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Abstract: Cardiovascular disease remains an integral field on which new research in both the biomed-
ical and technological fields is based, as it remains the leading cause of mortality and morbidity
worldwide. However, despite the progress of cardiac imaging techniques, the heart remains a chal-
lenging organ to study. Artificial intelligence (AI) has emerged as one of the major innovations
in the field of diagnostic imaging, with a dramatic impact on cardiovascular magnetic resonance
imaging (CMR). AI will be increasingly present in the medical world, with strong potential for greater
diagnostic efficiency and accuracy. Regarding the use of AI in image acquisition and reconstruction,
the main role was to reduce the time of image acquisition and analysis, one of the biggest challenges
concerning magnetic resonance; moreover, it has been seen to play a role in the automatic correction
of artifacts. The use of these techniques in image segmentation has allowed automatic and accurate
quantification of the volumes and masses of the left and right ventricles, with occasional need for
manual correction. Furthermore, AI can be a useful tool to directly help the clinician in the diagnosis
and derivation of prognostic information of cardiovascular diseases. This review addresses the
applications and future prospects of AI in CMR imaging, from image acquisition and reconstruction
to image segmentation, tissue characterization, diagnostic evaluation, and prognostication.

Keywords: cardiac magnetic resonance; artificial intelligence; machine learning; deep learning

1. Introduction

Cardiovascular disease remains an integral field on which new research in both the
biomedical and technological fields is based, as it remains the leading cause of mortality
and morbidity worldwide [1]. Despite the progress of cardiac imaging techniques, the heart
remains a challenging organ to study, secondary to respiratory motion, continuous cycles
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of contraction and relaxation, complex geometry, and variability of imaging protocols.
Therefore, advanced tools are needed to support the use of cardiac imaging and aid
physicians in daily cardiovascular practice [2–8]. Cardiovascular magnetic resonance (CMR)
imaging allows very accurate evaluation of the function and structure of the heart chambers,
with a high capability to handle complex diagnostic issues [9]. Artificial intelligence (AI)
has emerged as one of the major innovations in the field of diagnostic imaging [10–12].
Recent advances in machine learning (ML) techniques for the management of workflow,
optimization of image acquisition methods, and evaluation of images have opened up
new avenues in cardiovascular practice. Automated quantitative assessments aimed at the
detection, characterization, and monitoring of diseases are now possible. In the future, AI
will be increasingly present in daily clinical practice, aiding the clinician in the diagnosis of,
and derivation of prognostic information on, cardiovascular diseases [13,14].

2. Artificial Intelligence

Artificial intelligence is the aim to develop computers with human intelligence [15,16].
Machine learning (ML) and deep learning (DL) are two subcategories of artificial intelligence.
ML uses an algorithm in which the system adapts only after receiving human feedback. A
prerequisite for the use of technology is the existence of structured data. The system is first
fed with structured and categorized data and then understands how to classify the new
data by type. Based on the classification, the system then performs scheduled tasks. After
an initial phase of the application, the algorithm is optimized by human feedback, which
indicates to the system the wrong and correct categorizations. In the case of DL, structured
data are not necessary [17–19]. DL systems work in multilayer neural networks, which
combine several algorithms and are modeled on the human brain. This allows the system
to process even unstructured data.

3. Machine Learning

ML algorithms can be subdivided into supervised, unsupervised, and reinforced
learning [20,21]. In supervised learning, the machine is equipped with a labeled dataset.
It already has input and output parameters. Then, when a new dataset is supplied to the
machine, the supervised learning algorithm examines the data and produces the correct
output based on the labeled data. In unsupervised learning, the machine has no labeled
dataset; the algorithm is designed to try to learn on its own without any supervision of
the data. This involves the grouping of data. In reinforcement learning, the algorithms
are designed in such a way that the machine tries to find an optimal solution, adopts the
principle of reward and punishment, and with this approach moves towards the correct
result. The most commonly used ML techniques in the field of cardiac imaging and
diagnosis are logistic regression, support vector machines, random forests, cluster analysis,
artificial neural networks, and convolutional neural networks [22–25] (Figure 1).
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3.1. Logistic Regression

Logistic regression is a supervised machine learning technique. It is based on the use
of the logistic function (sigmoid), which converts real values to a value between 0 and 1. In
the training phase, the algorithm receives a training dataset consisting of N examples. Each
example consists of attributes X and a label Y indicating the correct classification. At the
end of the training, the algorithm produces a model that can be used to classify any other
example not included in the training set.

