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Independent Component Analysis (ICA) is a computational technique for identifying hidden statistically in-
dependent sources from multivariate data. In its basic form, ICA decomposes a 2D data matrix (e.g. time×
voxels) into separate components that have distinct characteristics. In FMRI it is used to identify hidden
FMRI signals (such as activations). Since the first application of ICA to Functional Magnetic Resonance Imag-
ing (FMRI) in 1998, this technique has developed into a powerful tool for data exploration in cognitive and
clinical neurosciences. In this contribution to the commemorative issue 20 years of FMRI I will briefly describe
the basic principles behind ICA, discuss the probabilistic extension to ICA and touch on what I think are some
of the most notorious loose ends. Further, I will describe some of the most powerful ‘killer’ applications and
finally share some thoughts on where I believe the most promising future developments will lie.

© 2012 Elsevier Inc. All rights reserved.
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Introduction

An increasing number of areas that employ statistical data analysis
techniques for scientific investigation operate on data that has been
generated from underlying signals of interest by means of complicat-
ed, and very often poorly understood, processes. This is certainly the
g (DCCN), Radboud University,
Fax: +31 24 36 10989.

rights reserved.
case for Functional Magnetic Resonance Imaging. Here, brain activa-
tion at the neuronal level exhibits itself via the BOLD-response to
stimulation. The rather poor signal-to-noise ratio suggests that this
signal is further obscured by various other sources of variability, pos-
sibly including machine artefacts, physiological pulsation, head mo-
tion and haemodynamic changes induced by different processes
(Toga and Mazziotta, 2002). This mixture of signals presents a huge
challenge for analytical methods attempting to identify signals of in-
terest. Instead of operating on data that directly reflects the object
of interest, data analysis has to proceed on indirect measurements

http://dx.doi.org/10.1016/j.neuroimage.2012.02.020
http://dx.doi.org/10.1016/j.neuroimage.2012.02.020
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which are a mixture of true underlying source signals. Usually neither
the original signals nor the mixing transformation is known — undo-
ing this mixing process is a challenging problem known in the area of
signal processing as the blind source separation (BSS) problem (Nandi,
1999).

Within the last 20+years, Independent Component Analysis
(ICA) has received attention from researchers in such disciplines as
statistics, exploratory data analysis, signal processing and neural net-
works. Within the classical signal processing field ICA has been
invented and reinvented over the course of decades, e.g. by looking
at ICA as an extension of Principal Component Analysis (Jutten and
Herault, 1991), investigating solutions to the BSS problem (Cardoso,
1989; Cardoso and Comon, 1996; Nandi, 1999) or by looking at unsu-
pervised learning rules for solving the BSS problem based on informa-
tion theoretic principles (Linsker, 1988, 1990), drawing on much
earlier work on the principle of redundancy reduction (Attneave,
1954; Barlow, 1961) as a coding strategy for neurons of the perceptu-
al system. The goal of ICA is to express a set of random variables as lin-
ear combinations of statistically independent component variables. In
the context of BSS, ICA attempts to discover hidden, underlying and
statistically independent source signals only from the measured ob-
servations that are unknown linear mixtures of unobserved sources
(Comon, 1994).

Within the basic ICA model, we do not assume that these source
distributions are known; if they are, the problem of identifying the
hidden sources and the mixing is considerably simplified. In the gen-
eral case of unknown source distributions both the sources and the
mixing are identifiable, and thus recoverable, if and only if there ex-
ists at most one Gaussian signal among the sources (Comon, 1994).
In order to achieve this decomposition, higher-order statistical mo-
ments1 are needed. These can either be estimated explicitly as part
of the unmixing procedure, or – more commonly – non-linear func-
tions can be used to access this higher-order information. Two partic-
ularly popular approaches for ICA2 are the Infomax algorithm (Baram
and Roth, 1995; Bell and Sejnowski, 1995) and FastICA (Hyvärinen
and Oja, 1997) and both approaches are based on the generic princi-
ple of using non-linear transforms of the data to drive the estimation.
While the former is based on the principle of maximum information
transfer,3 the second algorithm is aimed at achieving maximum de-
gree of non-Gaussianity for all estimated source signals. While there
now exists a variety of algorithms and principled extensions that in-
clude work on non-linear, non-instantaneous (time-delayed) mixing
or the incorporation of source structure (see (Roberts and Everson,
2001) or (Hyvärinen et al., 2001) for more details on the theory of
ICA), these two algorithms still form the basis for many practical
implementations of ICA.

(Spatial) ICA for FMRI

(McKeown et al., 1998) introduced ICA to the FMRI4 community
and proposed using a decomposition into spatially independent com-
ponents in order to distinguish between non-task-related signal com-
ponents, movements and other artefacts, as well as task-related
activation. By looking for spatial independence, the decomposition
conforms to the localisation paradigm of classical neuroscience. Orig-
inally derived from clinical experience, this paradigm is based on the
observation that psycho-motor functions are performed in localised
1 i.e. statistical quantities other than the mean and variance, such as skew and
kurtosis.

