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Abstract
Image reconstruction for magnetic resonance spectroscopic imaging (MRSI) requires specialized
spatial and spectral data processing methods and benefits from the use of several sources of prior
information that are not commonly available, including MRI-derived tissue segmentation,
morphological analysis and spectral characteristics of the observed metabolites. In addition,
incorporating information obtained from MRI data can enhance the display of low-resolution
metabolite images and multiparametric and regional statistical analysis methods can improve
detection of altered metabolite distributions. As a result, full MRSI processing and analysis can
involve multiple processing steps and several different data types. In this paper, a processing
environment is described that integrates and automates these data processing and analysis functions
for imaging of proton metabolite distributions in the normal human brain. The capabilities include
normalization of metabolite signal intensities and transformation into a common spatial reference
frame, thereby allowing the formation of a database of MR-measured human metabolite values as a
function of acquisition, spatial and subject parameters. This development is carried out under the
MIDAS project (Metabolite Imaging and Data Analysis System), which provides an integrated set
of MRI and MRSI processing functions. It is anticipated that further development and distribution
of these capabilities will facilitate more widespread use of MRSI for diagnostic imaging, encourage
the development of standardized MRSI acquisition, processing and analysis methods and enable
improved mapping of metabolite distributions in the human brain.
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INTRODUCTION
Magnetic resonance spectroscopic imaging (MRSI) permits the spatial distributions of MR-
observable compounds to be obtained in a non-invasive manner (1). When applied to in vivo
studies, these techniques can be used to map the distributions of several tissue metabolites,
potentially indicating areas of altered metabolism even in the absence of structural changes
indicated by other imaging modalities. Although several clinical applications of MRSI have
been described, the use of these techniques largely remains within the research community and
the transfer to more routine clinical applications has been limited. In part, this has been due to
the relatively complex and specialized requirements for MRSI data processing and analysis.
This complexity not only reflects the combined processing requirements of imaging and NMR
spectroscopy, but that additional MRSI-specific processing techniques are available, which
can enhance either the data reconstruction, analysis or display.

The reconstruction and analysis of both the spatial and spectral MRSI data dimensions can
benefit from the incorporation of prior information, including, for example, knowledge of
tissue distributions obtained from higher-resolution MRI (1), information on metabolite
spectral patterns and knowledge of normal metabolite concentrations. However, the ability to
make use of this information is frequently limited by the lack of suitable software tools and
also the lack of information on normal metabolite concentrations for comparison with the
individual subject data. This latter point not only reflects the natural variability of tissue
metabolite concentrations, which are known to vary by location and subject age (2), but also
the considerable variability of MRSI acquisition parameters and processing methods. For most
clinical investigations, this has meant that additional data must be acquired from a group of
age-matched normal subjects to provide comparative data. To address these limitations, the
MIDAS (Metabolite Imaging and Data Analysis System) project is developing a suite of MRSI
and MRI data processing, analysis and visualization tools that are suited to repetitive use
of 1H MRSI for clinical research studies. In addition to supporting the complex MRI and MRSI
processing requirements, this project includes the development of a database of brain
metabolite distributions in normal subjects. A secondary aim of this project is to encourage the
development of standardized MRSI acquisition and processing protocols by making the
MIDAS package available to clinical researchers.

METHODS AND RESULTS
General processing protocols

An MRSI acquisition protocol is typically accompanied by a set of diagnostic MRI studies,
but may also include additional MRI measurements to obtain calibration data, e.g. for tissue
segmentation or intensity normalization functions. In addition, MRSI protocols vary
considerably and require different data processing methods. For example, the choice of TE
value, volume selection or lipid nulling will impact whether lipid extrapolation methods (3)
are required and the parameters used for spectral fitting; the method used to measure field
inhomogeneity or eddy-current correction functions will impact how that information is
processed and applied; and the use of a high-speed imaging variants (4–6) may require that an
acquisition-specific data resampling be applied prior to MRSI reconstruction. Data processing
protocols may therefore vary considerably and must be able to be adapted to different
acquisition protocols. In this paper, we review a comprehensive MRI and MRSI data processing
protocol. Although the discussion is limited to that required for a specific acquisition protocol
and results presented for data obtained at 1.5 T, the proposed methods are sufficiently general
that they may be applied to many different protocols. The specific MRSI acquisition method
considered in this paper was selected to enable data to be obtained over a large portion of the
brain for the purpose of mapping metabolite distributions throughout the brain. While the
volumetric format of this acquisition differs from the more commonly used 2D MRSI
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acquisition methods, it provides a good example for demonstrating the advantages to be gained
by integrating the MRSI processing with MRI-derived information. Although not currently
provided as a standard sequence on commercial instruments, the technical implementation of
this volumetric MRSI acquisition is well within the capabilities of all modern commercial MR
instruments.