3.2. Support Vector Machine

Support vector machines (SVMs) are supervised ML models segregating the data
into two or more classes, obtaining a linear, binary, nonprobabilistic classifier. An SVM
model is a representation of the examples as points in space, mapped in such a way
that the examples belonging to the two different categories are separated by as large a
space as possible. New examples are then mapped in the same space, and the prediction
of the category to which they belong is made based on the side in which they fall. In
addition to linear classification, it is possible to make use of SVMs to effectively carry out
nonlinear classification using the kernel method by implicitly mapping their inputs into a
multidimensional characteristics space.

3.3. Random Forest

The random forest (RF) method is an ensemble learning method for classification, a
regression that operates by building a multitude of decision trees during training. For
classification activities, the random forest output is the class selected by most trees. For
regression activities, the mean or mean forecast of the individual trees is returned.

3.4. Cluster Analysis

Cluster analysis finds subgroups within the input data in an unsupervised manner.
Clustering algorithms group elements based on their mutual distance, and therefore,
whether or not they belong to a set depends on how far the element under consideration is
from the set itself.

3.5. Artificial Neural Network

Artificial neural network (ANN) is a computational model composed of artificial “neu-
rons”, vaguely inspired by the simplification of a biological neural network, determined by
the propagation of input data through a nonlinear transformation network.

3.6. Convolutional Neural Network

Convolutional neural networks (CNN) are the backbone of DL applications. A con-
volutional neural network is a type of feed-forward artificial neural network in which the
connectivity pattern between neurons is inspired by the organization of the animal visual
cortex, the individual neurons in which are arranged in such a way as to respond to the
overlapping regions that tessellate the visual field.

4. Deep Learning

Deep learning (DL) evolved from ML (Figure 2). It works in a layered architecture and
uses the artificial neural network, a concept inspired by the biological neural network. It
simply takes the data connections among all the artificial neurons and adjusts them based
on the data model. More neurons are needed if the data size is large. It automatically
presents learning at multiple levels of abstraction, thus allowing a system to learn the
mapping of complex functions without depending on any specific algorithm. In DL, the
accuracy of the output depends on the amount of data. It consists of three layers:

1. Input layer: the input layer is used to take input data from sources and then pass it to
the hidden layers of the neural network. It does not perform any calculations.
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2. Hidden level: this level consists of many hidden levels. All the calculation is per-
formed at this level. After all the calculations are complete, it proceeds to the
output level.

3. Output level: this level is used to provide the output to the outside world.

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 4 of 20 
 

 

3.5. Artificial Neural Network  

Artificial neural network (ANN) is a computational model composed of artificial 

“neurons”, vaguely inspired by the simplification of a biological neural network, 

determined by the propagation of input data through a nonlinear transformation 

network.  

3.6. Convolutional Neural Network 

Convolutional neural networks (CNN) are the backbone of DL applications. A 

convolutional neural network is a type of feed-forward artificial neural network in which 

the connectivity pattern between neurons is inspired by the organization of the animal 

visual cortex, the individual neurons in which are arranged in such a way as to respond 

to the overlapping regions that tessellate the visual field. 

4. Deep Learning 

Deep learning (DL) evolved from ML (Figure 2). It works in a layered architecture 

and uses the artificial neural network, a concept inspired by the biological neural network. 

It simply takes the data connections among all the artificial neurons and adjusts them 

based on the data model. More neurons are needed if the data size is large. It automatically 

presents learning at multiple levels of abstraction, thus allowing a system to learn the 

mapping of complex functions without depending on any specific algorithm. In DL, the 

accuracy of the output depends on the amount of data. It consists of three layers: 

1. Input layer: the input layer is used to take input data from sources and then pass it 

to the hidden layers of the neural network. It does not perform any calculations. 

2. Hidden level: this level consists of many hidden levels. All the calculation is 

performed at this level. After all the calculations are complete, it proceeds to the 

output level. 

