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MR Image Encoding  
 
 
Introduction  
 
 Much of the success and flexibility of MRI is derived by its peculiar methodology; a set 
of techniques which has proved to be very flexible and informative for probing the properties of 
complex materials (such as the brain). MR imaging is fundamentally different from other types 
of imaging.  Conventionally, when physicists refer to “imaging” they refer to a scattering 
experiment. Since our eyes “see” a rock by forming a 2 dimensional array of light intensity 
amplitudes being scattered off the rock, the instrumental equivalent of this has come to be 
synonymous with imaging. In the canonical scattering experiment, “rays” are aimed at an object 
and then detected as they either scatter off of the object or penetrate through it.  The rays can be 
deflected, lose or gain energy, deflect and then interfere with one another or even be converted 
from one type of ray to another.  The “rays” in question are usually electromagnetic radiation 
(radio waves, microwaves infra red light, visible light, ultraviolet light, x-rays, or gamma rays) 
but can, of course, be almost anything including sound waves, water waves, or matter waves 
(particles).  The particles used could be electrons (as in electron microscopy), or any of the 
zillions of other subatomic particles, or clumps of particles such as nuclei, atoms, molecules, or 
pieces of dirt.  
 A fundamental limitation of scattering experiments is that the resolution of the image 
cannot exceed the wavelength of the wave (electromagnetic or matter wave) used to probe the 
object.  This is fundamentally derived from the uncertainty principle but has long been 
understood in classical optics.  Physicists are fond of making such general statements, but, 
while true for scattering experiments, this imaging “law” does not hold for MRI.  In MR, we use 
radio waves with a wavelength of several meters to image at a sub-millimeter resolution.  Thus 
we exceed this “fundamental” imaging law by several orders of magnitude.  How?  The short 
answer is that we don’t determine the distribution of the body’s protons by bouncing stuff off of 
them; we determine it by asking them to report to us where they are. We query the body’s spins 
using a burst of radio waves (the excitation RF), and they report back some milliseconds later 
with a faint radio signal of their own.  They declare their location and other even more valuable 
information encoded in the frequency and phase of the burst of RF energy they emit in response 
(the MR signal or echo).   
   
MR Image Encoding 
 
Review of the basic NMR experiment The previous lectures reviewed the basic equations 
of motions of the proton spin placed in a static, uniform magnetic field.  The state of a given 
spin is either parallel or anti-parallel to the static field.  Since the parallel state is slightly 
energetically more favorable, a slim majority are found in this state.  When the vector sum of all 
of the spins is considered, there is almost a complete cancellation between the aligned and anti-
aligned spins; the net magnetization consists of the only the slight excess aligned with the 
magnetic field.  Since the other spins always have a canceling partner, we do not detect them 
and only the small (~0.01%) excess aligned magnetization, Mo, will be considered. Although 
quantum mechanics tells us that a measurement of the energy of a single spin system will result 
in only 2 answers (the energy of the aligned or anti-aligned state.)  We know that the spin’s 
wavefunction can exist in a time dependent superposition state of these two energy eigen states.  
The spin’s state can also have a projection along the x or y axis.  The ensemble average of these 
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superposition states approximates the classical gyroscopic precession equation described when 
a suitably large group of non-interacting spins is considered.  
  
Encoding basics 

The information about how this magnetization is distributed in the body is derived by 
the frequency and phase of its precession during the detection phase of the experiment.  After 
excitation, the detected MR signal processes with a frequency given by: 

 
 ω = γ B(t,x,y,z).   where γ = 2π (42.577 MHz/Tesla) for protons (1.1) 

 
Here B(t,x,y,z) is the total value of the magnetic field at location (x,y,z) at time t.   The 

phase picked up in time τ after its initial excitation is given by: 
ϕ(τ ) = ω(t)dt

0

τ∫ = γ B( t,x,y,z)dt
0

τ∫     (1.2) 

If B is uniform through the sample, then  
r 
B (x,y,z) = Bo   and no interesting spatial 

information is learned from observing the frequency or phase of the spins precession.  Since we 
can experimentally control B(x,y,z), we can introduce a spatial dependence to phase and 
frequency by making B vary across the object.  The easiest way to do this is to apply a gradient 
to the static magnetic field. 

