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A theory of nuclear spin relaxation in isotropic liquids for nuclear spins interacting with electron
spins, residing in other molecules �the outer-sphere relaxation�, is presented. The approach, valid
outside of the Redfield limit for electron spin relaxation, is an extension of the Swedish slow
motion theory �Benetis et al., Mol. Phys. 48, 329 �1983�; Nilsson and Kowalewski, J. Magn. Reson.
146, 345 �2000�� for inner-sphere relaxation. It is demonstrated that the outer-sphere relaxation rate
can be expressed as an integral of a product of a translational diffusion correlation function and a
function analogous to the inner-sphere spectral density. A numerical implementation of the theory is
described and applied to a large number of realistic parameter sets for S=7 /2 and S=1, which may
correspond to Gd�III� and Ni�II� systems. It is shown that the outer-sphere contribution is relevant
and should be included into the analysis of nuclear magnetic relaxation dispersion relaxation
profiles, especially for slow relative translational diffusion and fast molecular tumbling. © 2009
American Institute of Physics. �DOI: 10.1063/1.3119635�

I. INTRODUCTION

Studies of NMR spin-lattice relaxation rates as a func-
tion of the magnetic field �nuclear magnetic relaxation dis-
persion �NMRD�� in solutions of paramagnetic ions or com-
plexes have for long time attracted considerable attention.1–3

The paramagnetic species cause an increase of spin-lattice
relaxation rate for the nuclear spins �usually protons�, de-
noted commonly as paramagnetic relaxation enhancement
�PRE�. The field dependence of the PRE carries potentially a
wealth of information on structure and dynamics of the spe-
cies involved, provided that appropriate theoretical models
are available. PRE/NMRD measurements are commonly car-
ried out for spins belonging to the solvent molecules �most
often water�.

One usually considers the measured PRE as consisting
of two contributions, referred to as the inner-sphere and the
outer-sphere parts. The inner-sphere contribution comes from
the nuclear spin residing in molecules entering the first co-
ordination shell of the metal ion, while the molecules outside
of this shell contribute to the outer-sphere part. For the inner-
sphere contribution, one assumes usually that the effective
distance between the spins is constant, while this obviously
is not the case for the outer-sphere mechanism. Some authors
use also the concept of the second-shell PRE, with a mecha-
nism similar to the inner-shell contribution, arising from a
discrete number of solvent molecules in a well-defined sec-
ond solvation sphere.4

The early theory of the inner-sphere PRE is known as
the Solomon–Bloembergen–Morgan �SBM� theory.1–3 Short-
comings of the SBM approach are well known, but the issue

of more advanced modeling of the PRE has long been rec-
ognized as difficult.5 It seems now that some of the funda-
mental problems have been solved. In a recent study, three
formalisms proposed in literature were compared to each
other6 and it was found that two of them agreed very closely,
in spite of large differences in the mathematical treatment,
and that the discrepancies with the third one can be ex-
plained by an approximate description of the electronic spin
relaxation. This obviously increases the credibility of these
methods.

The objective of this communication is to present how
an approach similar to the general inner-sphere formalism
developed in our laboratory7–12 can be applied to the outer-
sphere PRE. A “classical” way of dealing with the outer-
sphere issue can be found in Abragam’s treatise13 and in the
works by Torrey14 and Pfeifer.15 In an important paper by
Hwang and Freed,16 some mathematical mistakes of the ear-
lier work were corrected and the role of the intermolecular
forces, as reflected in the radial distribution functions �rdfs�,
was incorporated in the theory. A very similar approach was
proposed, independently, by Ayant et al.17 A simple but im-
portant special case, denoted as force-free diffusion, arises in
these treatments if the rdf is considered flat from the distance
of closest approach to infinity. Ayant et al. also considered
the effect of translation-rotation coupling18 while Freed ex-
tended the Hwang–Freed model by including, in a very
simple way, the electron spin relaxation effects.19 The result-
ing model can be considered as the outer-sphere counterpart
of the SBM theory. More careful treatment of electron spin
relaxation, valid within the Redfield limit,20 and its effect on
the outer-sphere PRE was proposed by Kruk et al.21,22 The
second of these studies deals, on the equal level, with the
inner-sphere case.22 Related work was also proposed by
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Sharp and co-workers23–25 and by Rast and co-workers.26,27

While the effects of the structure of the rdf can be included at
this level,28–31 we limit our interest here to the force-free
diffusion and concentrate on the difficulties caused by the
complexity of electron spin relaxation outside of the Redfield
limit.7–12,32–36 In this way, we bring the outer-sphere PRE
theory to the same level as the inner-sphere version.6,12

The outline of this paper is as follows. In Sec. II, we
review some basic concepts of the “Swedish slow motion
theory” in general. This is followed by the presentation of
the outer-sphere PRE theory �Sec. III� and of computational
details �Sec. IV�. Illustrative numerical examples are pre-
sented and discussed in Sec. V and conclusions are drawn in
Sec. VI.

II. REVIEW OF BASIC CONCEPTS OF THE SWEDISH
SLOW MOTION THEORY

The Swedish slow motion theory has been developed to
interpret nuclear �proton� relaxation profiles for paramag-
netic systems for arbitrary motional conditions and interac-
tion strengths characterizing the electron spin, beyond valid-
ity regimes of time-dependent perturbation approaches. The
name “slow motion” refers to situations when the motion
modulating the relevant spin interactions is so slow, com-
pared to the time scale of the spin dynamics, that the pertur-
bation theory of the electron spin relaxation breaks down. In
this section, we shall outline the underlying assumptions and
motional models incorporated into this treatment.

For transition metal complexes with S�1, the electron
spin manifold is split due to the indirect interaction between
unpaired electrons through the spin-orbit coupling. The zero
field splitting �ZFS� Hamiltonian HZFS�t� can be expressed as
a sum of two components: HZFS�t���HZFS�t��+ �H�t�
− �HZFS�t���=HZFS

S +HZFS
T �t�. The decomposition of the total

Hamiltonian is performed in a molecular frame, i.e., in any
coordinate system fixed in the molecule. The first term rep-
resents an averaged part of the ZFS interaction, referred to in
the literature as the static �permanent� ZFS, HZFS

S , while the
second one describes stochastic fluctuations of the ZFS
Hamiltonian around this averaged value and is called tran-
sient ZFS, HZFS

T �t�. The principal frame of the static ZFS �PS�
can change its orientation with respect to the laboratory axis
systems �L� due to overall, isotropic molecular tumbling.
This implies that the HZFS

S Hamiltonian takes in the labora-
tory frame the form

HZFS
S�L� =�2

3
DS 	

m=−2

2

�− 1�m
 	
k=−2

2

Vk
2�PS�Dk,−m

2 ��PSL��Tm
2 �S� ,

�1�

where V0
2�PS�=1, V�1

2�PS�=0, V�2
2�PS�= �4 /�6��ES /DS�. The

quantities DS and ES describe the axial and rhombic compo-
nents of the static �rank-2� ZFS tensor, respectively, while
the relative orientation of the �PS� and �L� frames is de-
scribed by the angle �PSL�t�. The operators Tm

2 �S� are T0
2�S�

= �1 /�6��3Sz
2−S�S+1��, T�1

2 �S�= � � 1
2

��SzS�+S�Sz�, and
T�2

2 �S�= 1
2 �S�.

