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1 INTRODUCTION

A composile pulse is a small number of contiguous, or
near-contiguous, rf pulses with different phase. The composite
pulse emulates the effect of a simple rf pulse, bul has an inbuilt
compensatory mechanism which renders it less sensitive to
common experimental imperfections. Composite pulses may be
compensated against the inevitable spread in the amplitude of
the applied 1f field over a sample of finite extent; they may be
rendered insensitive to the limited strength of the applied rf
field compared with the interactions of the spins with each
other (spin-spin couplings} or with the molecular clectron
clouds {(chemical shifts). In some cases other common pulse
imperfections such as pulse shape errors are compensated.
Composile pulse sequences are uscful in a wide range of ex-
perimental situations in NMR, They are particularly important
when critical experiments are performed in difftcult situations,
such as when the sample is large compared with the rf coil,
absorbs rf fields strongly, or when the attainable ficld is
restricted because heating must be avoided.

A case of particular importance is broadband heteronuclear
spin decoupling (sce Decoupling Methods). Here a continuous
train of composite pulses is applied to one spin specics while a
different spin species is observed. Suvitable composite pulse
sequences cause the spin system to evolve as if the heteronue-
lear spin-spin couplings were absent. The minimization of
heating effects is particularly demanding in this application
since the rf ticld may be applied continuously over a period of
seconds. Composite pulse techniques have allowed a large re-
duction in the usable rf power and are now almost universal in
heteronuclear liquid state NMR,

Compensation ol the nuclear spin dynamics is also import-
ant in solid state NMR. Controlled spin manipuiations can be
achicved even when the achievable rf field is comparable with
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magnetic dipole—dipele couplings or electric quadrupole coup-
lings. They are used in quadrupole echo experiments, methods
to determine the orientation dependence of spin-lattice relax-
ation times, and for heteronuclear decoupling. Composite
pu]qee have also been designed for NMR in zero magnetic
field" (see Zero hela‘ NMR) in nuclear quadrupole resonance

(NQR) sper_tros.copy * and even in coherent optical exper-

iments.*~*

The original idea of compensating rf pulses for imperfec-
tions has been extended in several additional directions.

I. Composite pulses have been designed with an exaggerated
sensitivity to the rf field amplitude. The response with
respect to the rf field strength may be tailored so that there
is strong uniform excitation within a given range and mini-
mal excitation otherwise. In combination with careful rf coil
design, such composite pulses comprise a means of spatial
localization (sec Localization by Rotating Frame Tech-
nigues) of the nuclear spin signal.

2. Composite pulses have been designed with a carefully-tai-
lored frequency response, i.e. dependence of spin dynamics
on chemical shifts. This can be used, for example, in the
suppression of undesirable NMR signals from solvent spins
{(sec Water Suppression in Proton MRS of Humans & Ani-
mals).

3. Composite pulses may he constructed which simulate the
effect of arbitrary rf phase shifts on spectrometers which are
cquipped only to produce 90° phase steps.

4. Many experiments in coupled spin systems require some
knowledge of the typical values of spin-spin coupling con-
stants or quadrupole couplings. In practice, there is some
spread in the magniudes of these interactions, leading to a
reduced experimental efficiency or, in some cases, extra
peaks in tiwo-dimensional spectra. By making analogies
with composite pulses, methods have been designed which
are internally compensated against deviations of the coup-
lings from their expected values.

5. Composite pulse sequences closely related to heteronuclear
decoupling sequences are widely used for the propagation
of spin coherence through extended networks of spin—spin
couplings.

The variety of composite pulse sequences, and the range of
associated theoretical approaches and applications, is large. The
<hoice of topics covered here is necessarily subjective. A more
detailed. and theoretical, review of the field up to 1986 is given
by Levitt.”

2 NOTATION

Consider a spin species [ with magnetogyric ratio -~
exposed to a strong static magnetic field B,. The Larmor tre-
quency of the spins, neglecting for the moment chemical shifts
and spm—%pm couplings, is given by wy = —v;By, in units of
rad s —'. For example, the Larmor frequtncy w/2a for protons
in a hcid By =11.74 T is approximately —500 MHz.

During an rf pulse, an additional oscillating magnetic tield
is applied, The oscillation frequency of the applied field will
be denoled by w; (this conforms to the notational convention
used in this Encyclopedia, but the reader is wamed against
conflicts with much published work}). Usually w, is very close
to the Larmor frequency of the spins wy.

For high-field NMR, the relevant component of the o mag-
netic field is perpendicular to the static magnetic field, and
rotates around By, in the same sense as the precessional motion
of the spins. The amplitude of the relevant component of the
oscillating rf field is denoted by B,. This is usually written in
terms of the nutation frequency

Q) = —h8 iy

The nutation frequency €2,/2x is usually of the order of kilo-
hertz or tens of kilohertz, and is generally assumed 10 be posi-
tive for convenience (for spins with positive ~, this implies
that the field component B is taken to be negative).

In general, £y is spatially inhomogeneous, i.e. differs from
place to place in the sample. This will sometimes be stressed
by writing £2,(#), where r is a spatial coordinate.

To set the pulse durations it is necessary to assume a certain
‘nominal’ nuiation frequency 2. This represents roughly the
most probable value of 2, over the sample volume, and is nor-
mally determined by some simple experimental procedure. For
example, the *90° pulse length’ 4o can be set by finding the
pulse duration giving the maximum NMR signal. The nominai
nutation frequency QY is then defined through the relationship:

Oy = /2 (2)

Other experimental procedures may give slightly different esti-
mates. This does not matter very much. §2] should simply be
somewhere near the center of the actual ,(r) distribution.

The duration v, of a single rf pulse is conveniently denoted
in terms of Y by the ‘nominal flip angle’ ’5;3, delined by
= i, (3)

A rectangular rf pulse can therefore be specified by using the
two angles ”i” {for the duration) and ¢, (for the rf phase), and
will be denoted (7 I,)(,,,, with the angles given in degrees.
Otherwise, radians will be used. For example, 9045 denotes a
rectangular rf pulse with an rf phase ¢, = 7/4 and a pulse dur-
ation 7, = (n/2¥).

A composite pulsc is simply a sequence of single rectangu-
tar pulses. For simplicity, only conriguous composite pulses
will be considered here, i.e. there are no spaces between the
pulses. All component pulses are assumcd to have the same
frequency, although this is not always the case in practice.®
The composite pulse sequence is written in chronological order
from left to right. For example, 90,5180 denotes a rectangular
f pulse with rf phase of 7/4 and a duration of Tp = (7r/2)."QO,
immediately followed by another rectangular pulse with an 1t
phase of zero and a duration of 7, = 7/Q.

Sometimes it is necessary to denote an overall phase shift
of an entire group of pulscs This is done using square brack-
ets, for example [(dl),,l {i )i'z)ra,'z]q) which is equivalent to
BNsve (1Doaia.

A puise sequence S with an element F missing at the front
will be denoted by F™'S. For example. if a scquence S s
given by S = 904518049040, then (90;537'S is given by
180690 4. Similarly, S(‘)().,m)*] is given by 9045180, The
pulse sequence £ 'SE derived from S by taking the element F
from the front to the buck is a cyclic permutation of S

The chronological reverse of a pulse sequence S is denoted
by ™. In the example above, ™ would be 90, 4,180,90,5.

For References see p. 1410
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3 PULSE IMPERFECTIONS

Two common causes of imperfect pulse performance are: (i)
lack of uniformity in the applied rf field, and (ii) limited ampli-
tude of the if field compared with the other interactions
experienced by the spins,

3.1 Radiofrequency Field Inhomogeneity

The amplitude of the relevant rf field component varies
from place to place in the sample. The rf field experienced by
the spins is conveniently represented by the dimensionless par-
ameter 0,709, which is equal to 1.0 for the nominal 1f field. In
practice, 2,/ deviates from unity by a few percent in a well-
designed high-resolution NMR probe, but the deviations may
exceed 20% for a surface coil in NMR imaging (see Surface
Coil NMR: Quantification with Inhomogeneous Radiofre-
quency Field Antennas).