ˆ z

 
Field gradients 
 A linear gradient is the simplest form of variation of the static field; it is a linear increase 
in the static z field as a function of position.  Since the static field is produced by current 
running through a large coil of wire (the magnet) and the gradient field is added to the uniform 
field by injecting current into an additional winding, we can easily switch between a uniform 
magnetic field and the gradient field. When an “x gradient” is applied the field as a function of 
position is: 
 

  
r 
B (x, y,z) = B0 ˆ z + Gx xˆ z        where Gx is defined as:    Gx   = ∂Bz/∂x  (1.3) 

 
 
Fig. 1.1 
 
 
 
 
 
 
 
 
Uniform static field           +           gradient field  =           total field 
 
Then ω(x,y,z) = γ Bo + γ Gx x 
 
Since the constant γBo part is uninteresting for image encoding, we often just consider the frequency 
offset from the reference frequency at the center of the magnet (isocenter): 
 

∆ω =  γ Gx x      (1.4) 
 



  MR Image Encoding        L. Wald MGH-NMR Center 

The applied gradient strength and is commonly measured in Gauss/cm (CGS units) or mTesla/m 
(MKS units); 1G/cm = 10mT/m.  State of the art body gradient coils can produce gradient strengths of 
40mT/m.  Thus, when such a gradient is on in a 1.500T magnet, the total field at x = +10cm is 1.504T, 
only a small perturbation to the main static field. 

 
The magnetic field gradient can be generalized to a vector: G = (∂Bz/∂x, ∂Bz/∂y, ∂Bz/∂z ) (1.5) 
 
Therefore, in general the frequency and phase of the detected MR signal is: 
 

  ∆       (1.6) ω = γ G
→

(t) ⋅ r
→

 

    ∆ϕ(τ ) = ∆ω(t)dt
0

τ

∫ = γ G
→

(t) ⋅ r
→

dt
0

τ

∫      (1.7) 

 
Here we have considered the important case where the gradient might be changing with time 
and have therefore written G(t).  Typically we think of the frequency as being determined by 
whatever B field and thus gradient is present at that the time of the measurement. Of course, it 
takes multiple samples of the signal to calculate a frequency, so the gradient could be varying 
during the time of the frequency measurement. But, the simplest and most common MR 
imaging strategies do not very the applied gradient during the measurement period.  In 
contrast, the phase shift is the result of a time evolution of the signal during the entire time 
period between the excitation of the magnetization and the time of the measurement.  Even the 
simplest MRI methods have considerable alteration of the gradients during this period, so we 
explicitly include the time dependence of the applied gradient in the equation for phase. 
 
Slice selective excitation of a single plane through the body 
 
     In order to take 2 dimensional images which “cut” through the body, it is useful to excite 
only a 2D plane of spins.  Then the signal arises only from this slice. The image is formed by 
encoding the two in-plane directions.  The slice selection process is achieved by applying the RF 
pulse to tip the spins at the same time as a gradient.  To excite a slice of spins in the xy plane, a 
gradient Gz in the z direction is used. 

 
Gradient

Fig. 1.2 B

∆B

∆z

Gz = ∂Bz /∂z 
 Bo
 
 
 

z 
 

 
As before the resonance frequency of the spins during the z gradient is: 
 
     ω(z) = γ Bo + γ Gz z 

 
Note that at z=0 (isocenter) the frequency ω = γ Bo = ωo  If the frequency of the excitation RF 
pulse is ω = ωo + ω’, then the z location of the excited spins (and thus the slice plane) will be: 
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     z =  ω’/ γGz

 
If the excitation pulse contains a range of frequencies ∆ω, then the slice will be centered at the 
above z position but also excite spins included in the slab z ± Gz ∆z/2, where ∆z = ∆ω/γGz .  
Recall from the time-bandwidth theorem of the FT that it is impossible to form a pulse of finite 
time duration that does not include a range of frequencies. 

The exact nature of the range of frequencies incorporated in the RF pulse is important 
for determining the shape of the slice profile. We control the frequencies present in the RF pulse 
by intelligently choosing the shape of the RF pulse envelope (its amplitude as a function of 
time).  Since a clean “square” slice profile is desired, we seek a time shape with a square 
frequency spectrum.   Recall: 

 
Fig. 1.3 
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Thus a sinc function with lots of side lobes provides a well defined slice profile.  The amplitude 

is chosen so that the desired flip angle is achieved:  θ =  γ  B1(t) dt
0

∞

∫   

Fig. 1.4 

     
 

RF excitation pulse (sinc envelope) 
 
 
Physical picture of what a gradient pulse does t
 

 