In Fig. 1 is shown a broad overview of the MRI and MRSI processing pathways and the
interconnections between these data types. Here it is assumed that the acquisition includes a
second MRSI dataset, obtained from the water signal and with parameters identical with those
for the metabolite MRSI signal. Termed the ‘water reference’ MRSI, these data are used to
provide information that is incorporated into the MRSI processing, including the B0 field
inhomogeneity map and masks indicating the subcutaneous lipid regions (lipid mask) and the
brain (brain mask). However, this information could equally well be obtained from an MRI
acquisition with a different processing path. Specific details of the processing steps are
provided in the following sections, but in brief, the reconstructed metabolite images are
generated using Fourier transform reconstruction and automated spectral fitting; the data are
then calibrated, based on an MRI-derived tissue water image; and the metabolite images then
analyzed, which may include correction for cerebrospinal fluid (CSF) partial-volume signal
loss, correlation with tissue type and comparison with normal tissue concentrations. This last
step requires that comparison data be available for each metabolite, as the mean and standard
deviation for each spatial location, which are obtained from a database of normal metabolite
values.

The result of a complete MRSI/MRI processing procedure will be a multiparametric data set,
containing at each MRSI voxel the intensity-normalized spectral parameters and the tissue
contributions to that voxel. In addition, spatial transformation parameters will be available that
permit image registration with a brain atlas, which may, for example, allow identification of
all voxels belonging to a given brain region. An additional piece of information is an estimate
of the ‘quality’ of the data at that location, which can be used to exclude spectra of inadequate
quality from further analysis.

For routine use it is essential to provide fully automated processing. As indicated in Fig. 1, the
complete processing protocol involves multiple steps, the order of which is frequently
important, and several of these processing steps can take a significant amount of time. In
addition, there is a need to maintain flexibility in the system so that processing pathways can
be reconfigured to accommodate different acquisition protocols and processing aims. To satisfy
these requirements, the MIDAS system is composed of several independent processing
modules, which can be run without any operator intervention in a predefined sequence using
a batch processing management module. The individual processing modules only communicate
indirectly via the common data management system. Although fully automated processing is
possible, it is still recommended that visual checks be included, for example to confirm that
the spectral data were not corrupted by subject motion or that the automated spatial registration
modules performed correctly.

Data acquisition
MRI and MRSI data of the brain were acquired from 14 normal subjects, aged 27–48 years
(average 36 years), at 1.5 T (Siemens Sonata) using the standard head coil. The MRSI
acquisition used a volumetric measurement with echo-planar readout (7), a TE of 70 ms and a
field of view of 32 × 32 cm in-plane and 18 cm in the inferior–superior direction. To permit
imaging of metabolite distributions over a wide region of the brain, the acquisition used an
axial 14 cm slab excitation that covered the whole brain. Signals from subcutaneous lipids were
reduced using an inversion–recovery preparation, with TI = 210 ms, and a saturation band was
placed across the lipid region behind the eyes to suppress movement-associated aliasing from
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this region. The sequence included acquisition of a water MRSI data set, which was obtained
using an interleaved acquisition using parameters identical with those for the metabolite MRSI,
but with low flip-angle excitation and no water suppression. Additional details of the MRSI
sequence have been provided elsewhere (7).

MRI acquisitions include a T1-weighted MPRAGE sequence, with 0.5 × 0.5 × 1.5 mm
resolution and a double spin-echo sequence with TE = 20 and 80 ms, TR = 4600 ms and spatial
resolution 0.5 × 0.5 × 3 mm. The MRI and MRSI data were acquired with the same angulation,
aligned along the anterior commissure–posterior commissure (AC–PC) line.