3.2 Limited rf Field Amplitude

The usable rf field amplitude is always limited, either
because sample heating must be minimized, or because of the
risk of electrical failure in the amplifiers or rf coil. Magnetic
fields associated with chemical shifts or spin couplings com-
pete with the rf field during the pulse and bring about a
degradation in pulse performance,

3.2.1  Isotropic Liguids

In isotropic liquids, spin-spin couplings are small. Imperfect
pulse performance at low rf fields is caused mainly by chemi-
cal shifts and field inhomogeneities which causc the lLarmor
frequency of the spins to differ from site to site in the sample.
If the electronic shielding constant for a site is ¢/, and the
applied magnetic field is By, the Larmor frequency wy of that
site is given by:

wj = —yBoll — o) (4)

The resonance offset Aw’ of a set of chemically equivalent
spins /; is equal to the difference between the Larmor fre-
quency and the irradiation frequency:

At 7wﬁf —w (5]

For a sample containing only one chemical site, in a perfectly
homogeneous static magnetic field, Aw’ may be set to zero
simply by using an rf wy exactly equal o the chemically-
shifted Larmer frequency wi. However, when the sample con-
tains many different chemical sites, or when the static field is
inhomogeneous, resonance offset effects are inevitable,

The seriousness of resonance offset effects may be quanti-
ficd by the dimensionless parameter Aw’/QY which will be
called the relarive resonance offset. For high-resolution proton
spectroscopy, the magnitude of the relative offset is typically
less than 0.1. For decoupling experiments, and for composite
pulses on nuclei with larger chemical shitt ranges, relative ofl-
sets of 1.0 or more are common.

The resonance offsets Aw’ may have either algebraic sign,
depending on whether the Larmor frequency is higher or lower
than the irradiation frequency. For a conventionally presented

For list of General Abbreviations see end-papers

spectrum of nuclet with a positive magnctogyric ratio such as
'H or 3C, spins with positive Aw’ appear on the right-hand
side of the spectrum. (Remember that the Larmor frequency wi,
and irradiation frequency w; are close to —vB; and are there-
fore negative.)

3.2.2  Anisotropic Liguids and Solids

In anisotropic systems, the situation is more complicated as
there arc many spin interactions large enough to compete with
the applied rf field. For spins | = 1, quadrupolar interactions
are usually dominant. For 'H spins in solids, on the other
hand, through-space dipole—dipole interactions are large and
produce imperfect pulse performance. For dilute Spin—% nuclei
like *C and '°N, chemical shifts often dominate and the situ-
ation is similar (o that in isotropic liquids, although the
magnitude of the interactions is larger.

The anisotropic case is examined in Section 6 of this article.
In most of the following discussion, isotropic liquid phase is
assumed and resonance offset effects quantified by the par-
ameter Aw'QY,

3.3 Other Pulse Imperfections

There are a number of other common pulse imperfections,
such as errors in the profile of the pulse in time, errors or
instability in the rf phase, and induced fields associated with
coupling of the nuclear spin magnetization to the resonant
detection coil (see Concentrated Solution FEffects). Generally
speaking these errors are left uncompensated by composite
pulses, although there are excepticns. In particular, composite
pulses always assume highly accurate and stable rf phases. For-
tunately, digital electronic synthesis of the rf signals generally
ensures precise phases in modern instruments.

4 AN EXAMPLE OF ERROR COMPENSATION: THE
COMPOSITE PULSE 909,180,904,

To introduce the concept of error compensation, consider
one of the common tasks of a 180° pulse, namely the sign
inversion of the z component of spin angular momentum, This
corresponds to an exchange of spin state populations and is
often exploited for measuring relaxation time constants (see
Relaxation: An Introduction).

4.1 Single Pulse Propagator

Consider a single rectangular pulse of nominal flip angle Hﬂ
and phase ¢,. If the rf field is much larger than the spin—spin
couplings, and 4, is not extremely large, then the pulse dur-
ation is short on the timescale of spin—spin couplings and the
individual spin states undergo a simple rotation in three-dimen-
sional space. The quantum states 177 of spins {; before and
after a pulse p are related by

“'r"l‘">;(fu-1 = U;'U‘")lf.e\fnl‘z' (6)

where U-{, is the rotating frame pulse propagator for spins [,
given by
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f: = exp{fiil;fij . n; {7

&' is the rotation angle of spins I;
rotation axis.

For an ideal pulse of nominal flip angle 39 » and phase @,
the rotation angle is fp = ,6‘_,,, and the rotation axis is nj =
e, Cos @, + &, sin ¢,, where e, and e, are unit vectors along
the x and y axes. If there are finite resonance offset effects or
f amplitude errors, on the other hand, the rotation parameters
are

; during pulse p, and n" is the

B
i[O o) ®
(€2)
1'11{ =e cosf + e, sin @ cos @+ e, sin 6 gin B (9)
where the angle ¢ is
tand/ = Q) /Aw’ (10)

4.2 Single 180, Pulse

Consider now the specific case of a 1800 pulse, i.e. ﬂ =7

and ¢, = 0. For small offsets ALJINY, the propagator is
simply
Urf o exp{fizf!f@—_‘.} {11}
with
£ =/ {(12)

indicating that the spin angular momentum turns through an
angle g{, about the x axis of the rotating reference frame.
Depending on the rf field €),, this angle can be either smaller
or greater than the nominal flip angle ,82 =

The transformation of z angular momentum by an imperfect
180, pulse is readily understood geometrically. An ensemble of
spins I; with finite polarization along the 7 axis has a spin den-
S1ty operator Jyefore = IAJ.z (inessential constants being omitted).
This can be represented as an angular momentumn vector along
the z axis of the rotating reference frame [Figure 1(a)]. After
the pulse the density operator is

i
adfler - U j’Uj

:111(0:-, . —I’jysinfff (13}
This can be understood as a rotation of the angular momentum
of the spin ensemble around the x axis through an angle &7,
For nominal rf fields, £/, = = and the spin angular momentum
is along the —z axis after the pulse [Figure 1(h)]. For ¢f fields
larger than the nominal [Figure 1{c}|, the vector ‘overshoots’
the —z axis, and for weak rf fields, the vector falls short
[Figure 1(d)]. The trunsformed z angular momentum of spins
{;, given by the parameter
- Tr{ Uﬁ,’mUJTI }/TI{‘F*}

= G0 EIf (14)

(b)

3

{a)
:
/ y
b

@R
NI

ta

N
N

Figure 1 Effect of an imperfect f ficld on a 180, pulse. (a) The
equilibrium spin magnetization is represented as a unit vector along the
z axis of the rotating reference frame. {b) For nominal rf fields (2, =
ﬂ?), the magnetization vector rotates through 180° around the x axis,
ending up exactly at the —z axis. (c) For f figlds stronger than the
nominal, the magnetization vector overshoots the —z axis. (d) For f
fields weaker than the nominal, the vector falls short of the —z axis. In
bath cases, the z component of the final vector is larger than —1

21N
N

is equal to —1 for an idecal 180, putse, but is larger than —1 if
the pulse is imperfect [Figure 2(a)]. For small rf field errors,
the transformed z ungular momentum is

. 0, — 00
Rl = —1 +lw2(m‘) {15)
&z 2 Q(I)

ie. it is quadratically dependent on the rf error. In practice this
means that the degree of spin population inversion is spatially
dependent, with detrimental experimental consequences.

4.3 Composite Pulse 90901800909(’.

The imperfect transformation of z angular momentum may
be corrected” by using a composite pulse 9040180490y, as illus-
trated in Figure 3. The trajectories of the tips of a fumily of
vectors, all starting out along the z axis, are tracked out during
the pulse sequence. The vectors in the family correspond to
different rf field values; to simplify the picture, all represent rf
fields weaker than the nominal.