3. Output level: this level is used to provide the output to the outside world. 

 

Figure 2. LGE sequences acquired using an artificial intelligence reconstruction deep learning 

algorithm. Forty-one-year old patient with previous myocardial infarction on anterior, anteroseptal, 

inferoseptal, inferior, and inferolateral segments (arrows, (A–E), respectively). Image noise 

decreased progressively with increase in AIRDL reconstruction in both 2D-SSLGE ((A): 2D-SSLGE 

AIRDL 0%, (B): 2D-SSLGE AIRDL 25%, (C): 2D-SSLGE AIRDL 50%, (D): 2D-SSLGE AIRDL 75%, 

(E): 2D-SSLGE AIRDL 100%). 2D-SSLGE—2D single segmented inversion recovery gradient echo 

late gadolinium enhancement sequences; AIRDL—artificial intelligence reconstruction deep 

learning. 

5. Current Applications of Artificial Intelligence 

Machine learning will have an impact on all aspects of CMR, from patient 

programming to image analysis and prognosis. Optimal CMR imaging requires correct 

patient positioning and precise image planning [26]. The acquisition and reconstruction 

of images is a task typically entrusted to human experience that can now be automated 

with AI and reduce time. Machine learning methods have been used to optimize 

frequency regulation for 3-Tesla CMR and for automatic correction of artifacts. Recently, 

DL techniques have been shown to offer superior performance in terms of reconstruction 

quality as well as offering high efficiency [27]. Although CMR imaging offers many 

benefits for assessing cardiac structure and function, CMR image acquisition is time 

Figure 2. LGE sequences acquired using an artificial intelligence reconstruction deep learning
algorithm. Forty-one-year old patient with previous myocardial infarction on anterior, anteroseptal,
inferoseptal, inferior, and inferolateral segments (arrows, (A–E), respectively). Image noise decreased
progressively with increase in AIRDL reconstruction in both 2D-SSLGE ((A): 2D-SSLGE AIRDL 0%,
(B): 2D-SSLGE AIRDL 25%, (C): 2D-SSLGE AIRDL 50%, (D): 2D-SSLGE AIRDL 75%, (E): 2D-SSLGE
AIRDL 100%). 2D-SSLGE—2D single segmented inversion recovery gradient echo late gadolinium
enhancement sequences; AIRDL—artificial intelligence reconstruction deep learning.

5. Current Applications of Artificial Intelligence

Machine learning will have an impact on all aspects of CMR, from patient program-
ming to image analysis and prognosis. Optimal CMR imaging requires correct patient
positioning and precise image planning [26]. The acquisition and reconstruction of images
is a task typically entrusted to human experience that can now be automated with AI and
reduce time. Machine learning methods have been used to optimize frequency regulation
for 3-Tesla CMR and for automatic correction of artifacts. Recently, DL techniques have
been shown to offer superior performance in terms of reconstruction quality as well as
offering high efficiency [27]. Although CMR imaging offers many benefits for assessing car-
diac structure and function, CMR image acquisition is time consuming because of complex
cardiac and respiratory movements. Thus, reducing scan time has always been one of CMR
imaging’s biggest challenges. Over the past decade, methods such as parallel imaging and
compressed sensing (CS) have been increasingly used to accelerate CMR image acquisition
(Figures 3 and 4) [28–30].
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Figure 3. Short axis acquired using parallel imaging and compressed sensing methods. (A) string shows a
functional cardiac plane acquired using parallel imaging with a 1.5T MR system, while (B) string shows an
SA acquired using the CS method with a 3T MR system. SA—short axis; CS—compressed sensing.
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Figure 4. LGE —late gadolinium enhancement sequences acquired using the compressed sensing
technique. Panel (A)—Left ventricle (LV) and right ventricle (RV) short axis view at the level pf the
papillary muscles; (B)—LV three chamber view; (C)—LV two chamber view; (D)—LV and RV four
chamber view.