Data management
In addition to acquiring the raw MRSI data, a typical study protocol will include multiple MRI
data sets and possibly single-voxel MRS measurements. Multiple additional data sets are then
generated during processing, as illustrated in Fig. 1. Management of this diverse collection of
data becomes of critical importance in addition to the organization of multiple studies under
different projects. To address this issue, an Extensible Markup Language (XML) (8) based
solution has been implemented that maintains a complete record of subject and study
information, all processing steps and data file locations. Additional files are used to maintain
a record of all subjects grouped within a single project, and also a list of all projects associated
with each investigator. This approach provides a flexible and relatively simple data
management system without incurring the challenges of maintaining a sophisticated database
system and can be readily adapted to support multiple data types located anywhere across a
networked multi-platform environment. All access to the parameter information from the
individual processing modules is provided through a set of library functions written in Java,
which simplifies support for modules written in several programming languages.

All data, regardless of the source, are first ‘imported’ into the data management system. This
process copies all necessary metadata, which are maintained in a hierarchical manner based
on the DICOM (9) data model as Subject, Study, Series, Dataset and Frame. Additional subject
or study information may also be incorporated at this stage. Typically, this import procedure
will also transfer the data from the scanner to the final data storage location. Most data can be
imported without any change of the native format; however, subsequent processing operations
may save new data files using a simple binary format. Regardless of the file format, a record
of all data parameters is maintained in the associated XML file. The results of a processing or
data analysis step are also maintained in the XML file, using the same hierarchical organization
depending on the source of the input data. Unique data identifiers (UIDs) created at the time
of data acquisition are maintained and supplemented with UIDs and time-stamps created for
each processing step.

Studies from multiple subjects are grouped together under a ‘Project’ and a subject may be
referenced in multiple projects. In this way, any processing done on the subject for one project
will be immediately available to other projects that include that same subject. It is also possible
to reprocess a dataset using a different processing path without overwriting any existing results.
In this case a copy of the subject XML file is created along with the new data files, while
maintaining any links to the existing data files.

MRSI data processing
Figure 2 shows a flow diagram that gives a more detailed description of the MRSI portion of
Fig. 1 and which describes the specific data processing pathway used for the MRSI data
presented in this paper. This includes the processing of the water-reference MRSI dataset from
which information is obtained for use in the processing of the metabolite image data.
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In comparison with the more familiar data processing procedures used for single-voxel MRS
studies, MRSI may require several unique processing steps, which are indicated in Fig. 2. For
example, corrections for B0 shifts, gradient eddy currents and signal intensity must be applied
in a spatially variant manner and k-space extrapolation methods may be used to reduce lipid
contamination. In addition, standard spectral processing steps need to be specifically adapted
to the MRSI data. Most notably, the spectral analysis must be able to deal with the variable
quality of the data, which may include, for example, good-quality spectra with very low signal
intensity in regions subject to significant CSF partial volume contribution, regions with
unacceptably broadened lineshapes and large residual water and lipid signals, particularly for
the whole-brain MRSI method used for this project. Spectra are also acquired from regions of
no interest, such as outside of the brain, and should therefore be excluded from the time-
consuming spectral analysis. The signal-to-noise ratios (SNRs) are typically lower than those
commonly obtained with single voxel methods, requiring that spectral analysis methods be
more robust, which may in turn require that a simpler spectral model be used.

The water reference MRSI data are used to address some of the issues associated with MRSI
processing. These include the calculation of a B0 map from the frequency of the water
resonance, and also masks generated by integrating over the water and lipid spectral ranges.
The first of these defines the brain region and is used to limit the voxels selected for spectral
analysis (10), while the mask generated from the lipid signal identifies the subcutaneous signal
region and is used for lipid k-space extrapolation (3). This latter procedure diminishes ringing
and the associated signal contamination from the subcutaneous lipid signal, which may occur
as a result of the limited k-space sampling, by incorporating information on the lipid
distribution. It is also possible to calculate a space–time data set that contains the time-
dependent phase correction function to be used for eddy current correction (ECC) (11) at each
voxel location. Finally, the integrated signal from the water-reference MRSI provides a high
SNR image that shows significant structural information and which exactly matches the spatial
parameters of the metabolite MRSI data and can be used to determine the spatial transformation
parameters to register the MRI and the MRSI data (12).