During the first 90y, element, all vectors rotate around the ¥
axis, starting at the z axis and tuming towards the x axis. An
ideal 90y, pulse would take them exactly to the x axis, but, as
the fields are weak, they fall short. The next 180, element
rotates these vectors around the x axis, After this element, the
vectors still lie approximately in the xz plane, but they now lie
in the southern hemisphere of the unit sphere. Indeed, the tips

For References see p. 1410
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{a)

1.0
Q00

Al

Figure 2 Transformation parameters of z angular momentum R for
a single 180, pulse ( ), and a compasite 90y, 1803904 pulse (- ).
(@) Dependence of RL. on the rf field (3,92%. (h) Dependence of R on
the relative resonance offsct Aw//1]

of the vectors after the first and second pulses are related as ap-
proximate mirror images in the xy plane. The last 90y, element
again rotates the vectors around the y axis, through exactly the
same angle as the first element. The error compensation works
as follows; just those vectors which lag the most after the first
pulse are helped the most by the sccond pulse, so that they
don’t have ay far 1o go during the last pulse. On the other

Figure 3 Geometrical mechanism of tf field compensation for the
composite pulse 900 180,904

For list of General Abbreviations sce end-papers

hand, if the rf field is close to the nominal, the vectors are
already taken nearly to the x axis by the first pulse, so that
they are almost unaffected by the second pulse. Again they are
in the right position to be taken to the —z axis by the last
pulse. Hence the angular momentum vectors for spins in a
range of rf fields concentrate near the —z axis at the end of the
sequence. A plot of RS, against relative rf field ©2,/Q] for the
composite pulse 90531804904, is shown by the dashed line in
Figure 2(a).

An accurate analysis of the sequence 90qq180,90¢ shows!?
that for small resonance offsets the transformed z angular
momentum is given by

R(f_, = COH{Z&I‘C(?(JH {(:osz (%)} } (16)

For small rf field errors this can be approximated as

. 0 — 00y .
R;,’;:flJréﬂ"‘(W) {17}
{

The transformation of z magnetization is sensitive only to the
fourth order in rf field error.

It happens that 9045180490y, also gives a rather good com-
pensation for resonance offsets, as long as the f field intensity
is close to the nominal. A simulation of R, against resonance
offset Aw’/0Y, in the case of an exactly set rf field ©, = QF, is
shown in Figure 2(b). The compensation of offset is not very
exact, but quite broadband, giving fair inversion of z angular
momentum for all offsets between —1.0 <€ Aw/1) < 1.0.

A picture of what happens when both oftset and rf error are
introduced at the same time is given in Figure 4(b). This shows

SILoT,

0.0

0.5 A
e 00 ) . -lb 00 10
A/

Figure 4 Contour plots of the parameter R, as a function of f field
§1,/Y and resonance offset A6 for four different pulse sequences.
Inside the darkest region, the parameter R7is less than —0.98.
Increasingly bright regions are delimited by contours at | 0.83, 0.8,
—0.8, 0.6, =04,...}. (a) Single pulsc 180, (b) Composite pulsc
Y040 180804, () Composite pulse 27043000904 2702703 604390, (d)
Composite pulse 180:0180:05 1802301 80xs E800 180x5 180 301802051805,
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Figure 5 Transformations of a three-dimensional object by a
succession of three rotations. (a) A 90° rotation about the y axis,
followed by a 180° rotation about the x axis, followed by a 90°
rotation about the y axis. (by A 80 rotation about the y axis, followed
by a 160° rotation aboul the x axis, followed by a 807 rotation about
the ¥ axis

a contour plot of RL against resonance offset Aw’f2! (hori-
zontal) and rf field €2,/Q9 (vertical). The darkest portions of
the plot are regions of excellent population inversion (R <
--0.98). These regions are far more cxtensive for 904,180,904,
than for a single pulse 180, [Figure 2(a)]. Howcver, the
sequence 9y 1803900, cannot strictly be said to compensate
tor simultanecus resonance offset and rf field errors. There is
trouble if the f field is weak at the saume time as there is a
moderate resenance offset. For truly simultancous compen-
sation, one must use more complicated sequences, such as

27015636009050,2 702753604390, (18}

whose performance is illustrated in Figure 4(c)."!

The above analysis considered only the 7 component ol spin
angular momentum. In general, other angular momentum com-
ponents are also important. Figure 3 illustrates the subtleties
which arisc when compositc pulses are applied to general states
of the spin ensemble. The spin density operalor is represented

not as a vector but as a full three-dimensional object with low
symmetry, here a simple L shape.

In Figure 5(a) the L shape is subjected to a sequence of
three rotations, a 90° rotation around the y axis, followed by a
180° rotation around the x axis, and a 90° rotation around the
¥ axis again. These three rotations may be shown to be equiv-
alent to a single rotation, through 180° around the x axis, as
shown by the final position in Figure 5(a)."? The composite
pulse 9041800904, is equivalent to a single 180y, if all pulses
are ideal.

Figure 5(b) illustrates the behavior of the compesite pulse
if the rf ficld is somewhat weaker than nominal. After the three
mis-set rotations, the long arm of the L is taken almost exactly
o the —z axis, as expected from Figure 3. Howcver, the L
shape is also rotated around the z axis, as can be seen by com-
paring the final positions in Figures 3(a) and (b). In the
language of nuclear spin dynamics, the compensated population
inversion is accompanied by a phase shift of the spin coher-
ences. Such induced phase distortions are a common feature of
most composite pulses, and must carefully be taken into
account in general applications.

5 COMPOSITE PULSES: SPIN COUPLINGS
IGNORED

The response of a general spin system to a composite pulse
raiscs complex issues. Fortunately, the treatment is greatly sim-
plified if the composite pulse is very shorl compared with the
spin—spin coupling constants. Under this approximation, all rf
pulses induce simple three-dimensional rotations of the individ-
ual spin angular momenta. Such composite pulses can be
considered manifestations of the three-dimensional rotation
group, and arc amenable to geometric representation.

This type of composite pulse only works properly il it is
short compared with the timescale sct by spin—spin couplings
and spin rclaxation. This condition is usually readily satisfied
in isotropic liquids. Breakdown of this assumption eventually
sets a limit on the length of usable sequences.

This restriction shonld not be taken to imply that such com-
posite pulses can only be applied to systems without spin—spin
couplings. The point is merely that the couplings can be
ignored during the composite pulse. The spin—spin couplings
can stili be active during the much longer periods between the
pulses.

A smaller group of composile pulses (discussed in Section
6) takes into account explicitly the spin couplings during the
pulse. The dynamics of the spins cannor then be described as
rotations in a three-dimensional space.

5.1 Composite Pulse Propagator

Consider a composite pulse with # pulse elements, applied
to a system of N coupled spins, If the spin—spin couplings are
ncglected, the overall propagator I7 of the entire spin system
can be factorized into a product of individual propagators £V,
one for cach spin:

(19)

For References see p. 1410
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Table 1 Varable Rotation Composite 90° Pulses®

Sequence Ref. of field range (£2,/029)" Offset range (A"
90g - 10.89, 1.11} [{—0.92, 0.92)
9059099 18 {0.73, 1.27} {—0.10, 0.10}
90,180, 20 19 {0.62, 1.37} [—0.13. 0.10)
18047236030, 51807290, 15 {0.58, 1.42) [{—0.88, 0.36)
1805360, 5180427015900 42 {0.58, 1.42} {—1.24, 1.24)

*Bandwidths which are extended with respect to a single 90° pulse are in bold type. Bandwidths which are contracted with respect to a single 907

pulse are in italics.

"The range of rf field values for which the angle 9’ is between 80° and 100°, at zero resonance offset.
“The range of offset values for which the angle /7 is between 80° and 100°, at nominal rf field.

The individual spin propagators {7 all commute, so equation
(19) can be written in any order. Fach overall spin propagator
[/ is, in tumn, a product of spin rotations [A]fq corresponding to
the individual pulses p:

0= 030 (20)
{4, is given in equation (7). The operators I/}, do not commute,
so the product must be written in strict chronological order
from right to left.