2 In general, and ICA for FMRI specifically.
3 Or, equivalently, minimization of mutual information between estimated sources.
4 In addition to the reasons listed in Jenkinson et al. (2012-this issue) I am particu-

larly determined to use the upper-case F. The tools and techniques employed in the
statistical analysis of functional data are closely related to classical time-series analysis
and are quite different from standard image processing/ computer vision techniques
that are the bread-and-butter of structural MR analysis.
areas in the brain that can be inferred from specific deficits in pa-
tients. This naturally leads to the assumption that brain areas that re-
spond to the psycho-motor task are independently distributed from
brain areas affected by other sources of variability. It is important to
note that this does not require these areas to be completely non-
overlapping but only that other sources of signal change are not dis-
tributed the same way as the task-related areas, i.e. that knowledge
about the spatial distribution of one does not provide any information
on the spatial distribution of the other.

Fig. 1 illustrates how the data is represented in order to apply the
ICA decomposition. The entire 4-dimensional data set is rearranged
into a 2-dimensional matrix by arranging all voxels for each time-
point into a single row (i.e., one row per 3D functional image). This
data set is then decomposed into two newmatrices, the first one con-
taining a time course of an underlying signal in each column and the
second matrix containing a spatial component's map in each row.
These, for instance, might be maps of stimulus-induced activity,
task-unrelated (‘ongoing’) activity or maps of signal artefacts. The as-
sociated time courses then describe how each one of these multiple
underlying effects contributes to the measured data at each measured
point in time (i.e. in each brain image acquired in the functional run).
The time courses are called the source directions or signal signatures of
the data (Nandi, 1999) and jointly span the space of all temporal sig-
nals identified by the ICA decomposition. Thus, spatial independent
component analysis can be viewed as a way of finding temporal
basis vectors so that the associated spatial maps are sparse and statis-
tically independent. The similarity with the General Linear Model
(GLM) is quite obvious, with the time-course matrix taking on the
role of the GLM design matrix. The only fundamental difference is
that instead of having to specify a design matrix prior to the analysis
and then estimating the (spatial maps of) effect size parameters in
the GLM, in ICA both the mixing matrix and the maps of effect sizes
are being estimated simultaneously from the data, using information
theoretic principles to drive the joint estimation of these two
quantities.

The basic idea of splitting the data into modes on the basis of spa-
tial independence and sparseness immediately generated debate in
the field, e.g. Friston (1998) argued that even though different brain
functions might be spatially localised, the principle of functional inte-
gration might imply that neuronal processes share a large proportion
of cortical anatomy, rendering such a decomposition approach
problematic.

Despite the ongoing discussions, the 1998 paper by McKeown and
colleagues managed to significantly (re)vitalise the research area of
exploratory FMRI data analysis. Various groups and individuals
started evaluating spatial vs. temporal ICA (Calhoun et al., 2001b;
Stone et al., 1999), different methods for estimation (Esposito et al.,
2002) and extensions e.g. to constrain estimation to cortical surfaces
(Formisano et al., 2004) or to incorporate paradigm information (Lin
et al., 2010).

Further, and in parallel with developments in GLM modelling, the
field has seen a variety of different approaches being introduced for
multi-subject/multi-group ICA (Beckmann and Smith, 2005;
Calhoun et al., 2001a, 2008; Esposito et al., 2005; Guo and Pagnoni,
2008; Svensén et al., 2002). With the release of dedicated software
tools (Brainvoyager (2000), FSL (2001), DTU Toolbox (2002), GIFT
(2004)), ICA started to become available to the wider non-methods
community of clinical and cognitive neuroscientists, leading to a
steady increase in the number of publications using ICA for part of
the image analysis (see Fig. 2).

Probabilistic ICA and MELODIC

My personal involvement in the area of ICA/FMRI research started
in early 1999 when I was fortunate to join the FMRIB Centre in Oxford
to start working towards a DPhil in Information Engineering. I came



Fig. 1. Schematic illustration of the data representation and the spatial decomposition performed by spatial ICA on FMRI data.
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with a background in Maths and (a bit of) applied Statistics from var-
ious places and had spent some time in industry, modelling financial
time series data. I had first come across ICA in 1996 when working to-
wards an MSc in the Math and Stat departments in Oxford and was
intrigued by its effectiveness in finding hidden signals. The FMRIB
centre itself opened in 1998 and things were still in the process of
starting up. Steve Smith was Head of Analysis— the powers in Oxford
at the time fortunately did realise that much innovation is to come
from dedicated physics and analysis research teams with their own
research programmes. I joined a small team of people there – the
early beginnings of the general analysis efforts are reported else-
where in this issue (Jenkinson et al., 2012-this issue) – on a DPhil pro-
ject on Independent Component Analysis for FMRI.

During these early days at FMRIB there was an overarching theme
of focussing on probabilistic models and improved statistics both for
functional and structural analysis, ultimately resulting in e.g. develop-
ing a probabilistic tractography approach (Behrens et al., 2003) and
improving on GLM modelling by incorporating time-series pre-
whitening (Woolrich et al., 2001). The ICA work, therefore, was sim-
ilarly aiming at placing the model into a probabilistic framework. In
the first instance this amounted to augmenting the classical noise-
free ICA model with an explicit stochastic noise term. A variety of
the approaches tried and combined in the PICA framework closely re-
late to ideas a number of us ‘boys’ were looking at during these early
days. For instance, the voxel-wise pre-whitening approach that Mark
Woolrich worked on ended up being investigated as part of the initial
data pre-processing loop in PICA (being calculated from the initial
noise estimates following the probabilistic PCA step).