The initial processing step indicated by the ‘reformat’ box in Fig. 2 may include two functions.
Currently, raw data exported from a MR instrument in the industry-standard DICOM format
is stored with a separate datafile for each encoding step used in a third spatial dimension;
therefore, this reformatting step concatenates these data into a single binary file and recalculates
the spatial parameter information for these volumetric data. A second processing step may
include resampling for non-Cartesian k-space sampling schemes, as was required for the echo-
planar acquisition (7) used for this paper. The automated parametric spectral analysis
procedure, described in detail elsewhere (10), performs spectral fitting of the complex-value
spectral data using a Lorentzian–Gaussian lineshape model and incorporates prior spectral
information obtained by spectral simulation using the GAVA program (13). This analysis
procedure also takes advantage of the spatial information in the MRSI data by modifying
starting values based on local neighborhood information.

A common limitation of automated spectral fitting approaches is that they may obtain a good
fit, as defined by a small residual, to bad data. Therefore, the spectral analysis is followed by
a simple quality evaluation procedure that creates a ‘Quality Image’ that reflects areas of the
image having resultant linewidths and signal intensities considered to be within limits for the
acquired data type. This image can be displayed alongside the reconstructed metabolite images,
used to mask any displayed metabolite images or incorporated within any subsequent statistical
data analysis steps, to provide an indicator of which image regions should be excluded from
further consideration or at least viewed with caution. Alternatively, the measures required for
evaluating the spectral quality, such as Cramer–Rao lower bounds, linewidth and B0 shifts, can
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be incorporated into the subsequent data analysis procedures, which is the preferred method
when the image registration procedures described in a following section are used.

Metabolite signal intensity normalization
The metabolite images created following image reconstruction and spectral fitting are
uncalibrated; therefore, before individual metabolite results (as opposed to ratios) can be
compared across studies, it is necessary to apply an intensity normalization procedure. This
requires a scaling based on a reference signal (14), for which the tissue water provides a
convenient internal reference. This approach has been recommended for single-volume MRS
(15) as being readily implemented and having acceptable precision, and has previously been
used for MRSI (16). Although signal normalization can be extended to provide absolute
metabolite concentration values, this requires measurement of relaxation rates, which is
impractical for routine studies; therefore, a normalization to ‘institutional units’ has been
implemented, which is valid for comparisons across data acquired at the same field strength
and with the same sequence timings (TR, TE, TI), under the assumption of no changes in
relaxation rates.

The intensity scaling must take into account spatially-dependent variations in signal reception
sensitivity, for which a correction function based on the proton density MRI is used. This image
data are modified to correspond to the signal arising from 100% water by taking advantage of
the previously-determined tissue distributions as

(1)

where MRIPD and MRIH2O are the proton density and resultant 100% water images; ftissue is
the fraction of each tissue type, for gray matter (GM), white matter (WM) and CSF determined
from tissue segmentation; and ρtissue is the relative water content of each tissue. The term R
accounts for residual T1 relaxation effects in the PD image and therefore is a function of the
tissue type at each voxel, the T1 of that tissue, using literature values for water relaxation rates
(17), and the TR time. This correction term could also include T2 relaxation; however, this was
found to be negligible and was therefore not included. The water content of tissue can vary
between subjects (18–21), hence the procedure starts with approximate values for ρtissue of
CSF = 100%, GM = 75%, WM = 65%, but then proceeds to optimize the GM and WM water
content values to minimize entropy over a central slice in MRIH2O, i.e. minimizing the intensity
variations over the image relative to CSF. Outlying values are then removed (22) to diminish
local intensity changes due to possible tissue misclassification, to produce an image
corresponding to 100% water (or 111 M proton concentration). This is then convolved with the
spatial response function of the MRSI data and corrected for any change in receiver gain
between the MRI and MRSI studies. The resultant image maps the reception sensitivity
function at the SI resolution, while also providing a reference signal. The normalized metabolite
signal, MetNorm, was then calculated from the spectral fitted image results, Met, as

(2)

where the MRI data are convolved and resampled to correspond to the MRSI spatial response
function, srfMRSI, and K is a calibration constant that also accounts for the difference in signal
intensity between the MRI and MRSI acquisitions. This K-factor is obtained from a
measurement in a phantom containing a metabolite of known concentration, using the identical
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MRI and MRSI imaging protocol except for long TR and short TE to minimize relaxation
effects:

(3)

where the two I(r ̅) terms represent the mean signal intensities from the phantom measurements
over some central, homogeneous image region of the MRI and the fitted MRSI results,
respectively, and CMet is the reference metabolite concentration.