Since any product of rotations is another rotation, the over-
all composite pulse propagator for each individual spin f; is
also a rotation operator, and can be written in the form

U = exp{—ié'f; - a'} (21
where & is the overall rotation angle, and A/ is the overall ro-
tation axis.

There is another way of writing equation {21), which brings
out more clearly the ‘phase-distortion” properties of the compo-
site pulse. Any rotation can be expressed as three consecutive
rotations, about the z axis, the y axis, and the z axis again. The
composite pulse propagator can therefore be written

U= exp{—1577;.} exp{ —i3/7,} exp{ ~ia’l;.} (22)

Table 2 Variable Rotation Composite 180° Pulses®

where the three angles {&’, 3/, f?j} are called the Euler angles
for the overall rotation.® In gencral, the Euler angles depend
on the parameters 2,99 and A28, and are different for
each set of spins [,

5.2 Classification of Composite Pulses

The properties of composite pulses are defined by the
dependence of the three Euler angles {&’, &, ’?j} on the
imperfection parameters Aw//2% and 0,/07.

The central angle 4/ is the most important. If 3/ is close to
some angle ©, the composite pulse behaves ‘like” an ideal
pulse of nominal flip angle 6. The composite pulse is then
called a composite © pulse. For example, 9051804904, is a
composite 180° pulse since 3’ is close to 180° for small values
of Aw/Q2T and /025,

5.2.1 Broadband Composite Pulses

Often, the composite pulsc is designed such that 3/ remains
close to some value & over a range of rf field or resonance off-
set which is larger than for a single pulse. The composite pulse
is then called a broadband composite © pulse. ‘

The range of rf field or resonance offset for which # is
‘close’ to © is called the compensation bandwidth. The com-
pensation bandwidths of some selected composite pulses are
given in Tables 1 and 2. The tabulated figures indicate the

Sequence Ref. if field range (§2,/2)° Offset range (AN
180, - 10.94, 1.06) {—0.08, 0.08]
904,180,9000 9 {0.81, 1.19} (-0.09, 0.09}
90,360,090, 19 {0.71, 1.29} {—0.08, 0.08}
1801201802401 80120 13 {071, 1.29} {—0.05, 0.05]
1801g4.5360313.4 18010451804 15 {0.69, 1.31} {—0.09, 0.09}
90,225,50315, 20 {0.94, 1.06} {—0.68, (.68}
158120171.20342.8120145.5481.214085.3¢ 28 {0.94, 1.06) {—1.50, 1.50}
9002405090, 18 {0.67, 1.09} {—0.52, 0.52}
270 55360090952 702703609590, Ll {0.72, 1.28} {—0.45, 0.50}
18061805180426180601 8012018041 80618020 18060180 20 34 {0.68, 1.33} {—0.76, 0.95}

180420180201 80240180, 301 8024018060 § 80601 802018020
18050180120180 251 80240180,30180249

*Bandwidths which are extended with respect to a single 180° pulse are in bold type. Bandwidths which are contracted with respect to a single

180° pulse are in italics.

"The range of 1f field values for which the angleﬁ’ is between 170° and 1907, at zero resonance offset.
“The range of offset values for which the angle /¥ 15 between 1707 and [90°, at nominal rf field.

For list of General Abbreviations see end-papers
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1

Table 3 Constant Rotation Composite 907 Pulses’

Sequence Ref. tf field range (92,/Q0)° Offset range (Au/Q0)
90, - 10.89, 1.11} {—0.13, 0.13}
385,320, 40250 25 [0.89, 1.11} {-0.38, 0.30}
11313031601 £ 310 27 {0.89, 1.1t} {—0.26, 0.26}
2401521 403464152 4024 27 {0.89, 1.11} { - 0.40, 0.40)
11940183621 11803840211 5018301 1914 27 {0.89, 1.11} {—0.83, (.83}
18047 236034 518047290, 15 {0.59, 1.41} [—0.13, 0.13}

“Bandwidths which are extended with respect to a single 90° pulse are in bold type.
PThe range of 1f field values for which the angle £+ is less than 10°, at zero resonance offset.
“The range of offset values for which the angle £47 is less than 107, at nominal of field.

range of Aw’/(1Y and 2,/2% within which 3 is within 10° of

the flip angle ©. For example, for the composite pulse

9041804904, the angle # is between 170° and 190° for all

values of rf fleld in the range 0.81 < SZ]/SZ? < 1.19, if the

resonance offset is zero. Similarly, 3/ is between 170° and

190 for all values of resonance offset in the range —0.09 <

AwiQ)] < 0.09, providing the rf field is nominal. Parameter

ranges which are extended with respect to a single of pulse are

indicated in bold type. Those which are more restricted than
for a single pulse are in italics. For example, the sequence

1802018044180 5y tolerates a wider range of rf field strengths

than a single 180, pulse, but only if the resonance offset is

kept within stringent limits.

Since RY, is equal to cos?, the quoted bandwidths also
apply to the corresponding transformations of z angular
momentum. For composite 180° pulses, R, is less than
—0.984 within the quoted bandwidths; for composite 90°
pulscs, R%, is between —0.17 and +0.17 over the tabulated
compensation bands.

This bandwidth definition does not yet say anything about
the angles @’ and 5/. The behavior of these angles introduces
further nuances:

1. For variable rotation composite pulses, the Euler angles &'
and +/ are unconstrained, and may vary arbitarily within the
compensation band.

. For constant rotation composite pulses, the only variations
in o and 3/ over the compensation band keep the overall
rotation operator {7 close to that generated by an ideal ©
pulse.4

Table 4 Constant Rotation Composite 180° Pulses®

In Tables 3 and 4, some constant rotation composite pulses
are listed, together with the ranges of ALY and /0 for
which they provide a rotation close to the ideal. The compen-
sation range of such composite pulses is more difficult to
define than for variable rotation composite pulses, since all
three Euler angles are involved. The labulated constant rotation
bandwidths are based upon the values of the angle £y, defined
by the equation

- exp{ —i6k,} esz){fiéiij . ”_’x} (23)
where U/ is given by equation (21) and ny is a unit vector.
£7 can be interpreted as the ‘deviation angle’ between the
actual rotation ¥/ and the desired ideal rotation. If the rotation
is afready ideal, £ is equal to zero. In terms of the Euler
angles, it can be shown that £7 is given by

al +f
")

g»?f
)

The tabulated constant rotation bandwidths indicate the range
of Ay and £2,/0Y for which the ‘deviation angle’ ff_\ is
always less than 10°, Within these parameter ranges the com-
posite pulses may be used to replace the single pulse, indepen-
dent of the experimental context.

The distinction between the different types of composite
pulse is illustrated in Figure 6. This shows the dependence of

cos(Eh /2)

cos{37/2) cos(€©/2) cos (

o

+4in{3//2) sin(0/2) :iin( (24)

Sequence Ref. if ficld range (£2,/0° Offset range (ALY
180 - 10.94, 1.06} {—0.09, 0.09}
180120180240180, 3 33 {0.80, 1.20} {-0.05, 0.05)
188 04.53600313.4 180445180 15 {0.69, 1.31} {-0.09, 0.09}
59150298439 150 27 {0.94, 1.06} {—0.23, 0.23}
380140,4,344,140,5058; 27 10.94, .06} {—0.39, 0.39)
27,991x01800211 1503860211 5018099 5027 27 {0.94, 1.06} {—0.86, 0.86)
1801803180201 8050180,,1804180,180,2,31804 34 {0.88, 1.12} {--0.48, 0.48}

180 20180120130, 201 8024018055 180244 1806 1 8040
1801501801201801 20180120180 20180249 1801501 80240

“Bandwidths which are extended with respect to a single 180° pulse are in bold type. Bandwidths which are contracted with respect to a single

t80° pulse are in italics.

*The range of rf field values for which the angle_fﬁ' is less than 107, at zero resonance offset.
“The range of offset values for which the angle £,/ is less than 10°, at nominal rf field.

