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Abstract. A new method of two- or three-dimensional spin density imaging by nuclear 
magnetic resonance (NMR) is proposed, which exploits the properties of spin echoes in time- 
dependent magnetic field gradients. An analysis shows that simultaneous observation and 
differentiation of signals, arising from all spins distributed in a plane or set of planes within 
the specimen, is possible. The method is thus capable of producing visual pictures faster than 
previously described planar imaging methods. 

Quite recently we described a method of planar NMR imaging which allows the formation 
of spin density images simultaneously from a distribution of points in a plane or set of 
planes throughout the object under study (Mansfield and Maudsley 1976). This method 
of imaging relies for its operation on selective excitation of the specimen in switched 
magnetic field gradients and is an extension of the line-scan method of imaging (Mans- 
field et a1 1976), which in turn is based on general imaging methods by selective irradia- 
tion described by Garroway et al(1974). A number of other different imaging methods 
have also been reported (Damadian et a1 1976, Lauterbur 1974, Hinshaw 1976, Kumar 
et a1 1975). 

In this Letter, a new planar imaging method is proposed, which achieves spatial 
selectivity either in part or fully by exploiting the properties of spin echoes. The method 
employs time-dependent magnetic field gradients and in many respects is the Fourier 
transform equivalent of some earlier experiments (Mansfield and Grannell 1975). In 
part of this earlier work we were concerned with the determination of periodic structures 
using Fourier transformation in a continuous time domain. In the present experiment 
we consider what might be regarded as the complementary situation, namely, the 
determination of a continuous spin density distribution when periodicity in the time 
domain is imposed. 

As with our previous planar imaging method, the object of this experiment is to 
produce, at high speed, cross-sectional NMR images corresponding to the mobile spin 
density variations throughout a living biological specimen. This speed is imperative if 
NMR is to be successfully used in medical imaging. 

For simplicity we shall restrict the preliminary discussion of the new method to two- 
dimensional imaging in one plane. Consider an extended speimen, figure 1, placed in a 
large uniform static magnetic field Bo which defines the equilibrium spin polarization 
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Figure 1. Sketch showing selectively excited layer of spins of thickness Ax in the plane xo 
within an extended specimen. 

axis. A linear magnetic field gradient G,  = aB,/ax is also applied and at the same time 
a tailored 90" RF pulse excites the spins within a single slice of thickness Ax at xo, giving 
a free induction decay (FID). Immediately following this excitation pulse, the gradient G, 
is switched off and the FD is observed in a switched gradient G, = 2B,/2y and a steady 
gradient G ,  = aBX/2z.  

The effect of gradient switching is best understood if we study what happens when 
G, = 0. Let us suppose that, in a time z,,, a steady gradient G, has caused the FID ampli- 
tude to decay completely to zero. If this decay alone were sampled and Fourier trans- 
formed it would of course yield the projection profile of the spin distribution along the 
y axis in the x o  plane. However, by reversing the gradient direction (or by applying a 
180" RF pulse) the decayed FID signal can be made to grow into a spin echo in a further 
time zb which then decays again. Further gradient reversals can thus recall the signal P 
times provided that t ,  = 2Pzb < T,, where is the spin-spin relaxation time of the 
specimen. Recalling the signal in this way and sampling the full spin echo train imposes 
a discreteness on the Fourier transformed projection profile. The discrete frequency 
spacing is given by AwY = n/Tb The finite sampling time t ,  will introduce some slight 
broadening on the discrete lines giving them all an angular frequency width of approxi- 
mately 27c/tb External shaping of the spin echo train gives the possibility of further 
broadening the discrete lines into rectangular or other desired profiles. 

In the full two-dimensional experiment, signal sampling is performed with the addi- 
tional steady gradient G, which broadens the individual discrete lines to yield, for a 
single echo train plus Fourier transformation, a complete set of resolved cross-sectional 
profiles of the spin distribution across the thin layer in the specimen. The profiles can 
then be appropriately formed into a rectangular array of data points within a computer 
memory and then output in a television display to form a visual image (see for example 
Baines and Mansfield 1976). 
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In a generalization of this experiment to three dimensions, a multi-planar selection 
process can be incorporated by modulating both G, and G, while maintaining G, 
steady. In this case, the initial selective excitation pulse can be replaced by a conven- 
tional non-selective 90” (or 0’) RF pulse. As we shall show in the following analysis, the 
effect of gradient switching together with digital sampling of the signal is to impose on 
an otherwise continuous spin density distribution, a discrete lattice point distribution 
with spatial periodicities a, b and c. 