Higher-order ZFS terms can exist for spin systems with
S�3 /2. They were discussed in the relaxation context by
Rast et al.32,37,38 and by Sharp and co-worker.39,40 While pos-
sibly important, these terms are not included in the present
work since they are not judged necessary to reach the main
objective of the present study: to estimate the relative impor-
tance of the outer-sphere and inner-sphere relaxivity compo-
nents outside of the Redfield limit for the electron spin re-
laxation.

The spread of the ZFS interaction, i.e., its transient part,
is caused by stochastic fluctuations of the ligand framework.
The form of the transient ZFS Hamiltonian depends on the
motional model applied to describe the fluctuations. The sim-
plest possible model assumes that the transient ZFS has a
constant magnitude and a principal direction �a principal axis
system �PT��.2,5,10 The �PT� frame changes its orientation
relative to the �PS� frame according to the isotropic rotational
diffusion equation with the rank-two correlation time �D.
Since the fluctuations of the ligand framework occur due to
distortional �vibrational� dynamics of the complex, this time
constant is called a distortional �vibrational� correlation time.
This model is referred to in literature as the “pseudorota-
tional model.”41 Thus, by analogy with the static ZFS inter-
action, the Hamiltonian HZFS

T�PT�, written in the laboratory axis
system, takes the form

HZFS
T�L��S�

=�2

3
DT 	

m=−2

2

�− 1�m� 	
n=−2

2 
 	
k=−2

2

Ak
2�PT�Dk,−n

2 ��PTPS
��

�D−n,−m
2 ��PSL�
Tm

2 �S� , �2�

with A0
2�PT�=1, A�1

2�PT�=0, A�2
2�P2�= �4 /�6��ET /DT�, where

DT and ET are the transient counterparts of the DS and ES

parameters. The first transformation in Eq. �2� is between the
�PT� and �PS� frames via the Euler angle �PTPS

�t� affected by
the distortional motion, while the second transformation
occurs between the �PS� and laboratory �L� frames via the
Euler angle �PSL�t�, modulated by the molecular tumbling
�characterized by a rank-two rotational correlation time �R�.
The representations of the static and transient ZFS, given by
Eqs. �1� and �2�, respectively, are included in the “slow mo-
tion theory.” In the case of inner-sphere relaxation, the I-S
dipole-dipole axis defines the molecular frame �M� for the
complex. The relative orientation of the �PS� and �M� frames
is described by an angle denoted as �MPS

.
Referring to the applied models of the spin interactions

and their fluctuations, one can now specify more explicitly
the possible situations when the perturbation approach does
not apply to the electron spin dynamics. The relationship
between the static ZFS, HZFS

S , and the rotational correlation
time, �R, can bring the electron spin outside the validity
range of the perturbation treatment, which requires an unam-
biguous decomposition of the entire spin Hamiltonian into a
main part �determining the energy level structure of the sys-
tem� and a perturbing part �causing transition between the
energy levels, i.e., relaxation�. This means that for �HZFS

S �R�
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	1, the static ZFS acts as a relaxation mechanism, for
�HZFS

S �R�
1 it contributes to the electron spin energy level
structure, while in the intermediate regime the perturbation
treatment breaks down. Since the distortional correlation
time is very short �of the order of picoseconds� the condition
�HZFS

T �D�	1 is usually fulfilled. Nevertheless, there can be
some exceptions, i.e., for complexes with very large transient
ZFS. Actually, if HZFS

T �HZFS
S �especially if the static ZFS

vanishes due to high symmetry of the complex�, the electron
spin is at low field locked in the �PT� frame instead of the �L�
frame, i.e., its energy level structure is determined by the
transient �rather than static� ZFS. Since, contrary to the static
ZFS, the �PT� frame is not fixed in the molecule �it fluctuates
very fast with the correlation time �D�, the transient ZFS
does not provide a stationary basis set and the perturbation
theory does not apply in this case.2,5,42

Even though the electron spin subsystem is beyond the
validity range of the perturbation treatment, the nuclear spin
relaxation can be treated in this way and expressed as a
quantity proportional to a quantum-mechanical spectral den-
sity K1,1

DD�−�I�,
5,12,22 including the electron spin dynamics.

Electron spin relaxation rates, present in the SBM theory,
cannot be defined in this regime. The main idea of the gen-
eral, slow motion theory is to evaluate the spectral density
K1,1

DD�−�I� without invoking the electron spin relaxation rates.
Instead, it is evaluated by defining an infinite and complete,
orthonormal basis � � �Oi��,

2,5 including all relevant degrees of
freedom and expressing all components of the spin interac-
tions and dynamics �the corresponding Liouville operators�
in this basis, by applying the Wigner–Eckart theorem. The
properties of the general theory make it possible to adapt it to
various systems, when any simplified treatments break down.
However, the theory is rather demanding from the computa-
tional point of view. The main reasons for computational
complexity are the classical stochastic processes, i.e., the ro-
tational and distortional degrees of freedom. Their classical
nature requires setting up, in principle, an infinite basis rep-
resenting the continuum of rotational and distortional states.
The theory can also be applied together with a more sophis-
ticated treatment of the distortions of the solvation shell43–45

instead of the pseudorotation model, but this increases the
computational costs even further.

This approach has so far been applied to the inner-sphere
nuclear spin relaxation. In Sec. III we let it include the trans-
lational degrees of freedom and formulate an analogous de-
scription of the outer-sphere nuclear spin relaxation, to com-
plete the theory of nuclear spin relaxation for paramagnetic
systems. The approach can be called general, referring to its
validity outside of the Redfield regime, but is within limits of
the applied assumptions, not least concerning the form of the
ZFS Hamiltonian and the pseudorotation model.

III. THEORY OF OUTER-SPHERE PARAMAGNETIC
RELAXATION ENHANCEMENT

In this section, we present a formal mathematical de-
scription of the outer-sphere PRE. We shall keep very close
analogy to the description of the inner-sphere PRE given in
the literature.5,12,22 We intend to underline in this way the

unity of the general approach and make a comparison of the
inner- and outer-sphere descriptions straightforward. Thus,
we begin with the usual form of the quantum-mechanical
spectral density, K1,1

DD�−�I�:
5,12,22

K1,1
DD�− �I� = �

0

�

TrL�T1
1�DD�+�exp�− iL̂̂L��T1

1�DD�
L
eq��

�exp�− i�I��d� . �3�

For the inner-sphere case, the spin-lattice relaxation rate for a
nuclear spin in the paramagnetic complex is given by R1I

=2 Re�K1,1
DD�−�I��.