For References see p. 1410
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Figure 6 Performance of the single pulse 180, (——), composile
pulse 90618039044 (———), and composite pulse
18002 s360313418010451800 (- - - -} as a function of rf ficld. (a)
Euler angle 4/, (b) Deviation .mgglc ¢4, The curves for the single 180,
pulse and composite pulse 906,180,904 are superimposed in (b)

the angles 4/ and £4 on the rf field §4,/Y, for the variable ro-
tation composite pulse 909518049y, and the constant rotation
sequence 180,04 5360334180104 51800."% In both cases, 3/ is
kept close to 180° over a range of 1f fields, but &4 is kept
low only for the sccond sequence. The sequence
180104 536033 4180;04.5180, behaves similarly to an ideal pulse
180y over the entire compensation band.

5.2.2  Narrowband and Band-Reject Composite Pulses

For broadband composite pulses, /3 is kept atmost constant
over a certain range of f fields or resonance offsets, This is
not the only possible made of control of 3/, Some other possi-
bilities arc:

1. For narrowband composite pulses, 3 is kept close to rero
over a wide range of parameters, cxcept for certain special
values, where 3/ is close 1o the nominal flip angle © of the
composite pulse. Narrowband composite pulses can be used
for selecting NMR signals originating in spatial regions
with defined values of the f ficld amplitude.

2. A band-reject composite pulse resembles a broadband com-
posite pulse except for a ‘hole’ in the cxcitation around
some special value of rf ficld or offset frequency. i.c. 4 is

For list of General Abbreviations see end-papers

large over a wide range excepl in a narrow region where it

approximates zero. Composite pulses with band-reject

characteristics for offset Aw//2Y can be used for solvent

peak suppression,

Most of this article concerns broadband composite pulses.
The other possibilities are treated briefly in Section 5.6.

5.3 Coherence Transfer Amplitudes

~To appreciate the practical significance of the angtes &/ and
7', consider the case where the composite pulse is applied to a
weakly coupled system of & spins, prepared such that the den-
sity operator contains coherences o, between two spin
eigenstates 1r) and |s). In general, the composite pulse
sequence converts this coherence partially to another coherence
n, between eigenstates |7 and lu). The amplitude for this
particular coherence transfer process is written Z,, . The ma-
nipulation of spin state populations may be handled by taking
the case r = s or t = u (see Molecular Mofions: I; Frequency
Dispersion in Biological Systems).
It may be shown that for a composite pulse with a propaga-
tor defined by equation (22), within its compensation band, the
amplitude for the coherence transter process is given by

Ly = OXP { —i Z[('?’ + 1.'/2);)}'“j (! — 7/ 2}p; Ll J}Zi); w 125)
i

€D BN 4 B i plesd L I ] (%) -
where p;"*" = m, mt g = m;”, and m;" is the ;

angular momentum of spin /; in the eigenstate |s) (weak coupf

ling is assumed), Z2.,, denotes the coherence transfer ampli-

tude for a strong ideal pulse of flip angle 4.

The experimental significance of the angles & and +/
depends on the quantum numbers characterizing the coherence
transfer process. If only populations are involved (pi™' = p!™'
= 0), the Euler angles &’ and 5/ mdy be ignored. If coherences
are involved, on the other hdl‘td, o' and A’ must be taken into
account.

It would thercfore seem advisable to usc constant rotation
composite pulses whenever spin coherences are involved. How-
ever, this is not always the best strategy. Constant rotation
composite pulses are often leng and have small compensation
bandwidths, In many circumstances, variable rotation compo-
site pulscs arc to be preferred:

L. In heteronuclear cxperiments, composite pulses applied to
one spin species do not affect the phases of coherences as-
sociated with a different spin species. For example, variable
rotation composite 180° pulses such as 9041804909, may
be applied to the [ spins in order lo change the sign of den-
sity operator terms such as 1.8, Such manipulations are
common in two-dimensional heteronuclear shift correlation
experiments (see Heferonuclear Shift Correlation Spec-
troscopy).

2. For some variable rotation composite pulses, the angles o
and 4/ arc linearly dependent on resonant offset Aw”’. In
simple experiments involving only one coherence transfer
step, phase distortions can then be removed simply by
applying a numerical [requency-dependent phase correction
to the spectrum.

3. If a phase cycle is performed so as to select signals aris-
ing only from eone single coherence rransfer pathway
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(scc Phase Cycling), then the angles & and 57 only
contribute to a rather harmless overall phase shift of the
signal.

4. Even in arbitary experiments involving many coherence
ransfer steps and many coherence transfer pathways, it
is usually possible to choose variable rotation composite
pulses such that the phase shifts induced by one compo-
sitc pulse are cancelled out by the next composite
pulse.”'®'7 A general procedure is described in Section
5.5.

54 Construction of Broadband Composite Pulses

There is a great variety of theoretical approaches to compo-
site pulse construction. The following summary is superficial.

54.1 Geometry

The first composite pulse 900,180,904 was discovered
by the geometrical arguments outlined in Figure 3. This
simple method should not be underestimated. It exploits the
impressive human faculty of three-dimensional visualization.
However, so far, only variable-rotation composite pulses
have been derived geometrically. Apart from 9040180490,
geometrical reasoning has led to the useful sequences
901802y (an rf-compensated 90° pulse with a large band-
width) and  90,360,2090; (a highly rf-compensated 180°
puise).'®2°

5.4.2  Rotation Analysis

Geometrical reasoning may be assisted by mathematical
methods such as quaternion algebra®'. One powerful result is
as follows.1® Suppose a rolation through the angle £, about the
axis ny is followed by a rotation through the angle £, about the
axis n;. The two consecutive rotations are equivalent to a
single rotation through the angle £;> about the axis . It is
possible to show that £, and n, are given by

(26)

1z = ¢ — 1520 - fa
S1ol2 = 8§10 - C 8 — 81520 X Ro
where c, = €08(£,/2), 5, = sin({,/2), cp = cos(£2/2), 517 =
sin{€,2/2).
Using such formulae, it is possible to show, for example,
that the Euler angle 7 for the composite pulse 9gy180,90,, at
resonance offset Aw’ = 0 is given by

cos(3/2) — eos® (w82 /200)) (27)

while for the composite pulse 90,360,,,90, the corresponding
Euler angle is

cos(3/2) = cos® (712, /2408 (28)

The powers of the cosine function on the right-hand sides of
these cquations indicate an increasing degree of compen-
sation.

Such results are wseful for understanding the response of
existing composite pulses but have not yet proved very useful
for the design of original scquences.

5.4.3 Coherent Averaging Theory

Coherent averaging theory is a form of dynamic pertur-
bation theory, frequently used in multiple pulse sequence
development (see Average Hamiltonian Theory; Line Narrow-
ing Methods in Solids). (In the present context, coherent
averaging theory writes the ‘difference rotation” of equation
(23) as a convergent series:

Sdpony =& ML+ 8L @)
For a given typc of imperfection, it is possible o develop
simple algebraic equations for the terms £ as functions of
the pulse durations and phases. By solving the equations ana-
lytically or numerically, pulse sequences are derived for which
as many terms 4% as possible vanish, The more terms that are
removed, the higher the degree of compensation,'®2*-2¢

This approach allows the construction of constant rotation
composite pulses. One example is the offset-compensated
composite 90° pulses 385,320,30250.2° A continuous set of
offset-compensated constant rotation composite pulses with
arbitary flip angle @ was derived by exploiting pulse
sequence symmetrics to reduce the number of simultaneous
equations.”” Two such constant rotation offset-compensated
composite pulses are the 180° pulse 594,298,594 and the
90° pulse 114.3,5,318.64114.3 0.2

A continuous set of rf-compensated constant rotation com-
posite pulses has also been found.'S An rf-compensated
rotation with ﬁ" ~ @ 1is generated by the sequence
180,360,180, By where ¢, = arccos(—6/47) and ¢, = 3¢,
Two  examples are  the  broadband  180°  pulse
180144.5360313.4180,44 5180y and the broadband 90° pulse
18047 236050, 518047 5,90,

5.4.4  Numerical Optimization

It is also feasible to find composite pulses by fairly straight-
forward numerical optimization mcthods. The multidimensional
space of pulsc durations and pulse phases is searched until a
sequence with the required properties is found.®*™ Efficient
optimization algorithms such as simulated annealing arc often
hf:lpful.‘w’31 Pulse sequence symmetry may be used to reduce
the number of independent variables.