6. Image Acquisition

Several AI solutions have been proposed by different vendors in terms of image
acquisition and reconstruction (Table 1) [31,32]. The main goals of all these approaches are to
simplify the image acquisition, facilitate CMR acquisition, and in some cases improve image
quality, reduce the time of acquisition, and improve overall efficiency [27]. Forman et al.
studied a scan protocol for coronary magnetic resonance angiography (CMRA) based on
multiple breath holds featuring 1D motion compensation and compared the resulting
image quality with that from a navigator-gated free-breathing acquisition. In other work,
the investigators used iterative reconstruction with self-navigated free-breathing CMRA for
retrospective reduction of respiratory motion artifacts (Figure 5) [33,34]. Nakamura et al.
demonstrated that noncontrast CMRA using CS could greatly shorten acquisition time
compared with that of conventional navigator-gated coronary MRA while maintaining
acceptable visualization at 3T [35].



J. Clin. Med. 2022, 11, 2866 6 of 18

Table 1. Machine learning and deep learning for image acquisition and reconstruction.

Method Image Substrate Application

Muscogiuri et al. (2021) [32] DL 2D multisegment late
gadolinium enhancement Noise reduction

Forman et al. (2015) [33] CS Free-breathing whole-heart
coronary MRA Reduction of respiratory motion artifacts

Forman et al. (2014) [34] CS High-resolution 3D
whole-heart coronary MRA Shortening of acquisition time

Schemper et al. (2018) [27] CNN Cine Automatic reconstruction
Frick et al. (2011) [36] ML CMR imaging Automatic view planning
Yokoyama et al. (2015) [37] ML CMR imaging Automatic slice alignment method
Nitta et al. (2013) [38] ML CMR imaging Automatic slice alignment method
Oktay et al. (2017) [39] ML Cine Localization of anatomical landmarks
Lu et al. (2011) [40] ML CMR imaging Automatic view planning
Blansit et al. (2019) [41] DL CMR imaging Localizaion of anatomical landmarks
Lebet et al. (2020) [42] CNN CMR imaging Improvement of image quality
Van Der Velde et al. (2021) [43] DL LGE Improvement of image quality

Hauptmann et al. (2019) [44] CNN CMR imaging Shortening of reconstruction time and
improvement of image quality

Sandino et al. (2021) [45] DL Cine Shortening of reconstruction time and
improvement of image quality

Kustner et al. (2020) [46] DL Cine Shortening of reconstruction time and
improvement of image quality

ML—machine learning; DL—deep learning; CS—compressed sensing; CNN—convolutional neural network;
CMR—cardiac magnetic resonance imaging; CMRA—coronary magnetic resonance angiography; LGE—late
gadolinium enhancement.
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the whole heart in a gated free-breathing acquisition (A), with the possibility of subsequent MPR recon-
structions (B,C). CMRA—coronary magnetic resonance angiography; MPR—Multiplanar reconstruction.

6.1. Slice Position

Automatic slice positioning was one of the first applications of AI during image ac-
quisition [36]. Frick et al. described a fully automated approach in which slice position
was detected using a deformation and segmentation algorithm. Subsequently, several
algorithms have been developed that were able to identify cardiac landmarks and auto-
matically plan the cardiac planes [37–39]. Lu et al. proposed an algorithm that was able
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to identify landmarks and prescribe long and short axis views from a 3D acquisition [40].
The authors created a model that was subsequently adapted to the heart of the patient and
allowed prescribing the slices [40]. A more recent approach was proposed by Blansit et al.,
who developed an algorithm based on DL training on hundreds of annotated landmarks
on CMR [41]. These approaches, based on training of 2D datasets, represent the basis
for several vendors and may allow the ability to prescribe planes with low variability
compared with those prescribed via manual acquisition.