Fig. 3 shows5 the flow diagram of the probabilistic ICA model as
presented in (Beckmann and Smith, 2004). The original data is first
demeaned and normalised to have unit noise variance, a process we
termed variance normalisation (VN). This step is designed to ensure
that in the absence of any non-Gaussian signals the ICA decomposi-
tion does not simply end up getting drawn towards voxels in the
brain that show uninteresting (Gaussian distributed) strong signals
(such as voxels within the cerebrospinal fluid which typically are
very bright and have lots of associated variance). If this is not con-
trolled for, ICA will not – in the absence of signal – have a uniform
false-positive detection rate everywhere. This non-homogeneity
across space had been observed a while earlier (see McKeown and
Sejnowski, 1998, Fig. 1), though in the context of describing the like-
lihood of detecting activation. There is a bit of a chicken and egg prob-
lem here, in that this variance normalisation requires knowledge of
the signal in order to define what the noise is that needs to be forced
to have the same noise variance across space. The solution proposed
in Beckmann and Smith (2004) is to iteratively perform
5 I clearly remember a discussion with Steve on the benefit of having such a flow di-
agram relative to the amount of time it took to generate. I now draw great pleasure out
of re-using this one figure (almost unaltered) for the fourth time....
normalisation and probabilistic PCA (PPCA) to split the total data
space into initial noise and signal sub-spaces where the former can
then be used to reiterate and refine the normalisation steps. The inde-
pendent component maps can then be estimated from the pre-
processed data. In the case of MELODIC, the unmixing is performed
using the FASTICA technique, i.e. using a fixed-point iteration scheme
to optimise for non-Gaussianity by maximising the neg-entropy of
the signals (Hyvärinen, 1997).

This model contains some other innovations, e.g. the introduction
of the idea that after having removed the inherent spatial bias to-
wards high-variance voxels by means of VN one can introduce explic-
it spatial bias quite simply by means of modifying the calculation of
the data covariance matrix used by the PPCA step. For instance, the
calculation of this covariance can be restricted to only include voxel
pairs within a certain (Euclidean or cortical surface) distance of
each other or restrict/weight the calculation by the probability of
voxel pairs to belonging to the same tissue type. The options are plen-
tiful and much of these ideas remain under-explored to this day.

The final step of the PICA procedure is concerned with the process
of statistical inference. The estimated IC maps are transformed to
voxel-wise Z-statistics by dividing the raw IC maps estimated by ICA
by the standard deviation of the residuals from the initial PPCA.

Finally, these maps are thresholded in order to infer voxels that
are significantly modulated by the component time courses. This is
done using a mixture model fitted to the component's histogram.
The ideas that led to this thresholding approach were discussed
within our group to be used also for traditional (GLM-based) analy-
sis — both Mark Woolrich and I ended up being intrigued by the
possibilities offered by mixture modelling of effect size maps or sta-
tistical images as proposed by Everitt and Bullmore (1999) and in
particular the Gaussian/Gamma mixture approach proposed by
Fig. 2. Annual number of publications that contain the keywords “ICA AND FMRI” or “ICA
AND resting FMRI” in their title, abstract or keywords (search on www.scopus.com,
accessed 28.11.2011).

http://www.scopus.com
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Hartvig and Jensen (2000). Mark at the time went the extra mile of
developing a spatial mixture model with adaptive regularisation to
be used on FMRI activation/statistic maps, where neighbourhood in-
formation is explicitly incorporated into the estimation of class
membership (Woolrich et al., 2005). In MELODIC I simply made do
with a non-spatial version of the Gaussian/Gamma mixture model.
This was not just due to pure laziness on my part. The main reason
was that I perceived ICA to be a powerful spatial filter already and
therefore felt that any further spatial regularisation (such as one in-
duced by having a Markov Field regularising the voxel-wise class
memberships) would no longer be necessary and – in fact – be det-
rimental in cases where the spatial maps show strong edges. After
ICA unmixing, the source histograms typically all show very clear
Gaussian background noise densities, aiding the mixture model fit-
ting. A second reason for sticking with the non-spatial variant was
the vast amount of variation in spatial characteristics across the ar-
tefact maps estimated by ICA (see also Fig. 5) — spatial regularisa-
tion would inevitably smooth across some of these artefacts,
making their source density look more like those from BOLD signals,
making a clear separation of signals of interest from artefacts more
difficult. Once fitted, this approach permits thresholding beyond
simple null-hypothesis testing and employs an alternative hypothe-
sis testing approach: because both distributions for the background
noise and the signal get modelled explicitly, one can threshold
based on the relative chance of a voxel's intensity being more prob-
able under the ‘null’ or under the ‘alternative’.