Another variant is (o extend the bandwidth of an
existing composite pulse by adding small cxtra pulses and
optimizing numerically. This can be repcated many times.
An example is the composite 180° pulse 158.0, 171.24,
342.8, 14555 81.2; 853,45 which has # ~ 7 over a
wide range —1.5 <AL/ < 152 A different starting
point is provided by umalytical results for smooth f wave-
forms (see Shaped Pulses). The composile 180° pulse 64,5,
1229 310y 1224, 6443» was derived this way.g‘2 Wide
bandwidth variable rotation composite pulses may be con-
structed particularly rapidly by allowing the of frequencies
w; of subsequent pulses to be different?

5.4.5  lrerarive Expansion

Highly compensated sequences require very many pulses. It
is very difficult to find such sequences by theorctical tech-
niques such as coherent averaging theory (since the number of
simullaneous equations becomes very large) or by numerical
optimization (which eventually resembles scarching for a

For References see p. 1410



1406 COMPOSITE PULSES

needle in a haystack). A complementary approach is iferative
expansion.z:"ﬁ}” This defines an optimization procedure
which (given a suitable starting point) leads inexorably to a
sequence with the desired properties. The drawback is that the
process is inefficient, often producing extremely long pulse
sequences with moderate bandwidths, However, they can be
very accurate.

Iterative expansion starts with some pulsc sequence S
whose properties are close to those desired. The sequence is
duplicated a small number of times (). Bach of the { clones is
subjected (0 a different ‘mutation’ which preserves its length.
Two common transformations are to change the phase, or to
permute an element from the beginning to the end. The @ mu-
tations {5, S, (0]} are spliced together to form a
sequence S which is  times longer than s

1} (0} - (00 03}
st =878y 8, (309

The properties of the expansion depend on the mutations and
their order. In many cases, it is possible to demonstrate that as
long as S performs reasonably well, then $" will perform
betier. Hence S can be reinserted in the machinery to derive
a sequence S which performs better still:

) () il N
s =gllsl ... sy (31
If the original sequence §' has n elements, the sequence S
derived by M stages of expansion has n@" elements. Very
long sequences with very high performance are rapidly buiit
up.
Some examples of iterative expansion procedures are:
(1) Cycles are composite pulses whose overall rotation
angles {&,3,7} are all very close to zero. % They are used
for broadband heteronuclear decoupling (see below). Cycles
may be constructed by the following twofold itcrative expan-
L3536
sion.
gt = (B8] [E 'S, (32)
where F is an element on the end of § with B ~ 72, 1.e. a
nominal 90° pulse. This procedure consists of chaining
together two cyclic permutations of the original sequence with
different phases. Ideally, the sense of the cyclic permutation,
and order of chaining, is reversed on alternate expansion
stages, i.e.
S — [ES™ VET ] [ES™VE g (33)
The accurate broadband cycle WALTZ-16* was constructed
roughly this way. Tt is given by

270120360y 1805927009030 1 80636030 1804 270 59—
2703360150 180027050900 180120360y 1801502700~
270636050 1806270130906 180503604180, 302700—
2701303600 18015027090 50 180636050 1806270 1 (34)

(2) Compensated for rf field inhomogeneity 90° pulses can be
constructed by the following twofold expansion:“2

st = [(S[m) )W]zvnig(m)]n 135)

For list of General Abbreviations see end-papers

The pulse sequence is wrilten in inverse time order, shifted in
phase by 2707, and placed next to the origindl sequence. For
example, starting from $'% = 90,, we get $'" = 90,7090, and
9037090,4,9057090,, and so on. The longer the sequence, the
better the tf compensation. This expansion produces variable
rotation composite " pulses.
3. Broadband 180° pulses can be constructed by fivefold
expansions, including®***
5cm+”=[ m] S"MJ]()[S |zn[g’(nﬂ]ﬁu[§ ]|2n (36}

This procedure is capable ol compensating both resonance off-
set cffects and rf inhomogeneity at the same time or, indeed,
any form of pulse imperfection as long as it is reproducible
and transforms properly under rf phase shifts. The highly com-
pensated 25-element composite 180° pulse 180, 1805 1802
18040 18050 180y 180y 180120 18060 180120 180120 180120
180249 180150 180240 1806 18050 18015y 180125 180140 180,24
180,20 18024, 18014, 18024 was constructed this way.“3
This fivefold expansion procedure gives rise to variable ro-
tation composite 180 pulses.

There is no space here to explain how these iterative expan-
sion schemes work. An illuminating analysis has been given
using the mathematical properties of repeated maps."‘4

5.5 Global Pulse Sequence Compensation

Variable rotation composite pulses are generally shorter and
have wider compensation bandwidths than constant rotation
composite pulses. However, they must be used cautiously in
experiments involving coherences, since they induce phasc
shifts according to equation (23).

In weakly coupled spin systems, it is possible to balance the
phase shift associated with one composite pulse by an equal
and opposite phase shift associated with the following pulse.
This requires that all pulses applied (o a given spin species are
replaced simultaneously by variable rotation composite pulses
of compatible construction.

A general method is to replace pulses with flip angle © and
phase ¢ by composite pulses of the form [L], [R], «. Here R
is a composite pulse with flip angle 3 ~ 772 and L is a com-
posite pulse with 3/ ~ —#/2. The sequence LR without any
relative phase shift comprises a cycle. For brevity, the compo-
site pulse pair {L]g [Ry is denoted below by LgR.y.

For offset compensation, suitable ‘left” and ‘right’ sequences
are

L = 180180360, 1 804,270, .
180 (1] 180+ 0 (37)

R =90,

In this case the Euler angles of the sequence LR, & are

=i Aw‘j .

2T — S_l(l) B /]

) {38}

'7-’-:77r+ +(,Jf()

SZU

In weakly coupled spin systems, the ‘extra’ @’ and 4 rotdtlons
commute with the evolution in the interpulse delays. The v/ ro-
tation of one composite pulse can then be cancelled out by the
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&’ rotation of the following composite pulse, providing the
phase of the following pulse and all subsequent ones are
shified by —©. These extra phase shifts must be accumulated
iteratively thronghout the sequence.
For example, a compensated version of the three-pulse
sequence
(©) 4, ~T=(E)y, -~ (T)y— ... (39)

W

is

[Lél [R(M - T [Lc"z [R¢2 - T lGR{R@ - -]7\11},5} _o (40)
or, explicitly,
Lo Roy—e — 7 — Lp_0Ray—a-= — 7 — Ly, 0.2Rp—0—=—9 — ...

(41)

This procedure is readily extended to any number of pulses.

For compensation of rf inhomogeneity effects, the compo-
site pulses L = 1804009030 and R = 90,1805 may be used
instead.

The only defect in this scheme, apart from its complexity, is
that the 4/ phase shift induced by the last composite pulse is
left over at the end of the sequence. For resonance offset com-
pensation this final phase shift is quite harmless. The
frequency-dependent phase of the NMR signal is easily cor-
rected by complex multiplication of the spectrum in the usual
way, For if field inhomogeneity, on the other hand, the final
phase shift does lead to some signal loss by spatial dispersion
of the magnetization vectors.

This type of global pulse sequence compensation has been
demonstrated in multiple quantum NMR.7%17

5.6 Nonbroadband Composite Pulses

Error compensation is only one mode of control of the non-
linear spin response. Several applications of compositc pulses
extend this concept.