6.2. Image Quality

Improvement of image quality has been developed by several vendors by decreas-
ing the noise of pictures (Figure 6). The “Deep Resolve” algorithm is a deep learning
reconstruction able to decrease the noise of images. It is divided into “sharp” and “gain”
reconstructions. In “Deep Resolve Gain” acquisition, the algorithm, starting from raw data,
identifies the parts of images with more noise and increases the noise reduction in these
parts [47]. In “Deep Resolve Sharp” acquisition the images enter the image reconstruction
in a “high-resolution mode” while they are acquired with low resolution. The algorithm
was trained on high-resolution images, so in the presence of low resolution pictures, the
algorithm decreases the noise, simulating an image with high resolution from the raw data
in order ensure the quality.
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Figure 6. Artifacts reduction with artificial intelligence implementation. Eighty-two-year-old male
patient with previous inferior and inferolateral myocardial infarction. Image (A–C) show the recon-
struction of 2D-MSLGE with NR 0% (A), NR 25% (B), and NR 50% (C), respectively. The increasing
percentage in NR reconstruction yielded a progressive reduction in image noise in 2D-MSLGE starting
from NR 0% (C) and moving through NR 25% (D) and NR 50% (E). A breath artifact characterizing
the inferior and inferolateral midapical segments was reduced in the reconstruction in which the 100%
artificial intelligence algorithm was applied. In fact, a reduction in quantum noise resulted in better
contrast resolution. 2D-MSLGE—2D multisegment late gadolinium enhancement; NR—artificial
intelligence reconstruction deep learning noise reduction.

AIR Recon DL reconstruction is another technique that is able to increase signal-
to-noise ratio, reduce truncation artifacts, and increase spatial resolution compared with
standard reconstruction [42]. Using the AIR DL reconstruction, images can be reconstructed
using “low”, “medium”, or “high” filters. The algorithm was created using millions of
images, gradient backpropagation, and the ADAM optimizer. Compared with the previous
algorithm, AIR DL has been evaluated in CMR [32]. Van der Velde et al. analyzed the
impact of AIR DL on late gadolinium enhancement (LGE) images, demonstrating that it
was possible to obtain LGE images with decreased noise [43]. Similar results were observed
by Muscogiuri et al., who showed that it was possible to obtain images from multisegment
LGE with the same image quality as those from standard single-segment LGE [32].

6.3. Image Speed Acquisition

Cine images in CMR result from a compromise between temporal and spatial resolu-
tion; in particular, decreased time of acquisition may cause image quality impairment [48].
However, compressed sensing provides the possibility of decreasing the time of cine image
acquisition [49]. Hauptman et al. trained a U-Net algorithm that was able to remove
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aliasing and provide similar volumes in cine images thirteen times faster than standard
cine images [44]. Sandino et al. developed another model, called “DL-ESPIRIT”, that was
able to combine the CNN reconstruction with standard reconstruction and provide similar
results to standard CS images, accelerating the time of acquisition by twelve times [45].
Kustner et al. developed another approach, a 4D DL-based reconstruction algorithm for 3D
Cartesian cine data that was called CINENet [46]. In particular, the CINENet algorithm
was able to acquire the left ventricular volume in 15 s, providing the same result as cine
images [46].

7. Image Segmentation

The delineation of the contours of the heart chambers and myocardium (segmenta-
tion) is the first step in the processing of CMR images (Table 2 and Figure 7) [50], as the
quantitative parameters of left ventricular end-diastolic volume (LVEDV), left ventricular
end-systolic volume (LVESV), right ventricular end diastolic volume (RVEDV), right ven-
tricular end-systolic volume (RVESV), and ejection fraction (EF) are derived from it and it
has a role in prognostication [51,52].

Table 2. Machine learning and deep learning for image segmentation.

Method Image Substrate Application

Romaguera et al. (2018) [53] CNN CMR imaging Ventricular
segmentation

Bernard et al. (2018) [54] DL CMR imaging Ventricular
segmentation

Bai et al. (2018) [55] DL CMR imaging Ventricular
segmentation

Penso et al. (2021) [56] DL CMR imaging Ventricular
segmentation

Xiong et al. (2019) [57] CNN LGE Atrial segmentation

Yang et al. (2018) [58] DL LGE Atrial scar
segmentation

Zabihollahy et al. (2019) [59] DL LGE Myocardial scar
segmentation

Moccia et al. (2019) [60] DL LGE Myocardial scar
segmentation

Xu et al. (2018) [61] CNN Cine Myocardial infarction
area segmentation

DL—deep learning; CNN—convolutional neural network; CMR—cardiac magnetic resonance; MRI— magnetic
resonance imaging; LGE—late gadolinium enhancement.