For the data acquired in this study, the use of a digital receiver system meant that the gain
values for the MRI and MRSI were unchanged, for both the calibration and study measurement;
therefore, variations of this term did not need to be taken into account.

Tissue segmentation
Information obtained at high spatial resolution from MRI data can be of considerable value for
enhancing the analysis of MRSI data. For example, results of MRI tissue segmentation permit
the analysis of metabolic changes as a function of tissue type or can be used to account for the
relative tissue volume contribution to a specific voxel to account for the differences in normal
metabolite concentrations between tissue types (1). In addition, information on the distribution
of CSF, which typically contributes no metabolite signals, can be used to correct for signal
losses due to partial volume of the tissue within the SI voxel.

In this study, a knowledge-guided tissue segmentation method was implemented (23) that uses
the T1-, T2- and proton density-weighted MRIs. Initially, the MRI data were resampled and
co-aligned using affine registration, to account for differences in dimensions and for possible
subject motion between these data acquisitions. The tissue segmentation procedure then
applied a fuzzy c-means clustering algorithm (24) to classify voxels into a number of groups
that is larger than the number of tissues being segmented, which were then combined using a
set of rules describing the expected relationships and distributions of the different tissue types.

The relative tissue volume contributions corresponding to each voxel in an MRSI dataset can
be obtained by convolution of the high spatial resolution segmentation results with the spatial
response function of the MRSI data. This operation was implemented using a method similar
to that described by Pfefferbaum et al.(25) by inverse Fourier transformation of each MRI-
resolution tissue segmentation volume, resampling and zero-filling to correspond to the k-space
distribution used for the MRSI reconstruction and forward Fourier transformation. In addition,
any differences in field-of-view and spatial position are accounted for. This procedure is
applied to each of the GM, WM and CSF image volumes, to obtain the corresponding volume
contributions at each MRSI voxel, with exact correspondence between the spatial location and
extent as the MRSI voxel. An example of the results of this operation is shown in Fig. 3. In
this study, this procedure was applied in a fully volumetric manner; however, for single- or
multi-plane MRSI acquisition, the convolution must be performed in-plane only and the
segmentation data then averaged over all MRI slices corresponding to the MRSI slice thickness,
possibly including the slice-selection profile.

Image registration
To permit voxel-based spatial analyses across groups of subjects, it is necessary to co-register
all image data. This can be done by applying a spatial transformation to all of the MRSI-
resolution images, to co-register the data in a common spatial frame of reference. To compute
this transformation both within subject and between subject, spatial transformations must be
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estimated and applied. Within a single subject study, differences in positioning between series
(both structural MRI scans and metabolite data) must be accounted for, which may occur owing
to movement between each acquisition. For this study, the high-resolution T1-weighted MRI
data were used as the reference image. Rigid transformations between this reference image
volume and all of the other target image volumes were then estimated using a fully automated
multi-resolution maximization of normalized mutual information (26). To address possible
MRSI-to-MRI positioning differences the integrated water reference image was used as the
target (indicated in Fig. 2), since this has meaningful structural features in MRSI data
coordinates that are suitable for alignment with the MRI data (12). To bring each metabolite
map into a common anatomical coordinate system, the MRSI data were spatially transformed
to a reference or target brain, for which the MIDAS system uses the MNI BrainWeb simulated
MRI data (27). A multi-resolution non-rigid alignment (28) was implemented, with a B-spline-
based parameterization of the deformation field between the reference atlas and the T1-
weighted high-resolution MRI from the subject, again driven by maximization of normalized
mutual information. The transformations from the reference to the subject T1-image coordinate
system and between the T1-image and the other subject datasets are then compounded and
applied to map each metabolite and tissue density map into the common coordinate system.
Finally, to permit regional analysis of brain metabolite levels, a brain atlas was created by
labeling the BrainWeb MRI data with lobar-scale anatomical regions. By transforming the
labeled atlas into the subject frame of reference, it is then possible to analyze the normalized
metabolite results over individual brain regions.