5.6.1 Radiofrequency Field Selection

It is possible to design narrowband pulse sequences in
which # is very small except for a narrow range of rf field
strengths ;. Such pulse sequences do not perturb the spin
populations appreciably unless the f field is close to the nom-
inal value 02§. Tt is possible to use this property as a means for
spatial selection of the NMR signal.**® The pulse sequence is
transmitted through an rf excitation coil with a well-defined
spatial variation of rf field amplitude 2,(r). Only spins located
in spatial regions with £, ~ QY contribute strongly to the final
NMR signal.

The most widely used composite pulses of this type have 57
== m over a narrow If field range. Narrowband composite 180°
pulses can be engineered by a number of methods, including
the threefold iterative expansion scheme.*?

SO = (8]0 [S™)g S “2)

The challenge is to find a pulse sequence with narrowband
f responsc which is not too adversely affected by resonance

offsets. The performance of the composite 180° pulse
1 8030} 80205 1 802301 8085 1 800180851802301 80205 1803[)48 is illus-
trated in Figure 4(d). The narrowband selection of rf fields
is maintained fairly well within the offset range —03 <
Awi)] < 03

5.6.2  Frequency-Selective Excitation

It is also possible to design pulse sequences with a tailored
response with respect to the resonance offset ij. For
example, pulse sequences may be constructed with 3/ close to
90° over a wide frequency range, except for a narrow ‘hole’
close to Aw’ = 0. These band-reject excitation sequences can
be used in the NMR of dilute solutions. Weak off-rescnance
solute NMR signals may be excited while avoiding the exci-
tation of strong near-resonant signals from abundant solvent
spins.

Sequences with this type of frequency-dependent excitation
characteristic were available long before the first composite
pulse appeared. However, insights from composite pulse design
have allowed the construction of sequences which control the
phase of the excited solute signals, as well as the amplitude.
The angles ¢ and 5/ may be kept almost constant over the ex-
citation bandwidth. Distortions associated with spectral phase
gradients may thereby be avoided.**>* The field is discussed
further in Water Signal Suppression in NMR of Biomolecules.

5.6.3 Composite z Pulses

If ff field errors and resonance offset effects are small, the
composite z pulse 903700,90, produces an overall rotation
defined by the angles {&’, &, %/} ~ {©, 0, 0}. This represents
a rotation of the spin angular momenta through an angie ©
about the z axis, as is easily verified by rotating any three-
dimensional object, on the lines in Figure 5. In high magnetic
field this z rotation is equivalent to a phase shift of all previous
if pulses by the same angle ©. It is therefore possible to emu-
late the effect of arbitary phase shifts on instruments equipped
only for phase steps in multiples of 90°.3**° This application
was important before digital phase shifting became generally
available on commercial instruments.

If the if field is inhomogeneous in space, composite z pulses
with very long nominal flip angle @ produce a z rotation
through a strongly spatially dependent angle a(r). The effect is
similar to a staric field gradient pulse, except that the inhom-
ogeneity of the 1f field, rather than that of the static magnetic
field, is involved. Long composite z pulses of this type have
been exploited to select signals arising from defined coherence
transfer processes, as an alternative to phase cycling.®® Time
can be saved, and the suppression of undesirable signals
improved.

6 COMPOSITE PULSES: SPIN COUPLINGS
INCIL.UDED

In the applications discussed below, spin couplings are
active during the composite pulse, and the dynamics of the
spins cannot generally be visuvalized in three-dimensional
space.

For References sce p. 1410
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6.1 Heteronuclear Decoupling in Liquids

One of the most important applications of composite pulses
is broadband heteronuclear decoupling in liquids (see De-
coupling Methods). The NMR signals from one spin species
(conventionally denoted as the § spins) is observed at the same
time as a second spin species (conventionally the I spins) is
irradiated with a long composite pulse sequence. Ideally the §
spins evolve independent of the IS spin—spin coupling, even
when there is a wide range of chemical shifts of the J spin
species.,

In isotropic liquids, it is wsually a good approximation to
ignore the homonuclear interactions between the irradiated [
spins and take into account only the heteronuclear interactions,
which are generally an order of magnitude larger. With this
assumption, it has been shown that the problem of constructing
a broadband decoupling sequence is formally equivalent to the
construction of an accurate broadband cyvele on iselated
spins.35’36 This result, which is far from obvious, allows com-
posite pulse sequences obtained by ignoring spin—spin
couplings to be transplanted directly to this different context.

A wide range of broadband decoupling sequences have
been constructed, usuvally by a combination of numerical op-
timization and iterative expansion. The popular sequence
WALTZ-16 is given in equation {34).

For the highest possible resolution, sequences have been
developed which also take the homonuclear J couplings into
account.>”

6.2 Quadrupolar Compensation

In solids, spin interactions are large, and applied tf fields
face serious competition. For example. quadrupole interactions
of spins 7 = 1 are generally much larger than achievable rf
fields. Only for “H is the quadrupolar interaction sufficiently
small that the concept of an ‘ideal’ 1f pulse is at all realistic.
But cven in this case, the achievable rf field is generally com-
parable to the quadrupolar splitting. Composite pulses can then
help make up for insufficient rf field strength.

6.2.1  Compensated Quadrupolar Echoes

The “H NMR signals ot solid powders decay very rapidly
because of the strong orientation dependence of the quadrupole
splitting (see Quadrupolar Nuclei in Solids. Deuterium NMR
in Selids). To obtain undistorted signals it is usually necessary
to refocus the free induction decay by a quadrupole echo. This
involves using two 90° pulses, 90° out of phase with each
other, separated by a small delay 7+:

90p—71~Hop—12—Obiscrve (43)

A spin echo is formed after an interval 7, >~ 7, measured from
the end of the second 90° pulse. Acquisition of NMR signals
starting at the top of the spin echo gives high-fidelity *H pow-
der spectra.

In a disordered sample, the quadrupole splitting in high ficld
depends on the environment and molecular orientation of the
nuclear site j and will be denoted here by 2ewf{,. If the rf field
{1, is comparable to 2w, the spin transformations induced by
the 90° pulses are imperfect and the spin echo is distorted.
This usually appears as weakened intensity at the edges of the

For list of General Abbreviations see end-papers

(a)

(b)

130 kHz

Figure 7 “H spectra of ds-phenylalanine, obtained using (a) the
simple quadrupole echo pulse sequence {equation (43)], and {b) a
composite pulse quadrupole echo sequence [equation (44)]. The rf field
was rather weak in both cases, the duration of a nominal 90 pulse
being 6.2 us. (Reproduced by permission of Elsevier from M. H.
Levitt, Prog. NMR Spectrosc., 1986, 18, 61)

*H powder peakshape. An example is the spectrum of ds-
phenylalanine shown in Figure 7(a).

To correct this effect, cach 90° pulse may be replaced by a
composite 90° pulse. The composite pulse must take into
account the competition between the rf field and the quadru-
pole coupling.

Construction of such composite pulses is far from easy. In
principle, the density operator for a spin { = | evolves in an
eight-dimensional space. However, there is one simplifying fac-
tor. In *H NMR, thc chemical shifts are small. Although the
frequencices of the two allowed transitions of the spin 7 =1
nucleus are strongly orientation dependent, the mean frequency
of the two transitions 1s always the same. 1t is possible to show
that in this case, under certain constraints, quadrupole-compen-
sated composite 90° pulses may be constructed by taking
olfset-compensated 180° pulses for isolated spins % and divid-
ing all pulse lengths by two.™ The offset-compensaled spin-%
180" pulses must have the following properties:

1. Only 180° phase shifts must be involved. _
2. Over the compensation bandwidth, the angles &/ and ~/
must depend tinearly on resonance offsct Aw//62],
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The broadband spin-j composite pulses 90,180,50270 and
900270101 80¢3603,180; fulfil these conditions satisfactorily
over the offset range ~1.0 < ALY < 1.0 (the later
sequence being more accurate). On halving the pulse durations,
the compensated quadrupole echo scquences

45()9[.]”4(] 13507‘!] *45909037() 1 35()[)*’?’270[)#1‘(!1'\’(‘, (44)
and

45(] 135 IH(}QOU 1 80;3[;90{)*’7‘{ 459() 1 3527(]909(} | 8027(}909(;—Tg—()l).‘-}l‘l“\’(‘.
(43)

are constructed. The improvement in spectral appearance pro-
duced by equation (44) is illustrated in Figure 7(b). Other
sequences have also been suggested.”7 %!