The quality of the fit, and therefore the utility of this approach for
thresholding ICA maps, interacts strongly with the initial data pre-
processing. The normalisation of voxel-wise residual noise (VN) in
particular is important for ensuring that the voxels which do not con-
tain any signal end up being modelled well by a single Gaussian dis-
tribution. Fig. 4 shows an example using the simulated data from
Beckmann and Smith (2004). Without variance normalisation (top)
the estimated spatial map histogram is more sharply peaked than a
simple Gaussian bell curve — the different noise variances associated
largely with the three tissue types render this background noise dis-
tribution closer to a superposition of three Gaussians. As a result, in
a model of only a single Gaussian for the background noise, the
Gamma distributions – designed to model activations and de-
activations in the tail of the distribution – also end up also fitting to
the background noise bulk of the histogram (Fig. 4a). With appropri-
ate variance normalisation, where each voxel's time course gets nor-
malised to the same background variance independent of tissue type,
the model fit is much improved. This, in turn, significantly reduces the
false-positive rate. Essentially, after normalisation the ICA unmixing
operates on initial Z-statistics (data normalised by noise standard de-
viation), so due to this pre-processing the estimation now becomes
an exercise in classification (rather than regression). As a result, the
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scatterplot of estimated vs real effect size (Fig. 4, right) should no lon-
ger be close to a straight line fit y=x but instead ideally start approx-
imating a step function: at some SNR level the classification into
active vs non-active becomes very certain. Again, this is analogous
to the case of the GLM where statistical maps are not to be under-
stood as effect size estimates. If so desired, accurate effect size esti-
mates can be generated trivially by means of regression, once
accurate classification has been achieved (i.e. masking the non Z-
transformed IC maps by the thresholded and binarised Z-statistic
image).

The probabilistic ICA model got implemented and released as part of
the FMRIB Software Library (FSL (Smith et al., 2004; Woolrich et al.,
2009), see Jenkinson et al., 2012-this issue for some history on FSL) in
a basic form in June 2001 as MELODIC—Multivariate Exploratory Linear
Optimised Decomposition into Independent Components. Mixture-
model based inference was added in FSL3.0 (2002) and further exten-
sions for group analysis (concat-ICA and Tensor-ICA (Beckmann and
Smith, 2005)) were added as MELODIC 3.0 in FSL4.0, released in 2008.

Loose methods ends

Statistical inference

The alternative hypothesis testing approach promoted above pro-
vides a stringent framework for thresholding ICA maps. Nevertheless,
it does create confusion, largely because the default output (of
reporting maps p>0.5) and the associated ideas of testing an alterna-
tive hypothesis explicitly against a modelled null hypothesis remain
to be underrepresented in classical stats training. The field of FMRI
statistics for many years has been dominated by the mantra of con-
trolling for false positives, a reflection of the dominance of cognitive
neuroscience in the field. It is important to note, however, that with
an increasing uptake of functional imaging in the clinical domain a
shift towards controlling for false negative detections gains equal rele-
vance (see e.g. Bartsch et al., 2006 for examples). Ultimately, thresh-
olding techniques should allow for explicit control of the personal
loss function, i.e. a specific specification of the personal preference
for false positive relative to false negative decisions. While this is a
fundamental feature of the mixture model approach, the correctness
of the thresholding decision now depends on the appropriateness of
both the null and alternative distributions. In the case of a Gaussian/
Gamma mixture model, the model for the background noise can eas-
ily be justified on the basis of generic assumptions about the FMRI
noise. The Gamma model for the ‘activation’ classes, however, is
only poorly motivated and chosen largely for mathematical conve-
nience. One possibility is to use non-parametric characterisations of
these classes, e.g. splines such as in Efron (2004). An alternative
might be to instead resort to (pseudo-) null hypothesis testing, e.g.
by using the Gaussian/Gamma model only to obtain a tight fit of the
background noise null and resorting to null-hypothesis testing for
thresholding purposes, calculating the expected false discovery rate
relative to this (now well fitting) Gaussian ‘null’ distribution. Yet
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another alternative might be to move away from thresholding alto-
gether, maybe only enhancing clusters that show up in component
maps, e.g. using techniques like threshold-free cluster enhancement
(Smith and Nichols, 2009).
Model order selection and the intrinsic dimensionality

If questions by reviewers and on the FSL email support list are
anything to go by, then the question of the number of components
to be extracted from the data remains a prominent one.