In general the analysis of the pulse shape using 
the Fourier transform is only a good 
approximation for small flip angles.  Thus, a more 
complicated analysis is needed for larger flip 
angles, especially slice selective inversion pulses 
(180o) (see Pauly et al.).   
       An additional complication is that during 
excitation in the presence of a gradient, the spins 
are processing with a frequency which depends 
on their location in the slice profile.  Since the 
excitation process takes a non-zero amount of 
time (usually between 1 and 5ms), the spins will 
end up with a phase shift which is a function of 
position in the slice direction.  If this phase is 
allowed to remain, the experiment will start of 
with the signal partially dephased.  The loss due 
to the partial cancellation can be recovered by 
simply reversing the sign of the gradient after the 
excitation pulse for just the right amount of time 
to undo the dephasing of the excitation gradient. 
o the spins 
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      Since the frequency of the spins procession in the presence of a gradient field is a linear function of 
equency and thus a linear function of position, its easy to imaging that we can learn where a given 
roup of spins is located (in one direction at least) by measuring their frequency.  All we need to do is 

of a gradient field) into a histogram of the 
equencies present in the signal (the spectrum).  We do this by taking the Fourier transform of the 

    Similar infor ained the phase of the signal.  The phase of the MR signal from a voxel 
ll of spins depends on their position and the entire history of the gradients applied from excitation 
efinition of zero phase) to measurement.  Although less intuitively obvious how to utilize the phase 
formation, several nt aspects of MR image encoding are best understood by examining 

patial pattern in phase after application of a gradient.  Consider the what happens after a y gradient 

 

τ 

   Consider the effect a helix of magnetization by briefly turning on a gradient 
ulse.  At first glance it appears that if the object (a bottle of water for example) extends over 

agnetization vectors and no observed signal. For every voxel in a position such that the 

fr
g
deconstruct the time domain NMR signal (in the presence 
fr
observed signal.  For obvious reasons, this method is called frequency encoding.  The particular use of 
a gradient during acquisition of the signal is called the “readout gradient” and the direction of the 
gradient (and thus the encoded direction) is called the “readout direction”.  A diagram of the 
experiment might look like: 
 
Fig. 1.5 
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(Gy) is turned on for a brief period τ prior to sampling the MR signal.  The MR signal is sampled after 
the gradient is turned off, so during the sampling there is no spread of frequencies due to the gradient; 
all the spins in the head are precessing at ωo = γB o.  During the gradient pulse itself, spins at different y 
locations precess at different frequencies and over the time period τ a spin at location y will gain a 
phase shift of  ∆ϕ = τ ∆ω(y) = (γ τ         ) compared to the reference spins at y=0.  The relative phase 
shift is linear with y.  If you represent the magnetization vectors in space they will form a helix along 
the y axis.  The larger the gradient Gy or the longer it is left on (τ), the tighter the helix of magnetization 
will be wound. After the gradient is turned off, the helix remains since the spins return to an identical 
precession frequency. 
 

Fig. 1.6 
 
 
 
 

 
 
 
               Small τ         larger τ     large 
 
 
  of winding 
p
more than one cycle of the helix, then there would be complete cancellation of the 
m

all   y locs  
process at  

all  y locs  
process at  
same freq. same freq. 

   Freq. α   
    y loc. 

Gy t

ple Sam

y 

Gy y



  MR Image Encoding        L. Wald MGH-NMR Center 

magnetization had a phase of φ, one can find a voxel at a different location with a phase of –φ. 

l    

nother way of looking at it is that applying a gradient pulse before measurement provides a 
easurement of a single spatial frequency component.  In the case above, the gradient 

mplitude and duration are set to select the signal from anatomy with a 1cm periodicity.  With a 
single t ch the 1cm-1 
patial frequency of the object contributes to the whole. If you desire an image with 1mm spatial 

ficient if you leave it on.  Thus 
 one readout period we typically sample 256 points all with different helicities and thus 256 

out direction. In conventional MR 

mpling.  So a large negative gradient winds a helix of the 
egative sense, then reverse the direction of the gradient and start sampling the signal.  The 

initial samples still have the large negatively wound helix which the positive gradient unwinds 

This is in fact the case for a uniform sample.  It becomes more interesting if the sample has some 
well-defined spatial periodicity.  If the gradient strength and timing are chosen so that the helix 
has the same periodicity as the sample (1cm is the example below), then there is no cancellation 
of the magnetization vectors and the MR signal is as large as it would be if no gradient pulse 
were applied. 
 
