Unlike PC-SENSE, the reconstructed images are not real-valued
but contain both magnitude and phase information. The k-space
reconstructions also tend to be robust in the presence of high-
frequency phase variations. Unlike conventional GRAPPA or SPIRiT,
the calibration and undersampled data should be collected with
the same sequence parameters so the object phase is consistent.
Fig. 21. Two of the key regularization terms used in LORAKS. (a) Multichannel data have
space. The LORAKS support matrix is created by extracting a neighborhood around each k
The support matrix should have low rank (i.e. only a few independent rows). (b) MR ima
creates a matrix using k-space points in an immediate neighborhood, as well as the com
provided the phase variations are smooth. LORAKS finds an optimal solution that satisfi
8.3. LORAKS

Low-rank modeling of local k-space neighborhoods (LORAKS)
works by reconstructing k-space data using low rank matrix com-
pletion [134,135]. The reconstruction attempts to find a solution
that is both consistent with the undersampled data and also satis-
fies two special properties. When these properties are satisfied,
then matrices constructed from k-space kernel operations will
have low rank (i.e. only a small number of linearly independent
rows or columns) because nearby k-space data points will be cor-
related. The first property assumes that the image has limited sup-
port, meaning that there are background pixels which contribute
no signal. Second, the image is assumed to have smooth, slowly
varying phase. LORAKS operates on single-channel data and hence
is not a parallel imaging method. However, P-LORAKS implicitly
uses coil sensitivity information by incorporating k-space data
from all channels [136]. The support condition is improved because
the uncombined coil images are localized in space. In addition, P-
LORAKS incorporates ideas from GRAPPA that each k-space point
can be expressed as a weighted sum of nearby acquired points.
Fig. 21 shows in more detail how the image support and phase con-
straints in P-LORAKS are connected to low rank matrices. Another
extension of LORAKS is SENSE-LORAKS [137], which includes a
SENSE forward model in the data consistency term.

LORAKS and related methods have the advantage of not requir-
ing calibration data. They are compatible with non-uniform k-
space trajectories which are challenging for many other parallel
imaging techniques, such as random undersampling with partial
Fourier reconstruction.

8.4. Imposing a background phase distribution

The background phase can be manipulated to improve the per-
formance of phase-constrained reconstructions. One approach is to
offset the k-space sampling by some amount Dk [138], which will
impart a phase ramp across the image per the Fourier Shift Theo-
rem. It has also been proposed to use spatially selective RF pulses
to tailor the phase distribution [139]. Another technique adjusts
the shim to impose a quadratic background phase, which is used
limited support in the image domain because the coil sensitivities are localized in
-space point (over all coils) and reshaping the data to populate a row in the matrix.
ges tend to have slowly varying phase, as seen in this brain scan. The reconstruction
plex conjugate data from a distant neighborhood. This matrix should have low rank
es the low rank conditions and is also consistent with the acquired data.



Fig. 22. Schematic of an MR spectroscopic imaging experiment with two spatial dimensions and one spectral dimension. (Left) Raw data are acquired in a kx-ky-t space.
(Middle) A 3D Fourier Transform converts the k-space signals to x-y-f space, or the spatial/spectral domain, which represents the chemical shift spectrum of each voxel in the
object. (Right) The spectra can be processed to yield individual maps displaying the spatial distribution of each chemical species. Red indicates a higher concentration of the
given metabolite, while blue and green indicate lower concentrations. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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to derive coil sensitivities or ACS lines for a subsequent SENSE or
GRAPPA reconstruction [140]. In theory, the optimal phase distri-
bution for a given scan orientation and coil setup could be com-
puted by minimizing the g-factor.

8.5. Phase-constrained SMS imaging

Phase-constrained imaging can provide better slice separation
when using an SMS reconstruction. Even without parallel imaging,
two collapsed slices can (in theory) be perfectly separated using a
dualband RF pulse with a 90-degree phase difference between the
slices [133]. In one parallel imaging technique, a constant and
unique phase offset is applied to each slice, and the SMS images
are separated using SENSE-GRAPPA [141]. The optimal phase dif-
ference depends on many factors, including the coil configuration
and background phase. LORAKS has also been applied to SMS imag-
ing [142]. Data consistency is enforced by adding the reconstructed
k-space signals over all slices and comparing the result with the
acquired slice-collapsed data, and the LORAKS regularization terms
are summed over all slices. SMS-LORAKS is noteworthy because it
can handle non-standard or pseudorandom phase cycling schemes
besides the standard POMP-like phase cycles, which spread the
aliasing energy more evenly through the FOV.