While early ICA research simply extracted as many components as
required to model a certain proportion of variability in the data (e.g.
choose the number so as to retain 99.9% of the variability in the
data), the field quickly moved towards using information theoretic
estimates of the intrinsic dimensionality of the data (Beckmann and
Smith, 2004; Beckmann et al., 2001; Calhoun et al., 2001b; Li et al.,
2007; Nandi, 1999). In MELODIC, the proposed approach is to base
the number of estimated components on some information theoretic
analysis of the Eigen spectrum of the data covariance matrix. The
question as to how to estimate the (or an) optimal source number re-
mains actively debated. While it is easy to evaluate the quality of dif-
ferent approaches with simulated data, for real data this is much less
trivial. It is certainly possible to define estimators that are insensitive
to e.g. temporal autocorrelation of the data (Nandi, 1999), assuming
that it is valid to ignore the temporal autocorrelation of the signals
contained in the data along the way. The fundamental question that
remains, however, is to what extent there truly is an ‘optimal’ number
of components and what this criterion of ‘optimality’ would need to
look like. There certainly is an issue that relates to using a linear de-
composition technique like ICA for identifying signals which might
not be well represented using linear approaches.6 However, there
also is increasing evidence that ICA can provide biologically interpret-
able decompositions across a wide range of dimensionalities, e.g.
Abou-Elseoud et al. (2010) argue that decompositions across 70±
10 components give detailed, yet robust decompositions and in
Smith et al. (2009) we demonstrate that across various dimensional-
ities for the analysis, different yet plausible decompositions are
obtained, at the higher dimensionality of 70 describing essentially
the same systems as in the 20-dimensional decomposition, just in a
more fine-grained way, e.g. robustly splitting the left and right senso-
ry–motor system or fractionating the visual system into known sub-
divisions such as MT etc. The difficulty in defining simple metrics
for an ‘optimal’ dimensionality, therefore, is likely not simply due to
modelling inadequacies such as assumptions of linearity but are an
actual reflection of the true biological complexity of the underlying
signals and systems. As we start to understand more of the biological
validity of differences within systems (both within and across sub-
jects) we might gain more confidence in the way that ICA splits sys-
tems into finer sub-systems and the interpretability of high-model
order decompositions.7 Neuroscientists with a strong belief in tightly
controlled experimental protocols and those opposed to data explo-
ration might shake their heads vigorously at the possibility of gener-
ating substantially different results from the same data. It is
important to keep in mind, however, that this is not fundamentally
different from the (typically not discussed or explored) variability in
GLM results due to a plethora of modelling decisions, e.g. whether
to model interactions, confounds or behavioural information at the
group level etc. In this context the set of papers published as part of
6 Head motion springs to mind, where non-linear motion effects will get distributed
across multiple maps — in an analogous way that non-linear functions get represented
by a superposition of locally linear functions in a Taylor decomposition.

7 This point, interestingly, relates to an issue already discussed in the original 1998
ICA for FMRI paper by McKeown and colleagues, where much space was spent discuss-
ing ‘transient task-related components’ relative to ‘consistently task related
components’.
the first Functional Image Analysis Contest (FIAC) organised at the
Human Brain Mapping conference in 2005 might serve as an informa-
tive example of the variability seen across more traditional model
based approaches, when applied to the same set of data generated
under a well described experimental protocol (Aston et al., 2006;
Beckmann et al., 2006; Goebel et al., 2006; Poline et al., 2006; Saad
et al., 2006; Suckling et al., 2006; Taylor and Worsley, 2006).

The ‘killer applications’

Given the overall simplicity of the ICAmodel and its close relation-
ship to the widely used GLM there clearly are many potential applica-
tions, both in clinical and cognitive neurosciences, where the added
flexibility of signal modelling in ICA can be useful. For task-based
studies, examples include natural-movie-viewing paradigms
(Bartels and Zeki, 2004) or simulated driving studies (see (Calhoun
and Pearlson, 2012) for a recent review). Nevertheless, during the
first few years very few studies8 employed ICA as the primary analy-
sis approach. This, in large part, is due to the fact that traditional anal-
ysis (mainly within the framework of the GLM) continues to serve the
community well, allowing one to ask very specific questions about
the locality of significant signal changes in response to well-
designed experimental manipulations.

There are, however, (at least) two ‘killer apps’ — application do-
mains where ICA has been shown to be an immensely powerful
tool, providing utility beyond what can be achieved with convention-
al methods.

Artefacts and data denoising

The first application is that of artefact detection, artefact charac-
terisation and possibly even data denoising. FMRI is a tremendously
challenging technique where complex underlying physiology is mea-
sured by highly complicated technical processes. FMRI data pre-
processing aims at removing the worst of such effects, using various
data processing techniques such as motion and distortion correction,
temporal and spatial filtering prior to the analysis or explicit outlier
modelling as part of the statistical procedure of effect size estimation.
Nevertheless, empirical evidence suggests that residual noise has
both spatial and temporal structures. Fig. 5 shows different kinds of
artefacts that consistently appear in FMRI data (shown as a few ex-
ample axial slices together with the associated example time courses
(Beckmann et al., 2000)).

Artefacts arising from problems with the scanning hardware (a, d)
are – because of the intricate nature of the imaging process – hard to
identify and understand fully. Many technical components are in-
volved in the image generation process and consequently there are
many different possible stages at which even slight deviation from
expected performance of the individual components can result in
large differences in the measurements. The top image shows three in-
stances of what is often called a slice dropout and which is caused by
small gradient waveform corruptions, resulting in a ghosting of ob-
jects diagonally in the image. The artefacts at the bottom are caused
by an instability in the relative timing of the slice select gradient
and the radio-frequency pulse waveform, in this case due to a faulty
device on the driving console. In both cases, there was a mean inten-
sity change over the brain volume of approximately 5–10%, exceeding
(and possibly swamping) any real activation of interest.