Fig. 1.7 
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Uniform sample produces no signa  Periodic sample produces full signal 
 
A
m
a

ime-point measurement, we have determined the amplitude and phase whi
s
resolution, then you must acquire spatial frequencies up to 1mm-1.   Clearly with enough 
measurements of different spatial frequency components in the 2 orthogonal directions, we 
could reconstruct the object with a Fourier transform from spatial frequency space to object 
space.   Blipping on  a gradient to wind a helix and then sample the MR signal for a measure of 
a spatial frequency component is referred to as phase encoding.  
 
Spin warp imaging (the bread and butter MR encoding method) 
        Reconsidering frequency encoding it is clear that a similar helix is wound, the only 
difference is that you continuously sample the spatial frequencies as the helix gets tighter and 
tighter.  There is no real need to turn the gradient off; its more ef
in
spatial frequency components of the object in the read
imaging, one readout measurement (of 256 or 512 kspace samples) is taken per excitation.  Thus 
in a single excitation, the spatial frequencies of the readout direction are fully sampled. Again, if 
you want an image with 1mm spatial resolution, you must make sure Gx t, is large enough so 
that the maximum spatial frequency sampled is at least 1mm-1.  Of course there are two ways to 
achieve this, Gx can be big or the sampling t can extend for a long time. As we will discuss, there 
are reasons not to sample too long. 
 
Gradient echo     In practice frequency encoding is sufficiently efficient that it is useful to 
acquire some redundant information in by sampling both a negatively wound helix and a 
positively wound helix.  The negative sense is obtained by simply applying a negative gradient 
for some period of time prior to sa
n
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over time.  When the helix is completely unwound you are sampling the zero spatial frequency 
component of the sample. For a large, uniform phantom, this is the only point in kspace which 
has significant signal.  Since MR physicists spend so much time imaging bottles of water (and 
since the head is to first approximation like a bottle of water), the time when the kx = 0 point is 
sampled is given the special name of the “TE” (time to echo) of the acquisition. In most objects 
the signal is quite small when sampling the high spatial frequencies, builds up to a maximum at 
t = TE, and then gets smaller again for the opposite signed high spatial frequencies.  Thus this 
basic experiment is referred to as a “gradient echo”.  Note that the gradient echo occurs when 
the area (Gx t) of the positive lobe equals the area of the negative “prewind” lobe. The 
experiment (pulse sequence) for frequency encoding can thus be diagramed as follows: 
 
Fig. 1.8 
 
 
 
 

k

 
 
 
 
 
 
 
 
 
All th ft to do is add in encoding for the y direction.   
ample bi ns of the objects x and y spatial frequencies.  The simplest (and 
ommonest) way to do this is simply repeat the above frequency encoding experiment once for 
very offset in ky.  This means winding a helix in the y direction and then performing the 
eadout procedure of winding and unwinding the x helix. The y helix can be quickly wound 
nd then left in place for the duration of the readout procedure by turning on a brief Gy 

at is le To reconstruct an image we need to
s all com natio
c
e
r
a
gradient after excitation but before initiating the readout. Thus we use a different phase encode 
gradient before each readout experiment. If we desire a 128 x 256 image matrix, we would 
typically perform 128 excitations each with a different area of the phase encode blip gradient of 
area Gy τ.  Since it is inconvenient to change the timing from excitation to excitation and only 
the area of the blip matters, typically the amplitude of the phase encode gradient is stepped 
from negative to positive values.  Thus the diagram for one excitation looks like: 
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Fig. 1.9 
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The NMR Imaging Equation (mathematical picture of what happens to the spins). 

The goal of the 2D MR imaging experiment is to determine the distribution of the proton 
spins in the plane of the excited slice.  The desired spin density function which we hope to 
display as a grayscale image is defined to be ρ(x,y).  Following excitation, the magnetization is 
processing at its characteristic frequency ωo = γBo.  We then proceed to encode the x and y 
directions as in Figure 1.9 above.  