9. Magnetic resonance spectroscopic imaging

MR Spectroscopic Imaging (MRSI), also known as Chemical Shift
Imaging (CSI), refers to the localization of different,
heterogeneously-distributed chemical species over an object. Com-
pared to traditional spectroscopy, in which the spectral content of
a bulk sample is assessed, MRSI uses spatial encoding gradients to
obtain individual spectra from several voxels over the object. Alter-
natively, MRSI can be thought of as the addition of a spectral
dimension to an MRI experiment. For simplicity, a 2D spatial/1D
spectral case will be described, although this can be extended to
higher spatial and spectral dimensions.

In the conventional implementation of MRSI (Fig. 22), two
phase encoding gradients are applied to spatially encode the object
before sampling a free-induction decay (FID), spin echo, or gradient
echo in the time domain. From an imaging perspective, the fre-
quency encoding gradient is replaced by the collection of spectral
data (where the ‘‘frequency encoding” is the chemical shift dimen-
sion), and all spatial encoding is performed using phase encoding
gradients. The k-space can be considered to have kx and ky direc-
tions plus an orthogonal time dimension along which the different
chemical shift frequencies are sampled. To recover images, a 3D-
DFT is applied over the two spatial dimensions to yield a 2D image
and over the time dimension to yield a spectral profile for each
voxel in the image. The spectra can be further processed to con-
struct separate 2D images that each display the distribution of a
different chemical species. A more in-depth review of MRSI is given
by [143], while this section focuses primarily on parallel imaging
applications.

In conventional MRSI, one kx-ky point in k-space is sampled at a
time. Compared to a standard imaging experiment acquired with
the same matrix size and sequence parameters, the acquisition
time for MRSI is significantly longer. For example, with a TR of
1.5 s and matrix size of 32 � 32, the total acquisition time for an
MRSI scan would be 32 � 32 � 1.5 s = 1536 s, or about 25 min,
while a standard imaging scan would only require
32 � 1.5 s = 48 s. The long scan times point to the potential utility
of parallel imaging methods.

Several of the parallel imaging methods described above have
been applied to MRSI to accelerate the spatial encoding process.
In SENSE with MRSI, the phase-encoded spatial dimensions are
undersampled, and an unfolding algorithm as described for SENSE
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is used to recover unaliased images [144]. Similarly, GRAPPA can
be performed over the spatial dimensions, but the process must
be repeated for each point sampled over the time dimension
[145]. ACS data can be acquired by acquiring fully-sampled data
at the center of k-space or by using a separate low-resolution scan.
Recently, a feasibility study was performed to evaluate using CAI-
PIRINHA to accelerate along three spatial dimensions [146]. The
method is termed (2 + 1)D CAIPIRINHA to denote 2D-CAIPIRINHA
in-plane and MS-CAIPIRINHA along the slice dimension, resulting
in a multi-slice acquisition.

Parallel imaging techniques can also be used with other fast
MRSI methods, such as spin-echo trains [147], echo-planar spectro-
scopic imaging (EPSI) [148–151], and spiral k-space trajectories
[152,153] to further reduce acquisition time. Note that parallel
imaging can only be carried out along dimensions that are phase-
encoded. In methods such as Cartesian EPSI, one spatial dimension
is frequency-encoded during the readout, and parallel imaging can
only be used along the remaining phase-encoded dimensions.