Fig. 5(b) shows spatial components that correspond to head mo-
tion of the subject. The motion of the entire object during acquisition
generally results in a blurring of the entire image with ghost images
in the phase encoding direction. A solution to help reduce motion ar-
tefacts is to immobilise the subjects head. However, motion of the
8 Studies other than those conducted by research groups also being heavily involved
in the development of that method itself....
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Fig. 5. A selection of ‘typical’ image artefacts in the eyes of ICA. These are ‘typical’ only in the sense of having seen these effects repeatedly in data I have been supplied with by
colleagues and collaborators. It is quite likely that data with very different characteristics (e.g. different acquisition types – spirals maybe – or data acquired simultaneously
along with EEG data) shows substantially different types of artefacts. Each figure shows 3 example axial slices of a spatial ICA component map, together with a selection of ‘typical’
associated time courses: (a) slice dropouts, (b) head motion, (c) high-frequency noise, largely within CSF, (d) hardware spiking artefact, (e) N/2-ghost image, interacting with head
motion and (f) eye-blink artefacts.
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brain can also be caused by respiration or the cardiac cycle, neither of
which can easily be eliminated. In ICA component maps such artefacts
typically appear as a rim-like effect near the strong intensity edges of
the image (e.g. the brain/non-brain boundary) in the direction of
dominant motion; in these examples the associated time courses
clearly exhibit abrupt level changes, indicating a quick positional
change rather than a slow gradual movement. The bottom figure
shows a particularly severe case of N/2 ghosting.9 This type of artefact
is specific to EPI and is caused by inconsistencies in timing between
the image acquisition and the gradient switching resulting in differ-
ences between even and odd acquisition lines in k-space. The spatial
maps clearly pick out signal outside of the head (image ghost) and in-
terference patterns show up where the ghost images overlap the head
volume. The associated time course is of high frequency with addi-
tional confounds caused by motion.

A different type of high frequency noise is shown in (c), where the
spatial maps identify high intensity rapid variation within the CSF in
the ventricular system. The bottom figure (f) shows spatial maps
and associated time courses of eye-related artefacts caused by either
eye motion or eye-blink. The eyes appear clearly in the spatial maps
together with vertical patterns that show ghosting along the phase-
encode direction in the image. Eye blink itself is not a serious artefact
for FMRI as it is possible to eliminate the signals associated with the
volume of the eyes, using appropriate spatial pre-processing such as
brain extraction. In some cases, however, eye-blink can combine
with the N/2 ghost such that the amplitude modulation due to eye-
blink wraps around the field of view into posterior cortical areas. If
eye-blink is correlated with the external stimulus, this can induce ad-
ditional false positives within these cortical areas in a GLM analysis.

Automatically identifying and classifying such artefacts remain a
tremendous challenge. Tohka et al. (2008) use a classifier defined
by a decision tree, reducing mis-classification rate (relative to a
human expert) down to somewhere between 20% and 30%. This, in
many cases, remains too high to be useful in practice. The reason
why it remains difficult to automate classification relates to the
wide variety of sources that induce such image artefacts and it is
quite likely that further improvements will require much larger and
better sets of hand-classified ICA decomposition across different MR
sequences, field strength etc. in order to train sensitive and specific
9 This is also often referred to as Nyquist ghost, even though it is not actually a prob-
lem related to the Nyquist sampling rate.
classifiers. One early attempt to generate such a database of ‘typical’
artefacts we initiated early in 2002 as the ‘Little FMRI Shop of Horror’,
a web-based repository of hand-labelled ICA components. However,
despite active lobbying during our FSL courses and on the mailing
list we have failed to generate a substantial amount of external sub-
missions. More work is currently underway as part of the Human Con-
nectome Project, attempting to come closer to fully automated
approaches for ICA-based FMRI artefact classification.

Data denoising
For statistical inference in the case of GLM analysis to be valid, the

residual errors should be Gaussian distributed any non-Gaussian pro-
cess that is not modelled within the design or removed during pre-
processing violates this assumption. If the artefactual time course is
orthogonal to the signals of interest, the presence of the artefact
will not affect the GLM regression coefficients, but will increase the
residual variance estimate and consequently will result in reduced
statistical significance for any effect of interest (inflated false-
negative rate). If, however, the artefactual time course is partially
correlated with the design, it will also lead to incorrect regression
coefficients. In the case of positive correlation, this will inflate
the false-positive rate of the analysis. For this reason, the real ‘killer
application’ for ICA is to use the information represented in the de-
composition to reduce the negative effects of artefacts for standard
GLM-based analysis. There are various possible approaches. Firstly,
information from the spatial maps can be used to remove certain vox-
els from further analysis. Secondly, it is possible to utilise the time
course information in order to identify certain points in time that re-
quire attention. In the case of slice dropouts, the affected scans can
either be excluded from further analysis or the intensity value at a
time point can be adjusted to the mean intensity of the volumes ac-
quired before and after the dropout occurred. Similarly, one can
think of using both spatial maps and time courses, e.g. to verify the ef-
fectiveness of standard motion correction methods by comparing ICA
analysis before and after correction (Bannister et al., 2002). Finally,
the most promising approach is to use ICA as an ‘intelligent filter’ by
combining spatial maps with their associated time-courses to form
an estimate of the non-Gaussian structured noise in the data, which
can then simply be subtracted from the data. For one structured
noise component only, this effectively results in subtracting a
rescaled version of the time course of the structured noise component
from each voxel's time course. The value of the voxel within the
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Fig. 6. Illustration of ICA-based data denoising: the top row shows the histogram of parameter estimates and Z-statistics for the ‘left hand finger tapping’ contrast from a bilateral
manual finger tapping task. Particularly the latter points to a heavily confounded data set — the histogram looks nowhere near sensible, assuming signal sparseness. Consequently,
the ‘left–right’ finger tapping contrast failed to identify a sensible activation pattern. Upon removal of artefacts identified by ICA, both the effect size/Z-statistic histograms and the
ultimate thresholded contrast map are much improved.