5,12,22 In the outer-sphere case, the situa-
tion is similar but the tensor operators T1

1�DD�=T1
1�DD,Diff� are

defined as

T1
1�DD,Diff� = �30
�I�S�

�0

4�
� 	

q=−1

1 
 2 1 1

1 − q q − 1
�

�Sq
1D0,1−q

2 ��DDL�
rIS

3 . �4�

The notation T1
1�DD,Diff� is introduced to refer ex-

plicitly to the translational diffusion modulating the
nuclear spin �I�—electron spin �S� dipole—dipole
interaction. The original expression for the tensor operator
T1

1�DD�=CDD
�30	q=−1

1 � 2 1 1
1−q q −1

�Sq
1D0,1−q

2 ��DDL�, where CDD

= ��0 /4����I�S� /rIS
3 � is the dipole–dipole coupling constant

�see, for example, Eq. �32� of Ref. 5�, has in Eq. �4� been
rewritten using the form of T1

1�DD,Diff�, which is more suitable
for the outer-sphere calculations. The relative orientation of
the I-S dipole-dipole and laboratory axes, described by the
Wigner rotation matrices D0,1−q

2 ��DDL�, is modulated in the
present case by translational diffusion. It should be noted
that, due to the translational motion, the dipole-dipole axis is
no longer fixed in the molecule and cannot therefore be
treated as a molecular axis. For that reason, Eq. �4� contains
the Wigner rotation matrices D0,1−q

2 ��DDL� instead of
D0,1−q

2 ��ML� �M denotes a molecular frame�, used in the
inner-sphere case.5,11,22 This essential difference is illustrated
in Fig. 1. Since the translational motion changes also the

(L)

S

I

inner-sphere

(M)=(DD)

fixed in
the molecule

(DD)

outer-sphere

I
DDL

Ω
ML

Ω

FIG. 1. Orientations of dipole-dipole axes with respect to the laboratory
frame �L� for the inner-sphere and outer-sphere problems. In the inner-
sphere case, the dipole-dipole axis is fixed in the molecule and therefore can
be treated as a molecular frame, while in the outer-sphere case it is not. For
the inner-sphere solvent molecules, the orientation of the dipole-dipole axis
relative to the laboratory axis is described by angle �ML, modulated by
tumbling of the entire complex, while for the outer-sphere molecules the
dipole-dipole axis changes its orientation with respect to the laboratory
frame, described by angle �DDL, due to translational motion.
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interspin distance rIS, the concept of the dipole-dipole cou-
pling constant is not useful and the rIS

−3 factor is in Eq. �4�
combined with D0,1−q

2 ��DDL�. The lattice Liouville operator

L̂̂L contains now, besides the terms relevant for the inner-

sphere relaxation,2,5,11,22 the Liouvillian, L̂̂Diff, representing
the translational diffusion:

L̂̂L = L̂̂Z�S� + L̂̂ZFS
S + L̂̂ZFS

T + L̂̂D + L̂̂R + L̂̂Diff. �5�

The translational diffusion is a classical Markov process, and
its Liouville operator is defined as

L̂̂Diff = − iDDiff�r�IS

2 , �6�

where the index r�IS indicates that the differential operator
�r�IS

2 contains terms related to changes of the interspin dis-
tance, as well as of the orientation of the dipole-dipole axis
�i.e., r�IS��rIS ,�DDL��. The other terms describe, respec-

tively: Zeeman interaction for the electron spin, L̂̂Z�S�, the

static and transient parts of the ZFS interactions, L̂̂ZFS
S and

L̂̂ZFS
T , the distortional motion, L̂̂D, and the molecular tum-

bling, L̂̂R. By substituting the tensor operators of Eq. �4� into
Eq. �3�, we obtain the “outer-sphere” counterpart of the
quantum-mechanical spectral density, K1,1

DD�−�I� which we
denote K1,1

DD,Diff�−�I�:

K1,1
DD,Diff�− �I� = 30
 �0

4�
��I�S�2 1

2S + 1 	
p,q=−1

1 
 2 1 1

1 − p p − 1
�

�
 2 1 1

1 − q q − 1
��

0

�

TrL�Sp
1+D0,1−p

2� ��DDL�
rIS

3

��exp�− iL̂̂L��Sq
1+D0,1−q

2 ��DDL�
rIS

3 
�
�exp�− i�I��d� , �7�

where the term 1 / �2S+1� is the equilibrium density operator,

L

eq, in the high temperature approximation. To proceed fur-
ther with the calculations, it is highly advantageous to ana-
lyze dependencies �correlations� between different processes
contributing to the lattice dynamics, represented by the op-

erator L̂̂L �Eq. �5��. Formally, a part corresponding to a cer-
tain degree of freedom can be factored out from the general
quantum-mechanical correlation function if it is independent
of the remaining contributions to the lattice dynamics. Since
the translational diffusion affects neither the electron spin
dynamics nor the molecular tumbling,2,5,21 we shall extract
the translational correlation function

CDiff
p,q ��� = TrDiff�D0,1−p

2� ��DDL�
rIS

3

��exp�− iL̂̂Diff��
D0,1−q

2 ��DDL�
rIS

3 
� �8�

from the total correlation function of Eq. �7�:

K1,1
DD,Diff�− �I� = 30
 �0

4�
��I�S�2 1

2S + 1 	
p,q=−1

1 
 2 1 1

1 − p p − 1
�

�
 2 1 1

1 − q q − 1
��

0

�

CDiff
p,q ���Tr�L−Diff�

��Sp
1+�exp�− iL̂̂�L−Diff���Sq

1+��exp�− i�I��d� .

�9�

The operator L̂̂�L−Diff� contains all contributions present in

Eq. �5� except L̂̂Diff, i.e., L̂̂�L−Diff�= L̂̂Z�S�+ L̂̂ZFS
S + L̂̂ZFS

T + L̂̂D

+ L̂̂R. Hence, the operator L̂̂�L−Diff� is identical with the lattice
Liouvillian containing the degrees of freedom that are rel-
evant for the inner-sphere calculations, i.e., the electron spin
interactions, the distortional motion, and the rotational mo-
tion. In fact, the decomposition performed in Eq. �9� is nec-
essary to carry out the final numerical calculations; the com-
putational complexity would otherwise be too high. For a
force-free diffusion with a uniform distribution of the solvent
molecules outside the distance of closest approach, d, and
under the assumption of the reflecting wall boundary condi-
tion at rIS=d, the correlation function for translational diffu-
sion takes the form16,17