An example of the image registration procedure is shown in Fig. 4. Here, the data from 14
MRSI study results have been combined to create maps of the average N-Acetylaspartate
(NAA), creatine and choline over the whole brain. The metabolite images have been intensity-
normalized and corrected for CSF volume contribution. The average metabolite value was not
calculated at a voxel if any one of the MRSI data sets had a fitted linewidth result of greater
than 10 Hz, with the result that data were excluded in the lower frontal brain and temporal lobe.
However, with the acquisition of a larger number of data sets, it is likely that additional
information for these regions can be obtained with sufficient statistical confidence. These
preliminary images show striking regional differences of metabolite concentrations. Some of
these variations include higher NAA and creatine in cerebral GM than in cerebral WM,
decreased choline in occipital GM and increased creatine and choline in the cerebellum and
increased choline in the thalamus, in general agreement with previous studies (29–33), but with
much greater regional definition. Some localized intensity changes of choline in frontal brain
regions remain owing to incorrect fitting, arising from imperfect water suppression in these
regions; however, this will be addressed by improving the quality evaluation procedures and
by removing outliers in the mean value determination.

The brain atlas, which is also defined in the same reference MRI spatial coordinates, is
illustrated in Fig. 5. Two orthogonal image slices and a volume-rendered brain image are shown
with the lobar-scale labeling super-imposed in different colors.

Metabolite database formation
For many clinical applications, MRSI-observed metabolic changes may not be visible as a focal
change of the detected metabolite signals, but may exist as a diffuse change over a wider tissue
region. When combined with the generally low SNRs common for in vivo MRSI and the known
variability of metabolites over different brain regions, the analysis of this type of data can
benefit from both signal averaging over some predefined brain region and comparisons with
normal values for that same region. For example, it may be of value to determine the mean
metabolite concentration in WM over a lobar-scale brain region and to compare the result with
normal values for the same region. The general implementation of this type of analysis requires
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the formation of a reference dataset that provides mean and standard deviations of the normal
metabolite values over all brain regions of interest and a mechanism to compare individual
subject metabolite data with this reference. Ideally, the reference data should be generated from
a large, statistically significant, group of normal subjects for the corresponding subject
characteristics, such as age and gender. Previous studies indicate that the major variable to be
taken into account is age (2,34); however, the creation of the MIDAS database based on a larger
sample of the population may eventually provide further insight into these subject-dependent
variables.

The formation of the reference metabolite information requires that results from multiple
studies be combined in a standardized spatial coordinate system, as described in the previous
section, where voxel-based statistics can be applied to the combined data. For this study, the
metabolite database was generated by first transforming each normal-subject metabolite image
dataset into the MNI reference frame using the following procedure:

1. Determine non-linear registration parameters between the T1-weighted MRI from the
subject and the reference MRI data set.

2. Determine affine registration parameters between the water-reference MRSI and the
subject T1-weighted MRI.

3. Transform all metabolite images to the standardized spatial coordinate system by
applying the combined transforms determined in steps (1) and (2) and saving the
spatially normalized metabolite images.

4. Generate group metabolite image statistics as needed, from the collection of spatially
normalized metabolite image data. For example, mean and standard deviations of
normal metabolite distributions can be calculated as a function of age group.

The comparison of individual subject data against the group-mean metabolite images can be
done in either the subject or the reference spatial coordinate system, by making appropriate
use of the spatial transformation parameters determined for that subject.

In addition to creating a database for the normal-subject group data, the MIDAS database may
also include results from clinical studies, thereby enabling group statistics to be generated for
any study cohort and for comparisons between cohorts.

Statistical analysis
The overall result of the data processing described in the previous sections is spatially-
coregistered MRI and MRSI data from a single subject and spatially registered comparison
data from a cohort of normal subjects. Several types of statistical analysis can be applied to
these data, depending on the aims of the study. In applications with a strong prior anatomical
hypothesis of metabolite alterations in a specific location in the brain, the classical approach
of two sample comparisons by Student’s t-test may be applied to evaluate the null hypothesis.
For non-Gaussian probability distributions, a Wilcoxon rank test can be used; however, in the
absence of prior anatomical information regarding metabolite alterations in the brain, the
statistical analysis must proceed by simultaneously assessing the MRSI data at each voxel
individually. Furthermore, because a metabolite signal may arise from both GM and WM
tissue, it is critical to differentiate between metabolite changes of GM, WM and other tissue
types. Several statistical models that are special cases of the General Linear Model are provided.