10 …even recent history seems to repeat itself....
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component map determines the amplitude of the structured noise se-
quence being subtracted. An alternative to subtracting the estimated
structured noise is to reconstruct the data from the components not
classified as structured noise (Perlbarg et al., 2007). Note, however,
that this requires the FMRI signals of interest to be contained within
these non-noise estimates — that is, this approach is at odds with
later testing effects under the ‘null-hypothesis’ as this initial denois-
ing stage implicitly requires the alternative hypothesis of there
being signal in the data to be true. Removing structured noise, on
the other hand makes no assumptions about the signals of interest
and therefore can be combined with later ‘null hypothesis’ testing,
e.g. by feeding the denoised FMRI data into a classical GLM analysis.

An example of this approach is shown in Fig. 6. The data is from a
subject performing left and right-sided finger movements. The origi-
nal GLM analysis (top) did not show any sensory–motor activity in
the ‘left–right’ contrast image, despite such a paradigm normally
being very robust, even at the level of an individual subject. The
unthresholded Z-statistic image for the left-finger tapping contrast
(top centre) showed a disturbing degree of deviation from a simple
Gaussian shape. Under the assumption of sparseness of the signal,
the raw Z-statistic histogram should be dominated by Gaussianised
background noise, i.e. should be dominated by a simple Gaussian
bell curve. Upon manually identifying artefact components and re-
moval of those, both the histogram of effect size estimates (bottom
left) and the Z-stat histogram (bottom centre) showed much
improved characteristics. The pattern of activation changed
significantly. The ‘left–right’ contrast image shows clear and
biologically plausible ‘activation’ within the right sensory–motor
system.

Resting-state FMRI

The second ‘killer application’ of ICA is that of estimating patterns
of functional connectivity from FMRI data acquired under a resting
condition (Biswal et al., 1995; Fox and Raichle, 2007; Raichle et al.,
2001). Data acquired with resting-FMRI does not lend itself easily to
a standard GLM analysis. Seed-based correlation analysis, first sug-
gested by Biswal et al. (1995), and ICA have therefore emerged as
the two dominant analysis approaches. For ICA and FMRI, an increas-
ing proportion of work is research into resting state functional
connectivity, now accounting for roughly 50% of the overall published
research (Fig. 2).

The first application of ICA to resting FMRI data dates back to
1998/99 (Cordes et al., 1999) though the first published paper did
not appear until 2003 (Kiviniemi et al., 2003) — which likely reflects
a certain level of scepticism on the part of reviewers. Indeed, the
overall utility of studies into the resting state has been debated for a
substantial amount of time, largely considering the utility from a cog-
nitive experimental neuroscience perspective (Morcom and Fletcher,
2007a,b; Raichle and Snyder, 2007).

The FMRIB foray into this area initially was motivated by identify-
ing the presence of these effects across a variety of task-activation
data. The immediate concern was again very much focused on the
statistical implications for task FMRI analysis. In the late 90s there
continued to be a debate about ‘global intensity normalisation’, the
process of scaling every volume of the 4D sequence in order to
achieve a (temporally) constant mean spatial intensity. Such proces-
sing was common (and beneficial) for the analysis of PET data and
many of these approaches ended up being recommended for FMRI
data analysis, too (Friston et al., 1994). Along with the pre-
whitening vs. pre-colouring debate (see (Woolrich et al., 2001)), the
question of the global intensity normalisation generated significant
amount of attention (Della-Maggiore et al., 2002). One of FMRIB's
first contributions to the field was the realisation that the issue of
the global mean signal and the presence of Resting-State Networks
even in task data is heavily intertwined. Fig. 7 shows an example fig-
ure (modified from DeLuca et al., 2002a) demonstrating that the glob-
al mean signal across all voxels, the global mean across grey-matter
only and specific resting-state network time courses share a common
power spectral density, demonstrating that the ‘global’ mean signal
(calculating by simply averaging across all voxels) actually has an as-
sociated non-global spatial structure (estimable by regressing the
data back onto the global mean time course) which reflects the pres-
ence of multiple resting-state networks. These results indicate that in
fact much of what is seen as physiological noise in task FMRI can be
attributed to resting-state networks. Interestingly,10 the arguments
pro and against ‘global intensity normalisation’ as a pre-processing
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Fig. 7. Resting-state network with detail (left) identified using PICA. The plot shows the power spectra from a PICA derived RSN time course (black), the mean intensity time course
(MIT) for grey-matter voxels (red) and the MIT for the entire brain (green) (see (DeLuca et al., 2002a) for details).
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step have re-appeared in recent years in the context of ‘Global Signal
Regression’ for seed-based analysis of resting FMRI data (Cole et al.,
2010; Fox and Raichle, 2007; Murphy et al., 2009). Our research
quickly started to appreciate the importance of RSNs over and
above their role as ‘noise’ — attempting to explore the utility of ICA
for RSN identification (Beckmann et al., 2005; DeLuca et al., 2002b),
characterising the robustness of these effects (Damoiseaux et al.,
2006) and, more recently, their role in cognitive (e.g. (Smith et al.,
2009)) and clinical (e.g. (Filippini et al., 2009)) neurosciences.