CDiff
p,q = CDiff��� = �pq

72

5

1

d3NS�
0

� u2

81 + 9u2 − 2u4 + u6

�exp
−
DDiff

d2 u2��du , �10�

where NS is the number of spins S per unit volume, while
DDiff is the relative �mutual� translational diffusion coeffi-
cient of the molecules carrying the spins I and S, and is
defined as a sum of the diffusion coefficients of these mol-
ecules. This form of the correlation function has been used
for the calculations of the outer-sphere PRE when the elec-
tron spin subsystem satisfies the conditions of the Redfield
relaxation theory,21,22 and we shall use it in the general case
as well. This form of the translational correlation function
leads, when substituted into Eq. �9�, to the following expres-
sion for the spectral density, K1,1

DD,Diff�−�I�:
2

K1,1
DD,Diff�− �I� = 30
�0��I�S

4�
�2 1

2S + 1

72

5

1

d3NS

� 	
p,q=−1

1 
 2 1 1

1 − p p − 1
�
 2 1 1

1 − q q − 1
�

��
0

� u2

81 + 9u2 − 2u4 + u6��
0

�

Tr�L−Diff�

��Sp
1+ exp
− 
iL̂̂�L−Diff� +

DDiff

d2 u21̂̂

+ i�I1̂̂���Sq
1
d��du . �11�

In this equation, we have interchanged the order of integra-
tion, integrating first over time, and included the terms
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−�DDiff /d2�u2� and −i�I� into the exponential. One can see
from Eq. �11� that the calculations of the spectral density
K1,1

DD,Diff�−�I� can be performed in two steps. The first step is
to evaluate the “internal” spectral density:

K̃1,1
DD,Diff�u,− �I�

= 	
p,q=−1

1 
 2 1 1

1 − p p − 1
�
 2 1 1

1 − q q − 1
��

0

�

Tr�L−Diff�

��Sp
1+ exp�− 
iL̂̂�L−Diff� +

DDiff

d2 u21̂̂ + i�I1̂̂��
Sq
1�d� ,

�12�

which is dependent on the u variable. In the next step, one
has to perform the integration:

K1,1
DD,Diff�− �I� = 30
�0��I�S

4�
�2 1

2S + 1

72

5

1

d3NS

��
0

� u2

81 + 9u2 − 2u4 + u6 K̃1,1
DD,Diff�u,− �I�du .

�13�

The spectral density K̃1,1
DD,Diff�u ,−�I� can be evaluated by fol-

lowing the strategy of the inner-sphere calculations. The
translational degrees of freedom have been separated from
the lattice dynamics and the averaging over them has been
already performed resulting in the correlation function of Eq.
�8�. Therefore, the infinite Liouville basis � � �Oi�� appropriate
for the present case does not need to contain components
associated with the translational motion, it is sufficient to use
the inner-sphere basis formed as a direct product of ortho-
normal basis operators: � �ABC� for the distortional motion
modeled as pseudorotational diffusion,5,11,22,41 � �LKM� for
the molecular tumbling, and � ���� for the electron spin sys-
tem: � � �Oi��= � � �ABC�� � � � �LKM�� � � � �����.5,11,12 This re-
duces very considerably the effective dimension of the ma-
trix representation of the operator:

M̂̂Diff�u,�I� = iL̂̂�L−Diff� +
DDiff

d2 u21̂̂ + i�I1̂̂ �14�

and makes the calculations practicable. It might be useful to
remind that the electron spin basis operators � ���� are re-
lated to the basis vectors �S ,mS��S ,mS�� forming the Liouville
space for the S spin as follows:11,12

����� = 	
m

�− 1�S−m−��2� + 1

�
 S S �

m + � − m − �
��S,m + ���S,m� , �15�

where � ranges from 1 to 2S. The distortional and rotational
basis operators � �ABC� and � �LKM� are defined as

��ABC� = �ABC��ABC� =�2A + 1

8�2 DBC
A ��PTPS

� , �16�

��LKM� = �LKM��LKM� = =�2L + 1

8�2 DKM
L ��PSL� . �17�

The Wigner rotation matrices DBC
A ��PTPS

� and DKM
L ��PSL�

are associated with the angles �PTPS
and �PSL describing the

orientation of the principal axis system of the transient ZFS
tensor with respect to the principal axis system of the static
ZFS, and the orientation of the latter relative to the labora-
tory axes, respectively. Due to the appropriate normalization,
the operators � �Oi� fulfill the condition: �Oi �Oj�=�ij.
The matrix elements of the Liouvillians contributing

to the operator M̂̂Diff�u ,�I�= iL̂̂Z�S�+ iL̂̂ZFS
S + iL̂̂ZFS

T + iL̂̂D+ iL̂̂R

+ �DDiff /d2�u21̂̂+ i�I1̂̂, were, with exception of the term

�DDiff /d2�u21̂̂, evaluated in the context of the inner-sphere
calculations and collected in Refs. 11 and 12. Thus, to set up

the matrix representation of the M̂̂Diff�u ,�I� operator, we
need to evaluate only the remaining matrix elements corre-

sponding to the operator DDiffu
21̂̂ /d2. The evaluations are

simple and one gets immediately:

�A�B�C����L�K�M���
�����DDiff

d2 u21̂̂������LKM���ABC��

= �A�A�B�B�C�C�L�L�K�K�M�M��������
DDiff

d2 u2� . �18�

Then, the spectral density K̃1,1
DD,Diff�u ,−�I� of Eq. �12� can be

rewritten and further evaluated as a matrix product:

K̃1,1
DD,Diff�u,− �I�

= 	
p,q=−1

1 
 2 1 1

1 − p p − 1
�
 2 1 1

1 − q q − 1
�

��
0

�

Tr�L−Diff��Sp
1+ exp�− M̂̂Diff�u,�I���Sq

1�d�

= �c1
Diff�+ � �M̂̂Diff�u,�I��−1 � �c1

Diff� . �19�

One can identify, from Eq. �19�, the role of the vector �c1
Diff�

�the index �Diff� refers to the translational diffusion�. This
vector contains three nonzero elements associated with the
basis vectors: � �ABC� � �LKM� � ����= � �000� � �000� � �1p�,
where p=−1,0 ,1. These elements are equal to 3j-symbols
� 2 1 1

2 −1 −1
� , � 2 1 1

1 0 −1
�, and � 2 1 1

0 1 −1
�, respectively, and represent

the dipole-dipole tensor operator T1
1�DD,Diff� of Eq. �4�. Com-

paring the present derivation with the inner-sphere
calculations,11,12 one can see that the projection coefficients
are now associated with different basis vectors
� �ABC� � �LKM� � ���� of the Liouville space. The difference
concerns the rotational states � �LKM�. The fact that the ro-
tational motion does not modulate directly the dipole-dipole
interaction implies that the nonzero projection coefficients
are now linked to the vectors corresponding to the rotational
state � �LKM�= � �000� �since DKM

L ��ML�=D0,0
0 ��ML��1�.