Romaguera et al. used a CNN for segmentation of short-axis CMR images, while
Bernard et al. showed how using ML methods in segmentation could give accurate re-
sults [53,54]. Automated segmentation methods based on ML and DL have been developed,
but occasionally, manual correction is still necessary. As seen in the works on the use of
artificial intelligence in the segmentation process, is more difficult to delineate the contours
of the right ventricle than those of the left ventricle because of the right ventricle’s smaller
wall thickness and irregular shape, with the presence of greater trabeculae [62–64].

Bai et al. showed that an automatic method based on the use of DL in the process of
segmentation and measurement of quantitative parameters in CMR imaging presented
a performance equal to that of human experience [55]. Similar results were shown by
Penso et al., who demonstrated a good correlation between volume calculated with DL
and that calculated with a manual approach [56]. Atrial segmentation could be useful for
management of atrial fibrillation, in particular for the planning of atrial fibrillation ablation
both in the preoperative period and in follow-up. Xiong et al. developed a CNN on 3D LGE
MRI to automatically segment the left atrium [57]. Using DL and manual segmentation,
Yang et al. demonstrated the ability of atrial scar segmentation [58]. In parallel, it is
well known that the right atrial (RA) area predicts mortality in patients with pulmonary
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hypertension and is recommended by the European Society of Cardiology/European
Respiratory Society pulmonary hypertension guidelines. Importantly, the advent of deep
learning may allow more reliable measurement of RA areas in order to improve clinical
assessments [65]. Xu et al. proposed a CNN-based automatic segmentation method in
noncontrast cine MR images of myocardial infarction areas; this method obtained high
consistency with human experience and LGE images [61].
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systolic volume; SV—stroke volume; EF—ejection fraction; CO—cardiac output; CI—cardiac index.

8. Myocardial Tissue Characterization

ML methods have been applied for the automatic quantification of LGE, overcoming
the limits related to its irregular and multifocal appearance, the variation of gadolinium ki-
netics, and the variability among different centers in regard to accuracy and reproducibility
(Table 3 and Figure 8) [59,60,66,67]. ML has also been applied to cardiac relaxometry, specif-
ically T1 mapping, which is useful for identifying changes in extracellular volume [68–70].
Radiomics, an ML technique capable of handling high-dimensional data [71], refers to anal-
ysis of medical images aimed at obtaining quantitative information, through appropriate
mathematical methods and the use of computers, that cannot be detected by simple visual
observation by an operator. Various features can be extracted from images, the most impor-
tant being intensity- and texture-based morphological features (summarized in the term
“texture analysis” (TA)) [72]. TA refers to any geometric and/or repetitive arrangement
of grey levels and allows the segmentation, analysis, and classification of medical images
according to the underlying tissue structure, thus offering the possibility to overcome the
limitations of pure interpretation of visual images [73,74]. There are several applications of
radiomics and TA: to detect myocardial fibrosis in patients with hypertrophic cardiomy-
opathy (HCM), to differentiate healthy controls from patients with cardiomyopathy (HCM,
amyloid), and to perform scar segmentation in myocardial infarction (MI) in the differential
diagnosis between acute and chronic infarction [75–79]. In regard to the application of TA
in T1–T2 mapping, Neisius et al. applied it to discriminate between HCM and hypertensive
heart disease, while Baessler et al. demonstrated its diagnostic accuracy in both acute
infarct-like myocarditis and chronic myocardial inflammation/myocarditis [80,81].
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Table 3. Machine learning and deep learning for myocardial tissue characterization.

Author Method Image Substrate Application

Fahmy et al. (2018) [66] CNN LGE Segmentation and quantification of
scar volume in patients with HCM

Hann et al. (2018) [70] DL T1 mapping
Automated LV segmentation of T1
maps in order to speed up LGE
quantification based on T1 mapping

Thornhill et al. (2014) [79] Radiomics and TA LGE Detection of myocardial fibrosis in
patients with HCM

Schofield et al. (2019) [75] Radiomics and TA Cine

Differentiation among several
causes of myocardial hypertrophy
(HCM, amyloid, and aortic stenosis)
and healthy controls

Engan et al. (2010) [76] Radiomics and TA LGE Discrimination of patients with low
and high risk of arrhythmias

Kotu et al. (2013) [77] Radiomics and TA LGE Automated segmentation of scarred
tissue areas

Larroza et al. (2017) [78] Radiomics and TA LGE, Cine Differential diagnosis between
acute and chronic infarction