These investigations, along with other work on RSNs and ICA have
greatly increased knowledge about resting functional connectivity,
e.g. by establishing high test–retest reliability of ICA-based identifica-
tion of RSNs (Zuo et al., 2010), demonstrating clinical utility as sensi-
tive markers of neurodegenerative disease (Greicius et al., 2004),
adding biological validity to RSNs by means of demonstrating signifi-
cant heritability (Glahn et al., 2010) or demonstrating that ICA pro-
vides sensitive biomarkers for psychiatric illnesses characterised not
only by disrupted local brain connectivity within a single RSN but
also in terms of disrupted global connectivity between resting-state
systems (Calhoun et al., 2009). Relative to the dominant alternative
(seed-based) view on functional connectivity it is the inherent multi-
variate nature of ICA that provides the means to simultaneously detect
and characterise various different RSNs from a short, single session of
resting data. This helps to shape a view on the brain's functional con-
nectome. Both ICA and resting FMRI will likely form a crucial part of
the Human Connectome Project (Sporns, 2011), aimed at mapping
the complex hierarchical organisation of functional and structural
pathways that underlie brain function.

Future directions

It is impossible to know what the next big thing is going to be for
the use of ICA in FMRI. I will take the liberty of speculating, based on
my own personal views on what I currently see as interesting possible
avenues for further development.

Variability and individual differences

The inherent un(der)constrained nature of ICA offers a great op-
portunity to look specifically at the between-subject variability in
greater detail. In many cases, the observed variability in ICA estimates
is interpreted negatively in the sense of this being a reflection of a
modelling inadequacy. In many application domains, however, such
estimated cross-subject differences might actually be important in
that they reflect true (and hopefully ultimately interpretable) biolog-
ically meaningful differences, e.g. might signify development of or de-
cline within functional systems, signify differences in genetic makeup
or pick up on differences in functional strategy employed for the per-
formance of a given task. Understanding these differences, therefore,
can be extremely valuable for furthering the utility of imaging neuro-
sciences. Developing methodology that can accurately characterise
those differences at a population level, i.e. model common features
along with non-common specific variations thereof, remains a tre-
mendous challenge. It will require the development of new tools
and techniques, but potentially will provide powerful ways of looking
for data driven population stratification, e.g. where on the basis of in-
dividual differences in one or multiple estimated signals a patient
population that might appear homogeneous on the basis of behaviour
and clinical presentation gets characterised into sub-populations that
might correspond to real biological differences in the underlying dis-
ease mechanisms.

Multi-modal imaging

Typical imaging sessions acquire a wide range of structural and
functional information non-invasively, thereby generating a vast
amount of data. In addition, a plethora of auxiliary information (beha-
vioural, physiological, questionnaire data, genetic data) often is avail-
able along with the imaging data. More work is needed to handle the
integration of information across these different types of data. One
approach, attractive for its conceptual simplicity, is to simply put all
this data into a single matrix and feed this hybrid matrix into a single
ICA decomposition (Calhoun et al., 2006). Within this approach it is
difficult to appropriately weight the potentially vastly different de-
grees of ‘informativeness’ contained in each data modality (due to
e.g. differences in the number of samples, their units, modality-
specific signal-to-noise characteristics, modality-specific sparseness,
etc.) so simple data concatenation is not likely to provide the answer
to the question of how to make use of this data explosion. The alter-
native of running separate ICA decompositions similarly might not
easily lend itself to post-hoc data fusion across the different sets of
components. Recently Groves et al. (2011) introduced a novel
‘Linked-ICA’ model for simultaneously modelling common features
across multiple data modalities. Clearly, more work is required to
fully explore and harness the opportunities that such advanced
modelling affords.

Temporal dynamics and ICA

The application of ICA in FMRI has quickly settled on spatial de-
compositions. In large part this is due to the fact that typical FMRI
data has many more voxels than time points, enabling better esti-
mates for higher-order statistics/non-Gaussianity across the spatial
domain than is possible across only a few hundreds of time points.
This results in decompositions where individual component maps
are largely non-overlapping. The degree of functional interactivity be-
tween different components, however, remains under explored. Re-
cent advances in MR sequence development (Feinberg et al., 2010)
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have opened the door to short-TR functional imaging so as to over-
come limitations of low number of samples in the temporal domain.
This, in turn, permits more advanced investigations into the rich tem-
poral dynamics and interactions between source signals. Identifying
temporally independent modes of function amongst spatially inde-
pendent signals might shed more light onto the fundamental building
blocks of brain activity, potentially providing the missing link be-
tween structure and function. Again, further methodological im-
provements will be required to utilise this newly emerging data
more fully.

Conclusion

Independent Component Analysis has shown great utility both in
cognitive and clinical imaging neurosciences. There remain a variety
of methodological, conceptual and practical issues that need to be
addressed in order to fully utilise the power of ICA in imaging neuro-
science. Nevertheless, this exploratory approach to FMRI analysis has
already been shown to provide an important complementary tool, e.g.
helping to characterise brain function even in the absence of experi-
mental manipulations. As imaging neurosciences start to embrace
new imaging paradigms and to add more data modalities into their
investigations in order to address increasingly complex questions
about human brain function in health and disease, the role of explor-
atory tools in general, and ICA in particular, can only increase. I am
therefore hopeful that in another 20 years, more exciting research
on ICA for FMRI will be reported on.
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