According to Eq. �13�, to obtain the nuclear spin relaxation

rate K1,1
DD,Diff�−�I� one has to integrate the K̃1,1

DD,Diff�u ,−�I�
spectral density over u. This implies that one has to evaluate
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K̃1,1
DD,Diff�u ,−�I� for a number of u values. Therefore, the

present calculations are much more time consuming than in
the case of the inner-sphere mechanism. The outer-sphere
spin-lattice relaxation rate enhancement R1 outer is given as

R1 outer��I� = 2 Re�K1,1
DD,Diff�− �I�� . �20�

It should stressed that the inner-sphere relaxation rate defined
below Eq. �3� and the R1 outer given in Eq. �20� are not di-
rectly comparable to each other. For a direct comparison,
each of the terms has to be scaled by factors related to the
nature of the complex and the solutions composition. We
come back to this issue at the beginning of Sec. V.

The described procedure provides a very general recipe
for the calculation of the dipolar spin relaxation in the pres-
ence of translational motion. It is a counterpart of the inner-
sphere slow motion theory. Computational details are given
in Sec. IV. Employing the general treatment of the nuclear
spin relaxation modulated by translational motion, one can
discuss the efficiency of the resulting nuclear spin relaxation
for arbitrary conditions. Section V is devoted to this subject.

IV. COMPUTATIONAL DETAILS

The computational complexity of the outer-sphere PRE
compared to the inner-sphere PRE results from the integra-
tion over the u variable, according to Eq. �13�. The spectral

density K̃1,1
DD,Diff�u ,−�I� for a given u value is calculated in

analogy to the inner-sphere case.12 The procedure for invert-

ing the supermatrix M̂̂Diff�u ,�I� �Eq. �14�� is based on the

Lanczos algorithm.46 The spectral density K̃1,1
DD,Diff�u ,−�I� is

determined by a 3�3 block of the inverted matrix. Since the
translational degrees of freedom can be separated from the
remainder of the lattice dynamics, they do not need to be
included into the Liouville basis � � �Oi��. Therefore, the di-

mension of the supermatrix M̂̂Diff�u ,�I� corresponds to the
dimension of the inner-sphere supermatrix. As mentioned by
Belorizky et al.,6 for the largest A and L values �for distor-
tion and rotation, respectively� set to eight, the time needed
for a single point calculation does not exceed a minute �on a
single-processor computer� for most cases. Nevertheless, the
calculations of the outer-sphere PRE �of the spectral density
K1,1

DD,Diff�−�I�� require performing the integration of

K̃1,1
DD,Diff�u ,−�I� according to Eq. �13�. In consequence, the

time of a single point outer-sphere PRE calculation becomes
longer by a factor equal to the number of steps over u needed
for the integration. The integration limits, as well as the num-
ber of integration steps, depend on the translational diffusion
coefficient DDiff. However, from the perspective of a user, it
would be highly inconvenient to modify these parameters
depending on the particular DDiff value. Therefore, one
should find a compromise between the accuracy of the inte-
gration �for a broad range of the translational diffusion coef-
ficients� and the number of integration steps �i.e., the com-
putational time�, taking also into account that the appropriate
integration limits depend on DDiff. For the range of diffusion
coefficients used in this paper �DDiff= �2.0�10−10�
− �2.3�10−9�m2 /s�, the parameters: umin=0.05, umax=10.0,
and Nint=100 �Nint is the number of integration steps between

umin and umax� are appropriate. For a considerably slower or
faster translational diffusion, the parameters should be suit-
ably altered to improve the accuracy of the integration. Since
one can hardly decrease Nint, the required computational time
becomes very long: to calculate an outer-sphere relaxation
profile consisting of ten points �that is a minimum� one needs
15–20 h. Such a long computational time is not convenient
for practical purposes. This problem could be solved by par-
allelizing the program, which we have not attempted at this
stage. Alternatively, the computational time can be shortened
by reducing the maximum values of the distortional and �or�
rotational quantum numbers. The calculations presented in
this paper have been done for the largest A and L values set
to four. The program �with A=L=4� has been tested against
the low field analytical relaxation formulas provided in Ref.
21 for a broad range of diffusion coefficients and different
electron spin quantum numbers. It has been found that, ex-
cept for the case of a rather large static ZFS ��S

�0.5 cm−1� in combination with a high spin quantum num-
ber, the discrepancies do not exceed 10%. Setting A=L=4
�rather than 8�, one can reduce the computational time by a
factor of about 4; we consider this as an acceptable compro-
mise. However, for a large static ZFS and high spin quantum
numbers one should increase the maximum distortional and
�or� rotational quantum numbers to eight.

All calculations in this work are performed assuming
cylindrically symmetric static and transient ZFS tensors, ES

=ET=0. It has been shown before that the rhombicity of the
ZFS tensor is important for the PRE at low field, in particular
for the integer spin quantum number,11,12,40,47,48 but we judge
that the rhombic case is outside of scope of this work. For
the axially symmetric ZFS, it is common to characterize the
ZFS interaction strengths by parameters �S��2 /3DS and
�T��2 /3DT. In addition, we assume that the principal
frames of the intramolecular dipole-dipole interaction �the
M-frame� and the static ZFS interaction �the PS frame� coin-
cide.

The following comparisons give an illustration of the
computational accuracy of the present software: for S=1,
�T=�S=0, �R=1 �s, d=300 pm, DDiff=2.3�0−9 m2 /s,
the low field limit analytical formulas of Ref. 21 yield
R1 outer=1.08 �mM s�−1, while the present calculations give:
R1 outer=1.17 �mM s�−1 for both A=L=8 and A=L=4. For a
large static ZFS, DS=�3 /2�S=10 cm−1 ��T=0, �R=1 �s,
d=300 pm, DDiff=2.3�10−9 m2 /s�, the analytical low field
limit21 gives R1 outer=0.36 �mM s�−1, while from the present
calculations one obtains R1 outer=0.385 �mM s�−1 for A=L
=8 and 0.39 �mM s�−1 for A=L=4. The description of the
outer-sphere relaxation for slowly rotating systems under the
assumption that the electron spin is within the Redfield
limit22 serves as another source of comparison. For example,
for S=1, DT=0.02 cm−1, DS=0.05 cm−1, �R=1 �s, d
=300 pm, DDiff=2.3�10−9 m2 /s, the treatment of Ref. 22
predicts �at low field� R1 outer=0.84 �mM s�−1, while the
present treatment gives R1 outer=0.91 �mM s�−1; at high field
�10 T� the results are R1 outer=0.297 �mM s�−1 and R1 outer

=0.295 �mM s−1� for the treatment of Ref. 22 and the
present one, respectively. For a slower translational diffu-
sion, DDiff=0.5�10−9 m2 /s �and other parameters remain-
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ing unchanged�, one gets R1 outer=2.85 �mM s�−1 and
R1 outer=3.06 �mM s�−1 at low field from the approach of
Ref. 22 and using the present software, respectively. At high
field �10T�, the corresponding values are R1 outer

=1.06 �mM s�−1 �Ref. 22� and R1 outer=1.045 �mM s�−1

�present method�.