Another category of spatially localized spectroscopic techniques
is single-voxel spectroscopy (SV-MRS). Signal is acquired from a
single voxel using three RF pulses to excite three orthogonal slices,
with the voxel located at their point of intersection. STEAM (stim-
ulated echo acquisition mode) [154] and PRESS (point resolved
spectroscopy) [155] are two common methods of applying the
pulses to receive a stimulated echo (STEAM) or a spin echo (PRESS)
from the selected voxel. This process can be repeated for several
voxels to obtain localized information for clinical use. However,
data collection can be time-consuming, and such an analysis is
only performed for a small number of positions. Accelerated mul-
tivoxel spectroscopy using parallel imaging [156] was recently
introduced as a possible method to speed up acquisition. Like
simultaneous multi-slice methods described above, simultaneous
excitation with a multiband RF pulse is used to excite more than
one voxel at a time, and receiver coil sensitivity profiles are used
to separate the signals from different voxels.

Parallel imaging has been shown to offer significant accelera-
tion for MRSI, especially when combined with other fast imaging
techniques. GRAPPA with EPSI can be used to reduce acquisition
of 2D brain data (matrix size 32 � 32, voxel size 1.9 cm3) at 3 T
from 64 s to 16 s [150]. At 7 T in the brain, both SENSE and GRAPPA
have been used to reduce acquisition times from over 50 min to
under 13 min (matrix size 29 � 27, voxel size 0.74 cm3) [157],
and from approximately 65 min to about 8 min (matrix size
64 � 64, voxel size 3.4 � 3.4 � 10 mm3) [158].

Parallel imaging may also be promising for accelerating hyper-
polarized 13C MRSI, which can be used to investigate metabolic
pathways in real time to explore, for instance, altered pathways
in cancer [159,160]. SENSE has been used to reduce 2D acquisition
from 43 s to 14 s [161], and parallel imaging with EPSI has been
used to collect 3D pyruvate and lactate images from rat kidneys
in a few seconds [162].

Parallel imaging in MRSI has primarily been performed in phan-
toms, animal studies, and healthy volunteers to demonstrate the
feasibility of different methods. As with other parallel imaging
methods, it is important to consider SNR losses due to undersam-
pling and g-factor effects [163]. Reduced SNR can be a greater con-
cern in MRSI compared to MRI due to the inherently low signal
from species other than 1H20.
10. Concluding remarks

This review has summarized some recent developments in par-
allel imaging, a class of reconstruction methods that uses multiple
receiver coils to accelerate MRI scans. Three historically important
and clinically relevant techniques were described in detail—
namely SENSE, GRAPPA, and SPIRiT. These techniques can be
extended to non-Cartesian acquisitions and 3D MRI. Moreover, coil
sensitivity information can be exploited to separate aliased slices
in simultaneous multi-slice imaging. Phase information can also
be incorporated to improve the conditioning of the parallel imag-
ing reconstruction problem. Finally, MR spectroscopy imaging
has intrinsically long scan times and is an excellent candidate for
acceleration via parallel imaging.

It should be noted that parallel imaging is just one type of fast
imaging reconstruction. Other methods that have not been covered
in this review include compressed sensing (which exploits the fact
that MR images are sparse under certain mathematical transforms)
and k-t reconstructions (which exploit temporal correlations in
dynamic datasets). These other methods are nearly always com-
bined with parallel imaging to achieve even faster scan times.
However, no other rapid imaging method has been as successful
in a clinical setting as parallel imaging, and thus these methods
based on coil sensitivity variations will continue to be essential
for fast MRI.
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PC-SENSE: Phase-Constrained SENSitivity Encoding
PINS: Power Independent of Number of Slices
POMP: Phase-offset multiplanar imaging
PRESS: Point-RESolved Spectroscopy
PSF: point spread function
R: acceleration factor
RF: radiofrequency
SAR: specific absorption rate
SENSE: SENSitivity Encoding
SMS: simultaneous multi-slice
SNR: signal-to-noise ratio
SPIRiT: iTerative Self-consistent Parallel Imaging Reconstruction
STEAM: STimulated Echo Acquisition Mode
SV-MRS: single-voxel magnetic resonance spectroscopy
TGRAPPA: Temporal GRAPPA
TR: repetition time
TSE: turbo spin echo
TSENSE: Time-adaptive SENSitivity Encoding
VCC-SENSE: Virtual Conjugate Coil SENSitivity Encoding
VERSE: Variable-rate selective excitation
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