One problem of these quadrupole echo sequences is that
they are rather long. Signal is lost il the coherence dephasing
time T of the deuterium spins is short due to molecular motion
on a suitable timescale. This case is not uncommon. Composite
pulse quadrupole echo formation is examined eriticaily in Simi-
novitch et al %'

6.2.2  Compensared Population Inversion

Anisotropic molecular motion in solids is probed by
measuring the orientation dependence of the “H spin—lattice
relaxation time constant 7, in a powder sample. A 180° pulse
is applied to disturb the spin populations, a variable waiting
period T is left, and a quadrupole echo sequence applied to
measure the NMR signal. Spectra are taken for a range of
values of 7. The partially relaxed quadrupole lineshapes
may be analyzed to obtain the dependence of 7, on sample
orientation.

This method requires proper performance of the first 180°
pulse. However, a 180° pulsc applied to spins [/ = | is very
sensitive to the quadrupole splitting.” The transformed z angu-
lar momentum R is below —0.8 only if the quadrupole
splitting 2u}6 is less than around 1.2€3Y, where Sl? is the rf
ficld strength. To get a reasonable inversion of a 150 kHz wide
*H powder pattern, the rf field must be sufficiently strong that
the 907 pulse duration is less than 2 8.

Broadband population inversion of “H spins may be
achieved with much weaker rf fields by using composite 180°
pulses. The scquence 45,90:4)135045009027013500%5090 301350
allows inversion of a 150 kHz quadrupole powder patlern
using an rf field of only 29727 = 37.5 kHz. which cotresponds
to a 90° pulse length of 6.5 ;5.7 Longer sequences with flatter
inversion profiles have also been designed.® Improved per-
formance is attainable even with the simple composite pulse
909904900

6.3 Dipolar Compensation

Nuciear spin dynamics are cxtremely complicated in the
presence of extended dipolar coupling networks, as is typical
for abundant spin species in solids. Compensation of these
effects is even more challenging than for quadrupole couplings.

6.3.1  Compensation of Homonuclear Dipolar Couplings

Coherent averaging theory (Section 5.4.3) provides a gen-
eral framework for compensation of undesirable interactions,

using only the rotational symmetry of those interactions. This
has allowed the development of composite pulses such as
45018090904 1805443, a broadband 180° pulse compensated
for dipolar or quadrupolar interactions.2® Improved population
inversion has been demonstrated for networks of coupled pro-
tons in solids as well for quadrupolar spins. Composite pulses
have also been constructed for NMR imaging in solids.*

The theory of composite pulses in dipolar-coupled systems
overlaps strongly with the theory of line-narrowing multiple-
pulse sequences (sec Lire Narrowing Methods in Solids).
Indeed, many of the samc pulse sequences can be used. The
composite pulse 9041804,90,4,180q, is a dipolar-compensaled
180° pulse as well as a segment of the line-narrowing sequence
BLEW-12.%

6.3.2  Heteronuclear Decoupling in Anisotropic Systems

Heteronuclear decoupling in solids and liquid crystals is far
more difficult than in isotropic liguids, because both homonuc-
lear and heteronuclear interactions are gencrally large. Despite
the theoretical dilticulties, progress has been made towards the
goal of low-power broadband decoupling in anisotropic sys-
tems."%7 Onpe promising sequence is

[[‘L]Q()“HEI ‘\Z]Qﬂ[u;](]ﬁﬂ‘)ll [[E]U[l't]lﬂll[E}U [Z}Zﬂl{z]fi [[EJ'ZTU [E]l] (46)

where each element [ is a constant rotation offset-compensated
composite 90° pulse, £ = 385,320,425, Improved heteronuc-
lear decoupling in liquid crystals and magic angle spinning
solids has been demonstrated, "™

6.4 Cohercnce Propagation through J/-Coupling Networks

Another  important  applicatton  of composite pulse
sequences is to propagate spin coherence through the J
coupling networks of molecules in isotropic solution. In
conjunction  with  two-dimensional  spectroscopy,  such
scquences are commounly used as an aild to spectral assign-
ment. The method is generally known under the names
total coherence transfer spectroscopy (TOCSY) or homonuc-
lear Hartmann Hahn {HOHAHA) spectroscopy. A similar
application is when long compositc pulse sequences are
used to implement coherence transfer through transverse
cross relaxation—an cxperiment generally known under the
(misleading) name rotating frame nuclear Overhauser ellect
spectroscopy (ROESY) (see ROESY).

The theory of composite pulse sequences in this context is
challenging. In particular, analysis of the relaxation during long
composite pulse trains has required theoretical innovations.®®
Some of the popular pulsc sequences are discussed in TOCSY
in ROESY & ROESY in TOCSY.

7 COMPENSATION FOR COUPLING VARIATIONS

In the intervals between 1l pulses, evolution of the spin sys-
tem takes place under the inilucnce of chemical shifls.
guadrupole couplings and spin-spin coupling terms. Many
pulse sequences include fixed delays which should be matched
to certain coupling constants for proper operation. For example,
i the NMR of isotropic liquids, pulse scquences commonly
include a fixed delay 7, = 1427y 10 allow exchange of anti-

For References sce p. 1410
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phase and in-phase coherences under the influence of the J
coupling. Often 180° pulses are inserted in the middle of the
detay to suppress chemical shift evolution. A typical example
is the INEPT sequence (see INEPT) for polarization transfer
from [/ spins to § spins.

I 90g—7#2-1 800—7’_[/2—9090

S 180y 90, {Acquire signal}

Polarization transfer is only optimal if the heteronuclear J

coupling really does correspond to the set delay 7, In real

samples there is a spread of J values leading to a loss of polar-
ization transfer for some sites.

This situation resembles that of a single rf pulse an inhomo-
geneous rf field, where the chosen pulse duration corresponds
to a nominal rf field actually experienced only by a minority of
spins. In that case the spread of nutation angles is compensated
by making composite pulses. Similarly, the spread of J coup-
lings in polarization transfer experiments is compensated by
building composite INEPT analogs.

Several research groups have investigated this.”*"* One gen-
eral procedure is explained,”” where the following compensated
sequence is demonstrated:

L: 9047 42~ 1800~ #2-120g0—7 42— 1800~ /2-30y

S: 180, 1804 Yoy (acquire)
Although far from obvious, this composite INEPT sequence is
an analog of the rf-compensated composite 90° pulse
00180 ;20. The polarization transfer is less sensitive than ordin-
ary INEPT (o variations in the values of the J couplings. It has
also been shown that In some many-spin systems, certain J-
compensated INEPT sequences can induce more coherence
transfer than ordinary INEPT, even when the latter is at its
optimum. For example, for 'H — "*C polarization transfer in
CH, groups, around 33% more polarization transfer is achieved
by certain composite INEPT sequences compared to ordinary
INEPT.”®

This is only one example of a large range of composite
pulse sequences compensated for variations in coupling con-
stants. Some others are as follows:

1. Hartmann-Hahn cross polarization cxperiments in liquids
have been compensated for variations in J values by making
an analogy with the composite pulse 9090]80”9090.72

2. Double quantum excitation sequences in liquid crystal NMR
have been compensated for a range of dipolar coupling con-
stants.™

3. Bilinear rotation sandwiches have been compensated for J
coupling variations in a whole palette of intriguing pulse
schemes.7%7174-81

4. Sequences for exciting quadrupolar order in solids and
liquid crystals (Jeencr—Broekaert sequences) have been com-
pensated for a spread in quadrupolar coupling constants
caused by orientational inhomogeneity.

5. Excitation of spin magnetization in nuclear quadrupole res-
onance (NQR) (see Quadrupolar Interactions) has been
compensated for the spread of cffective nutation fields
caused by the orientational distribution in a powder
sam]:vlc.z“1
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