Previous studies have demonstrated that tissue-dependent changes of metabolites can occur
with disease (35). For this type of analysis, a regression of the normalized metabolite signal
against the tissue content of a group of voxels can be used. A linear regression model estimates
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the variation of metabolite intensity, Yn, over a range of n MRSI voxels in terms of contributions
from GM, WM and other tissue types, i.e.

(4)

where βGM and βWM represent the signal contributions from cortical GM and WM,
respectively, and are synonymous with concentrations in this context.  and  are the
weights of GM and WM in each voxel, respectively, and Bias  is the signal
component from spurious contributions of other tissue types, such as WM lesions and
subcortical GM. The bias term is, by hypothesis, a function of the weights  and ,
because the lower their sum for a voxel the more likely it is that other than GM and WM tissue
are contributing to the signal. A major exception to this is when the rest of the voxel contains
CSF or non-brain tissue, as both contribute nothing to the signal. The error term represents
simply the error from estimations of the metabolite signal itself and is assumed to approximate
a Gaussian. The model can be fitted using standard minimum least squares. To evaluate
variations of βGM and βWM between subjects, for example, analysis of variance (ANOVA)
methods can be used.

A more robust and rigorous approach to evaluate variations of βGM and βWM between subjects
is to use simultaneously the MRSI data from all subjects in a study and explain metabolite
variations in terms of both tissue contributions and differences among subjects. A mixed effects
linear regression model is provided to conduct this type of analysis:

(5)

In addition to the coefficients for the model in eqn. (4), eqn. (5) contains random coefficients,
, for each subject, k, and tissue type (i.e. GM or WM) and minor contributions from other

brain tissue types, Bias . As an example, Table 1 lists results from a mixed effects
analysis of NAA differences in GM and WM in superior brain regions (encompassing frontal,
parietal and occipital lobes) in 14 normal subjects. Normalized metabolite concentrations were
regressed against GM and WM voxel compositions as fixed effects and against subjects as
random effects to account for between-subject variations. Both NAA and creatine had higher
concentrations in GM than WM, by 20 and 60%, respectively, and choline in GM was
approximately 50% of the concentration in WM. These relative concentrations can also be seen
in the image data shown in Fig. 4.

The ultimate goal for statistical analysis of MRSI data is assessment of metabolite
abnormalities for individual subject diagnosis. The usefulness of MRSI for this purpose still
remains to be demonstrated; however, a major obstacle towards achieving this goal has been
the lack of uniform MRSI procedures and large MRSI databases that permit comparisons of
individual MRSI data to normal values. Part of the statistical analysis provided in the MIDAS
package is therefore to determine the norm of regional metabolite distributions based on data
from a population of well-characterized healthy subjects. The statistical analysis tools provide
a mechanism for querying MRSI data and study information (via SQL queries) using R, an
open source statistical computing and graphics package (36). The results can be exported in
standard formats, including the widely used Analyze image format (37).
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Display methods
The requirements for visual review of MRSI data continue to evolve, but may include display
of MRI and metabolite images as well as of individual spectra. Although the aim of the MRSI
processing described in this paper is the generation of metabolite images that can be viewed
directly, there remains a need to view spectra from individual voxels for both visual analysis
of the relative metabolite intensities and for verifying the quality of the data. While a number
of additional display and processing options may be of interest to the more research-oriented
user (38), these could be a distraction for the clinical user who may require different features,
such as viewing multiple study results taken at different time periods (39). Therefore, to satisfy
these different visualization requirements, two display modes are provided with the MIDAS
package, one more oriented to the researcher and the other to the clinician. In Fig. 6 is shown
an example of this clinical-display function, which illustrates the display of multiple images
having different contrast characteristics and different images resulting from processing (e.g.
spectroscopic images) in a topographically correlated manner, together with the voxel spectral
data. The image data type displayed in each window is fully configurable and a mouse click
on any image voxel updates the spectral display. User-defined window and level adjustments
for all image windows can be made independently of each other and a slider (bottom) moves
all displayed images through the third dimension in concert. Multiple viewers may be opened
to view and compare different studies and alternative display methods are available, including
orthogonal sections through volume data sets and combined metabolite and MRI image display.