Neisius et al. (2019) [80] Radiomics and TA Native T1 mapping
Discrimination between
hypertrophic cardiomyopathy and
hypertensive heart disease

Baessler, et al.
(Radiology 2018 Nov) [81] Radiomics and TA Native T1–T2 mapping Diagnostic accuracy in acute

infarct-like myocarditis

Baessler, et al.
(Radiology 2018 Jan) [82] Radiomics and TA Native T1–T2 mapping

Diagnostic accuracy in chronic
myocardial
inflammation/myocarditis

DL—deep learning; CNN—convolutional neural network; TA—texture analysis; HCM—hypertrophic cardiomy-
opathy; LGE—late gadolinium enhancement.
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9. Diagnosis

ML can help physicians in the accurate and early image-based diagnosis of cardio-
vascular disease. Several papers have used conventional imaging indices as input data to
diagnose various heart diseases such as HCM, DCM, MI, and ARVC (Table 4).
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Table 4. Machine learning and deep learning for diagnosis.

Author Method Image Substrate Myocardial Disease

Khened et al. (2018) [83] CNN Cine HCM, DCM, MI, and ARVC
Ammar et al. (2021) [84] CNN Cine HCM, DCM, MI, and ARVC

Neisius et al. (2019) [80] Radiomics and TA Native T1 maps Discrimination between HCM and
hypertensive heart disease

Baessler et al. (Radiology 2018 Jan) [74] Radiomics and TA Cine Differentiation of chronic from
subacute MI

Zhang et al. (2019) [85] DL Cine Chronic MI

Gopalakrishnan et al. (2015) [86] ML HCM, DCM, ARVC, LVNC, and
myocarditis

Wolterink et al. (2018) [62] RF Cine Healthy, HCM, DCM, ARVC, and MI
Snaauw et al. (2019) [63] CNN Healthy, HCM, DCM, ARVC, and MI

Baessler et al. (Radiology 2019) [82] Radiomics and TA Native T1–T2 mapping Acute or chronic heart failure-like
myocarditis

Mantilla et al. (2013) [87] ML Cine Abnormal wall motion

DL—deep learning; CNN—convolutional neural network; TA—texture analysis; RF—random forest; ML—machine
learning; HCM—hypertrophic cardiomyopathy; DCM—dilated cardiomyopathy; ARVC—arrhythmogenic right ven-
tricular cardiomyopathy; LVNC—left ventricle noncompaction; MI—myocardial infarction.

9.1. Myocardial Infarction

Machine learning methods offer simplification and acceleration of the diagnostic
path of MI and are useful as a guide for treatment strategies [88]. Baessler et al. used
CMR images with contrast as a reference to differentiate chronic from subacute MI on
noncontrast CMR images, while Zhang et al. directly used noncontrast CMR images to
diagnose chronic MI [74,85].

9.2. Cardiomyopathies

Machine learning is an excellent method that allows for the differentiation of various
cardiomyopathies [88]. Gopalakrishnan et al. used CMR parameters of the left ventricle,
right ventricle, and overall heart from a cohort of 83 pediatric subjects in order to charac-
terize five different cardiomyopathies: HCM, DCM, ARVC, left ventricle noncompaction,
and myocarditis [86]. Khened et al. and Wolterink et al. used conventional CMR indices
as input for the classification of subjects into five categories (healthy, HCM, DCM, ARVC,
and MI) and obtained accuracies of 0.96 and 0.86, respectively, on the test set [62,63,83,84].
Focusing on radiomic features, Nelsius et al. demonstrated an ML model for differentiating
HCM from hypertensive heart disease using radiomic features derived from T1 mapping
sequences [80].