Frequency + phase encoding  To encode the x direction we will use frequency encoding, we 
apply an x gradient and then record the signal as a function of time, S(t) while the gradient is 
on. Thus we are recording the frequency and phase evolutions that occur as a function of x 
during the presence of a constant “readout” gradient field.   The phase encode gradient consists 
of a y gradient turned on for a brief period of time τ.   
         The MR signal comes from the RF detector which surrounds the entire head. Thus the 
detected signal is just the summation of the signals from all the spins within the head.  Thanks 
to the gradients of Fig. 1.9, the phase of the signal of a given spin depends, on its location.  If the 
signal is sampled at time t after turning the x gradient on, the phase induced on the spins at 
location x by the readout gradient alone will be ϕ(t) = ωot + γGx x t.  The phase induced on spins 
at location y by the phase encode blip alone will be  ϕ(t) = ωot + γGy y τ. Thus the total phase 
shift for a voxel at location (x,y) is: 
 
    ∆ϕ(t) =ω0t + γGx xt+ γGyyτ     
 
Since the signal emitted by a small voxel at location x,y is proportional to the number of spins at 
that location, and it will have the phase given above, the signal S(x,y,t) from a voxel at (x,y) is 
propotional to ρ(x,y) exp(iωot + iγGx x t).  The RF coil equally sums contributions from all 
locations, so the signal detected by the coil is the sum of this over the head: 

 
   S(t) = ρ(x, y)eiωot + iγGx xt +iγGy y τ

object
∫∫ dxdy   
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The phase factor exp(iωot) is a simple modulation factor representing the Larmor precession of 
the spins.  This carrier frequency can be moved outside the integral and is, in fact, simply 
thrown away in the detection hardware and we are left with: 
 

   S(t) = ρ(x, y)eiγGx xt +iγG y yτ

object
∫∫ dxdy  

 
Since the integral is over only the spatial dimensions, it is useful to define kx = (-γGx t)  and ky = 
(-γGy τ) so that: 
 

   S(t) = ρ(x, y)e− ikx x− iky y

object
∫∫ dxdy  

 
If you consider x and kx as the Fourier conjugate variables (instead of ω and t as before) this of 
course looks a lot like a 2D Fourier integral. Therefore, to solve for ρ(x) all we need to do is take 
an inverse FT of the detected signal. 
 
   ρ(x,y) = FT −1 S(kx ,ky)[ ]= S(kx,ky)e

ikx x+ iky y

kspace
∫∫ dkxdky    

The innocuous change of variables to k is so useful that we have already worked out an 
entire physical intuition about “k”.  The value of kxy directly determines the tightness of the 
helix of magnetization wound and thus to the spatial periodicity of the sample that contributes 
to that time-point of the signal. This is consistent with the standard interpretation of the FT 
where k refers to a spatial frequency.  Similar to referring to the time signal as “time domain” 
and the FT of the time signal as “frequency domain” (or spectrum), we will refer to the normal 
spatial dimensions spanned by (x,y) as “real space” (or image space) and the FT conjugate space 
spanned by (kx, ky)as “k-space” or “spatial frequency space”. The units of k are cm-1. Note also 
that while we are sampling the signal at different time-points (during the readout gradient) the 
change of variables (k = γG t) forces us to think of each sample as being a sample at a different k 
point in kspace; exactly the same conclusion that our intuitive picture with the helix lead us to.  
So from now on we will think of sampling the signal not as a function of time, but as a function 
of k (the only difference between k and t is the scale factor γG). In MRI we measure the 
applitude and phases of the points in the kspace matrix and then calculate the image with the 
FT.  

 In the phase encode direction where ky = γGy τ, the pulse sequence of Figure 1.9 shows 
that we only get one measurement of the signal at a given y spatial frequency per excitation.  
Therefore, in conventional imaging we must fill in the kspace matrix S(kx, ky) one row at a time.  
A typical image matrix is 128 points in the phase encode direction by 256 in the readout 
direction.  In the timing diagram of Fig. XX, the readout length is typically ~5ms long.  For some 
types of image contrast we can repeat the excitation as fast as every 10ms.  In this case the a 
single image is encoded in 1.28 seconds.  For many applications it  is desirable to wait ~1 s 
between excitations.  In this case the image takes 128 seconds to encode. 

 
Some kspace facts. 

Each point in kspace that we sample is represented by a complex number (magnitude 
and phase of the signal for that sample point.)  If we want a 256x256 matrix image with 1mm 
spatial resolution we typically sample a 256x256 kspace matrix of k values from kmin = -1/1mm 
to kmax = 1/1mm.  Thus the resolution sets the maximum k value to be sampled.  As property of 
the FT is that if the object is real (good assumption!) then half the information in the kspace 
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matrix is redundant; it is related by the complex conjugate: S(k) = S(-k)*.  So, if we desire we can 
only sample half of the full kspace matrix.   