The FID signal in the rotating reference frame at time t following the pulse is given by 

S( t )  = RejjJp(x, y, z )  exp [iy j’ (xG,(t’) + yG,(t’) + zG,)dt’]dxdydz (1) 
0 

where p(x,y,z) is the continuous spin density distribution of the sample and y is the 
magnetogyric ratio. 

We first consider the effect of the time-dependent x gradient alone in equation (1) 
and write the integral over x as a new function f(y, z, t). If G,(t) is periodic, modulo 
2ra, then we have 

f(y, z, t )  = j dxp(x, Y, z )  exp [iyr xG,(t’)dt’] 
0 

P 

p = o  
= c Fry, 2, ( t  - 2pza)]. 

If the modulation is square wave and za is chosen to be long enough for the FID to decay 
to zero amplitude, then with G, = G, = 0, equation (2) integrated over y and z yields 
a spin echo train. When all three gradients are applied with appropriate square-wave 
modulation, we may write the density p ( x ,  y, z )  as a function of angular frequency 
p(wx, w,, w,). For large P, the Fourier transform of f(y, z, t )  becomes therefore 

(3) 
where 6(0, - lAw,) is the Dirac delta function. 

A similar transformation with respect to the integral over y introduces a second delta 
function 6(0, - mAw,,). In both delta functions 1 and m are integers and the angular 
trequency intervals between points are given by 

(4) 

d u x ,  wp U,) = Amx,  U,, o , ) ~ z ~ ( w ,  - IAo,) 

Aw, = x/za = ~ u G ,  

etc. The inverse Fourier transform of equation (3) when substituted back into equation 
(1) together with the corresponding substitution for the y integrand. yields finally 

S(t) = (ub/yG,)!dRp(lAw,, mAw, CO,) cos Qt ( 5 )  

where the angular frequency R is given by 

R = IAw, + mAw, + w,. (6)  
Digital sampling of S( t )  for a time 5, introduces a discreteness along the z axis. The 

points are spaced at z = zo + nc (n integer) which corresponds to an angular frequency 
interval Am, = 2 4 ~ ~  = ycG,. Taking this into account we may rewrite equation (5) as 
the discrete sum 

S ( t )  = plmn COS~(~ACO, + MAO, + ~ A o , ) A u ~ ~ , ,  (7) 
where Aqmn = abc is the unit cell volume, the spins of which contribute to the signal at 
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each lattice point. If the modulation periods (and hence the gradients) are chosen so that 

(8) 
where M and N are the largest values of m and n respectively in the imaging field, then 
we see from equation (7) that all points in the distribution plmn are uniquely defined in 
the frequency domain. Fourier transformation of S(t)  in equation (7) will thus yield in 
one calculation the complete three-dimensional spin density distribution function plmn. 
This Fourier transform nesting which in effect converts a three- (or two-) dimensional 
transformation to one-dimensional form, is the basis of our previous planar imaging 
method (Mansfield and Maudsley 1976). 

Provided the conditions on gradient amplitude and periodicity are maintained, it is 
straightforward to see from equation (1) that the square waveforms of the field gradient 
modulations may be replaced by cosine waveforms to good approximation. For opti- 
mum working of this experiment, the gradient modulations must be phase coherent. 

If the time saving gains are to be effective in planar imaging, the complete signal 
sampling cycle must be repeated frequently so that data acquisition approaches a con- 
tinuous process for signal/noise ratio enhancement purposes. The coherent nature of the 
method described lends itself to the incorporation of complementary store cycles along 
the lines of the driven equilibrium Fourier transform (DEFT) technique for signal averag- 
ing (Becker et al 1969) or possibly the steady state free precession (SSFP) technique (Carr 
1958, Hinshaw 1976) both methods making signal observation essentialy independent 
of spin relaxation effects if required. 

A full account of this work including the various cyclic variants for practical realiza- 
tion of high-speed imaging will be presented elsewhere. 

Ao,IM = Amy = NAw,  
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