V. EXAMPLES OF OUTER-SPHERE PRE
AND DISCUSSION

The relaxivity �spin-lattice relaxation enhancement at 1
mM paramagnetic species� is given as a sum of the inner-
and outer-sphere contributions:

PRE = R1Ipq + R1 outer = R1 inner + R1 outer. �21�

Here, R1I is the inner-sphere paramagnetic relaxation en-
hancement �R1I=2K1,1

DD�−�I��, p is the ratio of the molar con-
centrations of paramagnetic species �1 mM� and the free
ligand/solvent. In the following, we assume that the ligand/
solvent is water. Then, q is the number of water molecules in
the coordination shell. The free water concentration in pure
water is 55.6M. Thus, for proton relaxation in 1 mM solution
of a paramagnetic species in water, we get R1 inner

=qR1I / �55.6�103�. We should not forget that the outer-
sphere term is explicitly concentration dependent, through
the NS factor in Eq. �13�. At 1 mM concentration of para-
magnetic species, the NS �in units of m−3� takes on the value
of the Avogadro number �6.022�1023�. In Eq. �21�, the ex-
change lifetime between the coordination shell and the bulk
solvent has been neglected. The calculations presented in this
section have been performed assuming very fast exchange
process and setting q=1. The inner-sphere relaxation profiles
have been calculated for the interspin distance rIS=300 pm,
while the distance of closest approach for the outer-sphere
has been set to d=380 pm. The distortional correlation time
used in all calculations is �D=5 ps.

We begin the discussion of the outer-sphere relaxivity
with the case of S= 7

2 , which applies for Gd �III� complexes.
Figures 2–4 correspond to three combinations of the tran-
sient and static ZFS parameters: �T=0.01 cm−1 , �S

=0.01 cm−1, �T=0.01 cm−1 , �S=0.05 cm−1 and �T

=0.05 cm−1 , �S=0.01 cm−1, respectively. For every com-
bination of �T and �S, we have done the calculations for four
translational diffusion coefficients: DDiff=2.3�10−9 m2 /s
�water diffusion coefficient at room temperature�, DDiff

=1.15�10−9 m2 /s, 0.5�10−9 m2 /s, and 0.2�10−9 m2 /s.
For the first three diffusion coefficients �in combination with
various �T and �S�, the calculations have been carried out
for four rotational correlation times, including a case of slow
molecular tumbling: �R=100 ps, 500 ps, 1 ns, and 1 �s
�slow rotation�. The rotational correlation time and the mu-
tual diffusion coefficient are both related to the solvent vis-
cosity �Stokes–Einstein–Debye and Stokes relations1,13�.
Therefore, for the slowest translational diffusion �DDiff=0.2
�10−9 m2 /s�, we have excluded the shortest correlation
time, �R=100 ps. In this way, we have covered a broad
range of parameters relevant for the outer-sphere contribu-
tion to the spin-lattice relaxivity.

Figure 2�A� shows the ratio between the outer- and
inner-sphere relaxivities at low field �1.0�10−4 T� for �T

=0.01 cm−1 , �S=0.01 cm−1 plotted versus the translational
diffusion coefficient for different rotational correlation times,
while the inset shows the values of R1 outer in M−1 ms−1

�mM−1 s−1. One can see from this figure that the ratio
R1 outer /R1 inner increases when the molecular tumbling be-
comes faster, i.e., the contribution of the outer-sphere relax-
ivity becomes more significant. In the case of inner-sphere
relaxation, the molecular tumbling plays a double role: it
directly modulates the I-S dipole-dipole interaction and af-
fects the electron spin dynamics �and in consequence the
nuclear spin relaxation� as a source of modulations of the
ZFS interaction. The rotational motion modulates the orien-
tation of the principal axis system of the static ZFS �PS� and
contributes to the modulations of the orientation of the �PT�

FIG. 2. �A� Ratio between outer-sphere and inner-sphere relaxivities at low
field versus the translational diffusion coefficient for the spin quantum num-
ber S= 7

2 : �T=0.01 cm−1, �S=0.01 cm−1, and �D=5 ps, rIS=300 pm, d
=380 pm. Inner-sphere relaxation has been calculated assuming that ex-
change of solvent molecules is fast and the number of water molecules in
the coordination sphere is q=1. The inset shows the corresponding values of
the outer-sphere relaxation at low field limit. �B� Outer-sphere relaxation
profiles corresponding to selected cases presented in �A�. Solid lines: �R

=100 ps, dashed-dotted line: �R=500 ps, dashed line: �R=1 ns, dotted
lines: �R=1 �s.
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frame; however, the distortional motion is usually the main
source of modulations in the latter case. In the case of outer
sphere, the dipole-dipole interaction fluctuates due to the
translational diffusion and the molecular tumbling affects the
nuclear spin relaxation only via the ZFS interaction. In con-
sequence, the inner-sphere relaxation is more sensitive to the
rotational correlation time, faster molecular tumbling de-
creases its value more significantly than is the case for the
outer-sphere relaxation. In the outer-sphere case, there are
two sources of fluctuations of the dipole-dipole interaction:
the translational diffusion and the electron spin dynamics
�relaxation�. If the translational diffusion dominates �i.e., if it
is fast�, the molecular tumbling has no significant influence
on the outer-sphere relaxation. This can be seen in the inset
of Fig. 2�A�. Figure 2�B� shows outer-sphere relaxation pro-
files corresponding to selected cases presented in Fig. 2�A�.
For slower translational diffusion, the effect of molecular

tumbling on the outer-sphere relaxation is more pronounced.
Moreover, we can also notice in the inset of Fig. 2�A� and in
Fig. 2�B� that, for the slow diffusion case, the outer-sphere
relaxivity at low field increases with increasing �R, which
can be related to the slowing down the electron spin relax-
ation outside of the Redfield limit.49 These effects can be
observed over a wide range of magnetic fields, cf . Figure
2�B� where we can see relaxation profiles for different rota-
tional correlation times and diffusion coefficients. In general,
the outer-sphere relaxation rate increases for slower transla-
tional diffusion. Thus, its contribution to the total relaxivity
becomes larger for slower translational diffusion and faster
reorientation. We note, however, that the electron spin relax-
ation becomes slower for high magnetic fields.36 Thus, the
translational diffusion becomes under these conditions the
dominant contribution to the modulations of the dipole-
dipole interaction and the outer-sphere relaxivity is practi-
cally independent of the rotational correlation time.