9.3. Heart Failure

Heart failure (HF) is a clinical syndrome due to a structural and/or functional abnor-
mality of the heart that results in elevated intracardiac pressures and/or inadequate cardiac
output at rest and/or during exercise. Because of the progressive aging of the general
population, heart failure has assumed an increasingly relevant epidemiological problem
and currently represents the cardiovascular disease with the greatest increase in incidence.
Baessler et al. applied texture analysis on cardiac MRI T1 and T2 mapping and obtained
quantitative imaging parameters for the diagnosis of acute or chronic heart failure [82].
Moreno et al. used a dataset that contained cine-MRI images (HF with infarction having
an EF < 40%, HF without infarction having an EF < 40%, hypertrophy having a normal
EF > 55%, and normal patients having EF > 55%) to describe and characterize heart motion
patterns along the cardiac cycle through SVM and RF [89].
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9.4. Abnormal Wall Motion

Machine learning facilitates postprocessing and image analysis for the characterization
of wall motion [88]. Mantilla et al. and Afshin et al. proposed an ML method for classifying
normal/abnormal wall motion in left ventricular function using CMR [87,90].

10. Prognosis

Cardiac magnetic resonance has demonstrated the ability to prognosticate various
cardiovascular conditions [6,91–98]. Cheng et al. showed that greater heterogenicity of LGE
in patients with HCM and systolic dysfunction was associated with adverse events [99].
Through the use of biomarkers derived from imaging, ML methods may add value beyond
traditional risk scores in the prediction of adverse cardiovascular events, as proposed by
the Framingham Heart Study and other cohorts. In the MESA (Multiethnic Atherosclerosis
Study) study, there was better prediction of risk, with greater accuracy, in the prediction of
cardiac events. [100]. In addition, ML may predict cardiac arrhythmias in patients who have
survived heart attacks [101] and therefore have a discriminating power in risk stratification,
similar to that of EF and scar size, using the characteristics, position, and size of the scar
derived from CMR. It may also be useful in predicting a favorable response to cardiac
resynchronization therapy using ECG, clinical, and heart motion analysis data [102].

11. Limitations

Although machine learning methods have proven effective and have been validated,
there are practical difficulties in implementing them in the clinical setting for several
reasons, including data quality. Homogenization of clinical data and imaging protocols
from different centers is an essential element to check before using datasets as input into a
standard ML model. In addition, since clinical data add critical information to images, it
is essential to integrate clinical data in electronic medical records to the imaging dataset.
Cost is another critical issue, as substantial investment would be required to develop more
complex ML methods. Although DL has shown promising results for image processing
in the context of high-dimensional datasets and supported by the possibility of real-time
reconstruction, in the use of powerful computational algorithms, additional limitations
must be recognized. The lack of large, publicly available CMR datasets that can be used
to objectively compare different algorithms; the lack of generalization capabilities when
previously unseen samples are presented; the difficulties with rare diseases (and, conversely,
rare presentations of common entities such as congenital heart disease); and the “black-box”
nature of DL algorithms, in that it is often unclear what information is used to arrive
at a particular classification or result, represent just a few of the real limitations of this
intriguing technique.

12. Future Perspectives

In this review, we report the use of ML in all aspects of CMR, from the acquisition and
reconstruction of images to the derivation of prognostic information. Despite the significant
advances described above, there is a need for controlled prospective clinical trials in which
ML techniques are compared with human evaluation of magnetic resonance datasets to
establish the effectiveness of such methods in clinical practice. The algorithms must be
validated using other cohorts besides that under consideration, including data coming
from different centers and from different acquisition devices. Furthermore, to compare
the performance of different algorithms, it would be important to evaluate the efficiency
of each algorithm on a common dataset. Finally, to enable progress in this field, publicly
accessible software would be required to allow other groups to run, study, modify, and
thus improve software and monitor potential bias in the algorithm [103]. An inevitable and
widespread concern is data privacy, so it would be necessary to build a privacy protection
algorithm that combines encryption and AI methods in order to obtain fast, secure, and
generalizable models. As larger datasets become available, predictive models for both
disease progression and simulated response to therapy are expected to develop.
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13. Conclusions

The advancement of techniques in the field of AI can be attributed both to the fact
that AI is able to manage high-dimensional data, integrating information from multiple
fields, and to the increasing availability of data through mobile applications and data
transformation from the healthcare system into digital form. However, the applicability of
these approaches in cardiovascular applications remains limited because of the intrinsic
peculiarities of cardiac imaging, studies based on small samples that involve a risk of
overfitting, and the lack of interoperability of many systems used. However, the use of
AI in cardiovascular medicine could pave the way towards better diagnosis and precision
medicine and revolutionize the monitoring and treatment of individual diseases.
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