DISCUSSION
MRSI acquisition protocols are now widely implemented on commercial MR systems and
routinely carried out as part of many diagnostic MR procedures; however, the data processing
methods remain less well developed. The reasons for this include the inherent complexity of
a comprehensive MRSI processing protocol, the high degree of variability of the resultant data
still seen in MRSI acquisitions and difficulties in obtaining comparative quantitative
information on metabolite distributions. The processing methods described in this paper aim
to address some of these remaining limitations. Several important features make this possible.
First, the fully automated reconstruction and spectral analysis methods are essential to process
the large amounts of data acquired in a typical MRSI study. Second, signal normalization is
required to make full use of the available information and permit comparisons with normal
values. Furthermore, this capability must also be fully integrated within the clinical acquisition
protocol, without requiring extra time. Third, morphological operations including tissue
segmentation and image registration provide effective approaches to improving the
information content on individual MRSI studies and to the formation of reference metabolite
information obtained from groups of subjects. Finally, comprehensive display and statistical
analysis functions are necessary. All of these functions must also be sufficiently adaptable to
allow different imaging protocols to be processed.

In this initial demonstration of the MIDAS software environment, multiple MRSI data have
been processed in a fully automated manner and combined in a common spatial frame of
reference. The resultant mean metabolite image data demonstrate considerable regional and
tissue-specific variations throughout the whole brain, further emphasizing the need for regional
comparisons of individual subject data with normal values. Statistical analysis of these spatially
transformed data has also been demonstrated, to provide quantitative measurement of tissue-
specific normalized metabolite signal intensities. In this study, the analysis was performed for
voxels located in a superior brain region, although as the brain atlas is fully integrated with the
analysis methods it will be possible to provide automatic analyses over all brain regions defined
in the atlas.
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The MIDAS software package and the comparative normal subject data are made available to
the research community and further information on obtaining this package can be obtained
from the corresponding author. It is expected that by increasing the number of users of this
system, the brain metabolite database will be expanded to include additional acquisition
protocols and field strengths. As improved statistics on distributions of brain metabolites in
normal subject are obtained, this in turn will permit improved analysis of individual studies.
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MRSI, magnetic resonance spectroscopic imaging
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SNR, signal-to-noise ratio
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Figure 1.
Illustration of the steps and interconnections between MRSI and MRI data types required for
full processing and analysis of a single-subject MRSI data set
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Figure 2.
Detailed flow diagram of the processing steps used for the metabolite and the water-
reference 1H MRSI data sets
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Figure 3.
Illustration of the tissue contribution image processing. In (a) and (b) are shown T1- and T2-
weighted MRIs at a single slice and the corresponding tissue segmentation images for CSF,
WM and GM in (c), (d) and (e). These tissue maps are convolved with the 3D MRSI spatial
response function to form the corresponding images shown in (f), (g) and (h)
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Figure 4.
Maps of the average metabolite levels from 14 subjects selected from the three-dimensional
volume, showing the (a) NAA, (b) creatine and (c) choline distributions along three orthogonal
directions. The metabolite images were CSF corrected and intensity normalized, and are shown
in color superimposed on the reference MRI, with red indicating high data values, yellow
intermediate and green–blue low. The color scales were adjusted separately for the best
visualization of each set of metabolite images
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Figure 5.
Illustration of the anatomical atlas with each lobar region indicated in color and overlaid on a
rendering of the template brain
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Figure 6.
Example screen shot of the MIDAS Viewer. Any acquired or derived data can be displayed,
including conventional MR images with T1-, T2- and proton density-weighting (a–c), tissue
content images (e.g. GM) (e), spectroscopic images of NAA, choline and creatine signal area
(f, g, i), the B0 image (j) and the Quality map image (k). The metabolite spectrum (d) and the
water signal obtained from the reference acquisition (h) can be displayed from any user-
selected voxel, in addition to the corresponding study information and numerical results (e.g.
area of choline, creatine and NAA signals). Image window and level adjustments can be made
independently of each other and a slider (bottom) moves all images through the third dimension
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Table 1
Results of the mixed effects linear regression for metabolite concentrations in gray and white matter in superior brain
regions (in institutional units), shown as mean values ± standard errors

Tissue Cho Cr NAA

GM 0.54 ± 0.03 1.88 ± 0.02 2.64 ± 0.03

WM 1.09 ± 0.02 1.17 ± 0.01 2.19 ± 0.02
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