FIG. 3. �A� Ratio between outer-sphere and inner-sphere relaxivities at low
field versus the translational diffusion coefficient for the spin quantum num-
ber S= 7

2 : �T=0.01 cm−1, �S=0.05 cm−1, and �D=5 ps, rIS=300 pm, d
=380 pm. Inner-sphere relaxation has been calculated assuming that ex-
change of solvent molecules is fast and the number of water molecules in
the coordination sphere is q=1. The inset shows the corresponding values of
the outer-sphere relaxation at low field limit. �B� Outer-sphere relaxation
profiles corresponding to selected cases presented in �A�. Solid lines: �R

=100 ps, dashed-dotted line: �R=500 ps, dashed line: �R=1 ns, dotted
lines: �R=1 �s.

FIG. 4. �A� Ratio between outer-sphere and inner-sphere relaxivities at low
field versus the translational diffusion coefficient for the spin quantum num-
ber S= 7

2 : �T=0.05 cm−1, �S=0.01 cm−1, and �D=5 ps, rIS=300 pm, d
=380 pm. Inner-sphere relaxation has been calculated assuming that ex-
change of solvent molecules is fast and the number of water molecules in
the coordination sphere is q=1. The inset shows the corresponding values of
the outer-sphere relaxation at low field limit. �B� Outer-sphere relaxation
profiles corresponding to selected cases presented in �A�. Solid lines: �R

=100 ps, dashed-dotted line: �R=500 ps, dashed line: �R=1 ns, dotted
lines: �R=1 �s.
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It is interesting to compare the low field values of the
outer-sphere relaxivity as shown in Fig. 2�A� with corre-
sponding values obtained for the static ZFS set to zero. We
can use the latter values as corresponding to the Zeeman
limit or SBM-like theories �yet retaining in principle the
multiexponential nature of electron spin relaxation�. Essen-
tially, SBM-like theories �neglecting the static ZFS interac-
tion� do not predict a dependence of the outer-sphere relax-
ivity on the rotational correlation time. The R1 outer values for
�S=0, �R=1 �s and different translational diffusion coeffi-
cients are compared to the corresponding values of Fig. 2�A�
��S=0.01 cm−1� in Table I. This comparison clearly shows
that the discrepancies at the low field limit between the
present treatment and the SBM-like approach are significant.
The differences at higher field are expected to be smaller.37,50

Figure 3 shows the effects of the increased static ZFS on
the outer-sphere relaxivity and the R1 outer /R1 inner ratio.
From the inset in Fig. 3�A�, one can again see that, for fast
translational diffusion, the electron spin dynamics is masked
by the translational motion and the static ZFS does not in-
fluence much the outer-sphere relaxation. For slow molecular
tumbling, the static ZFS affects the energy level structure of
the electron spin and influences in this way the nuclear spin
relaxation. Fast translational diffusion leads also in this case
to a kind of “extreme narrowing” and the ZFS contribution
to the electron spin energy level structures becomes less rel-
evant. For slower translational motion, the outer-sphere re-
laxation becomes more sensitive to the static ZFS. Compar-
ing Figs. 2�A� and 3�A�, one can conclude that the ratio
R1 outer /R1 inner changes due to effects of the static ZFS on
both the outer- and the inner-sphere relaxation �in this case,
the inner-sphere contribution becomes more sensitive to the
static ZFS for slow rotation�. Actually, for slow rotation, the
R1 outer /R1 inner factor is smaller for a larger static ZFS. On
the other hand, a larger static ZFS leads to a more pro-
nounced dependence of the outer-sphere relaxation on the
molecular tumbling. This can be seen comparing Figs. 2�B�
and 3�B�. Differences between results of the present theory
and the SBM-like approach are in this case even larger than
for the low static ZFS.

A larger transient ZFS causes a faster electron spin re-
laxation and, in consequence, reduces the effects of the static
ZFS �depending on the time scale of the rotational motion,
we can talk about reducing the relative contribution of the
static ZFS to the electron spin relaxation or about masking
the ZFS effect on the electron spin energy level structure�.

One can see this in Fig. 4, presenting the numerical results
for a rather large transient ZFS ��T=0.05 cm−1� and a small
static ZFS ��S=0.01 cm−1�. In this case, the outer-sphere
relaxation does not depend significantly of the molecular
tumbling. However, since the rotational motion directly
modulates the dipole-dipole coupling in the inner-sphere
case, the ratio R1 outer /R1 inner depends on the rotational cor-
relation time. Even though the large transient ZFS reduces
the values of the outer-sphere PRE compared to the case of
Fig. 2�A�, the R1 outer /R1 inner factors are larger compared to
Fig. 2�A�, except of the case of fast reorientational motion. It
is so because the large transient ZFS reduces the inner-sphere
relaxivity to a larger extent than its outer-sphere counterpart.
This effect does not concern the case of fast molecular tum-
bling, since the rotational contribution to the modulations of
the dipole-dipole interaction overruns in this limit the elec-
tron spin relaxation. Examples of outer-sphere relaxation
profiles, corresponding to Fig. 4�A�, are presented in Fig.
4�B�. Again, we estimate the SBM-like outer-sphere relaxivi-
ties by setting �S=0. Also these results are shown in Table I.
Since in this case the electron spin dynamics is faster it
masks to a certain extent the effect of the static ZFS interac-
tion, but it is still relevant.

Outer- and inner-sphere relaxation profiles have different
shapes and, therefore, the R1 outer /R1 inner ratio changes with
the magnetic field. Thus, the outer-sphere contributions
modify overall shapes of NMRD profiles. Examples of field
dependencies of the R1 outer /R1 inner ratio for the spin quan-
tum number S= 7

2 are presented in Fig. 5.
Next, we turn attention to the case of S=1, which for

example corresponds to Ni �II� complexes. Nickel �II� com-
plexes are, in general, characterized by much bigger ZFS
values, because of less symmetric electronic structure. Figure
6�A� shows the R1 outer /R1 inner ratio and the R1 outer values at
low magnetic field. The transient ZFS has been set to �T

=1 cm−1, which implies a fast electron spin relaxation. Since
the static ZFS is at the same time even larger ��S=5 cm−1�,
it might also contribute significantly to the electron spin re-
laxation. This effect is seen in the inset of Fig. 6�A�, in
particular, for the rotational correlation time �R=100 ps and
slower translational diffusion. Since the direct rotational
modulation of the dipole-dipole interaction for the inner-
sphere case is now masked by the electron spin relaxation,
the R1 outer /R1 inner ratio is practically independent of the ro-
tational correlation time. In Fig. 6�B�, we present examples
of the outer-sphere relaxation profiles corresponding to Fig.

TABLE I. Calculated low field �10−4 T� values of outer-sphere relaxivity for different translational diffusion
coefficients, including and excluding static ZFS. All calculations use S=7 /2, �R=1 �s, �D=5 ps, and the same
geometric parameters as in Figs. 2–4.