The resolution of the image is the single most important image parameter since that tells 
us the maximum value of k that must be sampled. Since k = γ G t, the resolution determines the 
maximum gradient that must be used and the maximum amount of time that it must be left on.  
These are two very important practical considerations.  The image matrix is also important since 
it tells us the number of samples we must take.  The image Field of View (FOV) is trivially 
related to the two: FOV = resolution x matrix.  In kspace, the ∆k between the samples is 1/FOV.   

 
 

Echoplanar Imaging 
 
In the conventional spin warp imaging sequence of Fig. 1.9 above, a single line of points 

in kspace is collected with each excitation.  This has the advantage that the phase of the signal is 
reset prior to collecting each line of kspace by the excitation process (which always starts with 
the equilibrium magnetization pointing along the z axis).  This is of enormous benefit since 
there are several practical problems which cause us to lose control over the phase of the signal.  
Of course, phase errors tend to build up over time so periodically “resetting” the phase can be a 
big help.  The principle drawback of conventional imaging is one of speed.  Even if the 
excitations are placed very close together (say 100ms) the total time to encode 64 lines of kspace 
is over half a second. At this rate, virtually nothing has a chance to return to equilibrium. And, 
while this sounds pretty fast, it would take us almost 20 seconds to cover the head with 30 
slices.  This is longer than the hemodynamic changes accompanying neuronal activation.  Even 
worse, any motion that occurs during the ~1s it takes to encode an individual images will cause 
artifacts that are bigger than the activation related changes we are seeking. 

By simply repeating the gradient echo part of the conventional spin warp sequence, and 
thus not waiting for the next excitation we can considerably speed things up.  The result is the 
technique named “echoplanar imaging “ (EPI) diagramed in Fig. 1.10.   EPI requires state of the 
art imaging hardware since the sequence requires the sign of the readout gradient to be quickly 
changed.  The EPI sequence can be played out in 40ms.  Thus we can get a full 64x64 image of 
the head (with 3mm resolution) in well under a tenth of a second.  Imaging the entire head 
(with 30 slices) then takes less than 3 seconds, just less than the hemodynamic response time.  
Finally, it is truly a “snapshot” image since no motion occurs during the 40ms of encoding. 

 
Fig. 1.10 
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Image artifacts 
 
     Many common MR image artifacts have a simple origin in the kspace data.  Here, a few of 
the simplest are discussed. 

   
 
Original artifact free magnitude image original artifact free kspace (magnitude) 

 
Symmetric N/2 Nyquist ghost 

The symmetric ghost artifact consists of the desired image 
superimposed on a fainter copy shifted by half of the 
image field of view in the phase encode direction. Recall 
that by the Fourier shift theorem, modulating every other 
line in kspace by 180 degrees results in a shift in image 
space by half of the FOV.  Modulating every other line by 
less than 180o produces a fainter version of the image 
shifted by 1/2 the FOV.  Thus the symmetric N/2 ghost 
arises when every other line of the kspace data is 
modulated by a fixed phase factor.  To generate the data 
below, the even phase encode lines where multiplied by a 
+12 degree phase factor and the odd numbered lines by –
12 degrees. 
    The phase shift in echoplanar images is usually eddy 
current induced.  The addition of a Bo eddy current field 
adds a phase shift to the data.  The even lines (taken with a 
positive readout gradient) get the opposite phase shift of 
the negative lines (taken with a negative readout gradient) 
since the sign of the Bo eddy current field is a function of 
the sign of the gradient field which produced it. 
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Motion artifact.      

 

In a typical motion event in conventional (not single 
shot) MRI, the subject lies in one position for some 
faction of the image encoding period and then 
moves to another location for the rest.  By the FT 
shift theorem, the kspace data of the shifted image is 
that of the original multiplied by a phase factor 
which gets linearly larger for each line in kspace.  
For the image below, the kspace data of the original 
image was grafted onto the kspace data of the same 
image shifted by 2 pixels.  The graft occurs in line 
147 of the kspace data.  

 
“Spike” in the kspace data 

 

  
kspace with spike in lower left reconstructed image with “spike” pattern 
 
In this case, the kspace data is identical to the artifact free case except for one bright dot in the 
lower left hand corner of the kspace data.  Usually, the bright kspace pixel is caused by an 
electrical spark ocuring in the MR scanner room.  An electric arc is accompanied by a very brief 
discharge of broadband EM waves (including light and radio waves).  The RF detection coil 
thus picks up extra intensity if this happens while sampling a given point in kspace. 
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