DDiff

�m2 s−1�

R1 outer �mM s�−1 R1 outer �mM s�−1

�T=0.01 cm−1,
�S=0.01 cm−1

�T=0.01 cm−1,
�S=0

�T=0.05 cm−1,
�S=0.01 cm−1

�T=0.05 cm−1,
�S=0

2.3�10−9 5.7 6.7 4.6 4.9
1.15�10−9 10.3 13.0 7.5 8.3
0.5�10−9 20.0 27.9 12.4 14.4
0.2�10−9 40.1 62.7 18.7 23.3
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6�A�. At low magnetic field, the electron spin relaxation is
faster and, therefore, the ratio does not depend very signifi-
cantly on the translational diffusion coefficient, while for
high fields this dependence is much more pronounced. In this
case, the perturbation approach to the electron spin relax-
ation fails badly; the predictions of the SBM-like description
��S=0� are physically reasonable and yield the following
results at the low field limit ��T=1 cm−1, �R=1 �s�:
DDiff=2.3�10−9 m2 /s: R1 outer=0.18 �1 /mM s�; DDiff

=1.15�10−9 m2 /s, R1 outer=0.21 �1 /mM s�; DDiff=0.5
�10−9 m2 /s: R1 outer=0.24 �1 /mM s�; and DDiff=0.2
�10−9 m2 /s: R1 outer=0.25 �1 /mM s�. Here, the discrepan-
cies between the complete description including the static
ZFS interaction and the SBM-like description are even larger
than for the S=7 /2 case.

Figure 7 displays the R1 outer /R1 inner ratio as a function
of the magnetic field for S=1, in analogy to Fig. 5. At low
magnetic field, the electron spin relaxation dominates over
the rotational contribution to the modulations of the dipole-
dipole axis for the inner-sphere case; for that reason, the ratio
is independent of the rotational correlation time. Since elec-
tron spin relaxation slows down for higher magnetic fields,
the rotational motion influences the R1 outer /R1 inner ratio in
that range.

In a recent study,51 we investigated proton NMRD pro-
files for the nickel �II� ion solutions in water and water-
glycerol mixtures. Fitting the calculated data to the experi-
ments was carried out including only the inner-sphere
contributions; the outer-sphere parts were estimated a poste-
riori for the cases with highest and lowest viscosity, based on
the parameters obtained from the fitting and on the theory of
the present paper. Unfortunately, the estimates presented in
that study were erroneous. The correct values for the
R1 outer /R1 inner ratio in the low-viscosity case �no glycerol,

343 K� are 0.12–0.16 �d=350 pm, DDiff=5.6�10−9 m2 /s�
depending on the field, while for the high viscosity case
�glycerol55%, 323 K� the corresponding numbers are 0.10–
0.23 �parameters of line 4, Table III in Ref. 51, and d
=350 pm, estimated DDiff=0.7�10−9 m2 /s�. For the case of
1 mM Ni�II� in the �acidified� water, the pq value to be used
in Eq. �21� is 6�1 / �55.6�103�=1.08�10−4, while the cor-
responding number for 1 mM Ni�II� in glycerol55% solution
is 1.39�10−4.51 The NS value, relevant for R1 outer, is in both
cases 6.022�1023 m−3.

VI. CONCLUDING REMARKS

The theory for outer-sphere paramagnetic relaxation en-
hancement, derived in this paper, is a counterpart of the gen-
eral treatment of inner-sphere paramagnetic relaxation
enhancement.5,12 Since it is also based on expressing the lat-
tice Liouvillian as a supermatrix in a vector space defined by
a suitable set of lattice parameters, it can be applied beyond

FIG. 5. Ratio between outer-sphere and inner-sphere relaxivities vs mag-
netic field for selected cases for the spin quantum number S= 7

2 . Solid line:
�T=0.01 cm−1 �S=0.05 cm−1 , �D=5 ps, rIS=300 pm, d=380 pm, �R

=100 ps DDiff=2.3�10−9 m2 /s; dashed line: �T=0.01 cm−1 , �S

=0.05 cm−1 , �D=5 ps, rIS=300 pm, d=380 pm, �R=500 ps, DDiff

=2.3�10−9 m2 /s, dashed-dotted line: �T=0.01 cm−1 , �S=0.05 cm−1, �D

=5 ps, rIS=300 pm, d=380 pm �R=100 ps, DDiff=0.5�10−9 m2 /s;
dotted line: �T=0.01 cm−1 , �S=0.05 cm−1 , �D=5 ps, rIS=300 pm, d
=380 pm, �R=500 ps, DDiff=0.5�10−9 m2 /s.

FIG. 6. �A� Ratio between outer-sphere and inner-sphere relaxivities at low
field vs the translational diffusion coefficient for the spin quantum number
S=1: �T=1 cm−1, �S=5 cm−1, �D=5 ps, rIS=300 pm, d=380 pm.
Inner-sphere relaxation has been calculated assuming that exchange of sol-
vent molecules is fast and the number of water molecules in the coordina-
tion sphere is q=1. The inset shows the corresponding values of the outer-
sphere relaxation at low field limit. �B� Outer-sphere relaxation profiles
corresponding to selected cases presented in �A�. Solid lines: �R=100 ps,
dashed-dotted line: �R=500 ps.
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validity regimes of perturbation approaches. The main theo-
retical and computational complexity is due to the nonexpo-
nential form of the correlation function for translational mo-
tion, which requires numerical integration leading to a very
considerable increase in the computational time. The theory
is used to discuss the contribution of the outer-sphere relax-
ation to the total relaxivity at low magnetic field, and as a
function of the magnetic field strength. The relative magni-
tudes of the inner- and outer-sphere relaxivities are calcu-
lated for different values of the translational diffusion coef-
ficient, the rotational correlation time, and the parameters
responsible for the electron spin dynamics, i.e., the ZFS in-
teraction and the distortional correlation time. The calculated
examples lead to the general conclusion that, for most cases,
the outer-sphere contribution is relevant and should be in-
cluded into the analysis of NMRD relaxation profiles. This
conclusion is reached assuming the force-free translational
diffusion and for a specific set of dipolar interaction strength
parameters, the electron spin—nuclear spin distance for the
inner-sphere and the distance of closest approach for the
outer-sphere case. The inner-sphere contribution scales as
rIS

−6, the outer-sphere part approximately as d−3 �this scaling
has been derived under simplifying conditions by
Abragam;13 here, the situation is more complicated because
d appears under the integral sign in Eqs. �10�–�12��. Thus,
the relative importance of the outer-sphere mechanism would
decrease if the distance of closet approach was assumed
larger with respect to the inner-sphere interspin distance. In-
dependently of the interaction strengths, we note that the
outer-sphere contribution is most relevant for slow transla-
tional diffusion and fast molecular tumbling, while the role
of the outer-sphere relaxation is less important for slowly
rotating systems and fast translational diffusion.
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