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Abstract. A simple treatment of the important old problem of the torque-induced rotation of a 
spinning symmetrical top is suggested. Our discussion is appropriate for teaching introductory 
mechanics and general physics to undergraduate students and is free from the difficulties of a tra-
ditional approach to the problem. The origin of nutation that accompanies forced precession is ex-
plained in detail, with an accent on its relationship to the torque-free precession of a symmetrical 
body. A small simulation program is developed that visualizes the investigated motion and illus-
trates its principal features. The program facilitates understanding about the counterintuitive be-
haviour of a gyroscope on a qualitative level.  

 

Introduction 
A gyroscope is a body of rotation (for example, a massive disc) which is set spinning at a 

large angular velocity around its axis of symmetry. First acquaintance with a gyroscope occurs 
usually in early childhood, when the child watches the unusual behaviour of a widely known toy 
– a spinning top. A toy gyroscope seems to be able to defy gravity. As long as the top is spinning 
fast enough, it remains staying steadily (“sleeping”) on the lower sharp end of the axis avoiding 
tipping over or falling down to the ground and preserving the vertical position of the axis in spite 
of the high position of its centre of mass – the centre of gravity of a spinning top can be located 
far above its supporting pivot. If the axis of a spinning gyroscope is inclined to the vertical, the 
axis generates in space a vertical circular cone, so that the angle between the gyroscope axis and 
the vertical remains constant during rotation. This kind of motion of a gyroscope under an exter-
nal torque is called forced or torque-induced regular precession (see figure 1). Precession is of-
ten complicated by nutation which reveals itself as a fast shivering of the precessing axis.   

The most important practical applications of gyroscopes are met in devices for measuring 
the orientation or maintaining the stability of airplanes, spacecraft, and submarines – vehicles in 
general. Various gyroscopes are used as sensors in inertial guidance systems.   

This paper is an attempt to develop some clarity regarding the old problem of precession 
and especially nutation of gyroscopes on the level appropriate for undergraduate students. Most 
textbooks in introductory mechanics (see, for example, [1], [2]) explain the mysterious behaviour 
of a spinning gyroscope using Lagrange equations and severe mathematics, which is not very 
helpful for developing physical intuition. Those textbooks that try to avoid such difficulties omit 
as a rule any discussion or explanation of nutation (see [3], [4]). This may form an impression 
that a gyroscope is some wonder that doesn’t obey the fundamental laws of physics. Other text-
books ([5], [6]) treat the problem of torque-induced precession of a top on the basis of Euler 
equations which are referred to the non-inertial reference frame rotating together with the body. 
However, in this problem we are interested first of all how the body moves with respect to the 
inertial space. For students, transition to the inertial frame of reference from a body frame which 
rotates in a complicated manner may be rather confusing. From a pedagogical point of view, it 
seems expedient to find a solution to this problem directly in the inertial space.  

In addition, a small simulation program (Java applet) “Forced Precession of a Gyroscope” 
[7] (with a commenting text) is developed to visualize and help students grasp and better under-
stand on a qualitative level a somewhat counterintuitive behaviour of a gyroscope, including pre-
cession under the force of gravity and nutation. The program is available on the Internet and is 
executed directly in any web browser with the Java plug-in installed. 
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http://www.ifmo.ru/butikov/Applets/Gyroscope.html


Regular precession of the gyroscope 
The strange at first sight behaviour of the gyroscope can be explained on the basis of the 

main law of rigid body dynamics according to which the time rate dL/dt of change in the angular 
momentum L equals the total torque N = Σi (ri × Fi) of the external forces exerted on the body:  
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When the gyroscope is set to rotation around its axis of symmetry, vector L of its angular 
momentum is also directed along this axis. We denote the orientation of the top axis in space 
(from the pivot point towards the centre of mass) by vector n0 of the unit length (see figure 1). 
Both vectors L and n0 can point in the same or in opposite directions depending on the sense of 
rotation. Let I0 be the moment of inertia of the top about its axis of symmetry. In particular, for a 
disc or circular cylinder manufactured of a homogeneous material I0 = ½mR2, where m is the 
mass of the body, R – its radius. When the top is rotating about its axis with an angular velocity 
ω0 (positive for counter-clock rotation), the total angular momentum vector L can be represented 
as L = I0ω0n0. 
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Fig. 1. Steady (regular) precession of the gyroscope under the force of gravity. 

 

Being inclined to the vertical, the gyroscope undergoes precession, that is, besides rotation 
around its own axis, it turns also around the vertical axis. At fast own rotation this precession 
occurs so slowly that with a good accuracy it is possible to neglect the component of the angular 
momentum which is caused by precession around the vertical. In other words, even in this case 
we can assume that vector L of the total angular momentum is directed approximately along the 
axis of the gyroscope, i.e., along the slowly moving vector n0: L ≅ L0 = I0ω0n0. The term “gyro-
scope” is usually applied to an axially symmetric body only if this condition of fast axial rotation 
is fulfilled. An approximate theory of a gyroscope is based on the assumption that vector L of the 
total angular momentum is always directed along the axis of symmetry. Therefore the behaviour 
of vector L deduced from equation (1) tells us about the behaviour of the gyroscope axis.  

If a rigid body moves about a fixed point, it is convenient to use this point as the reference 
point (the origin) in the definition of the angular momentum L and the torque N in equation (1). 
For a toy top this point is a pivot at which the sharp lower end of the top axis is supported. When 
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we choose this point, the unknown reaction force (exerted on the gyroscope just at this point) has 
zero torque in the right-hand side of (1), and therefore we can investigate the motion of the top 
without knowing this force. Hence for a gyroscope whose axis is supported at a point different 
from the centre of mass, external torque N in equation (1) about the pivot point is provided 
solely by the force of gravity mg, which in the uniform gravitational field can be regarded as ap-
plied at the centre of mass of the top.  

The position vector of the centre of mass relative the pivot is rc = n0a, where a equals the 
distance between the pivot and the centre of mass. If the axis is not perfectly vertical, the torque 
of the force of gravity N = rc × F = n0a × mg is directed at right angle to vector L of the angular 
momentum and thus causes it to change direction but not magnitude. At any moment of time 
vector N, being directed as the cross product of n0 and g, points perpendicularly to the gyroscope 
axis n0 and perpendicularly to g (horizontally). This explains the unexpected at first sight behav-
iour of the gyroscope axis:  according to (1), the upper end of vector L moves in the direction of 
vector N rather than in the direction of force mg itself. During an infinitesimal time interval dt 
vector L gets an elementary increment dL = Ndt directed along N and thus lying in the horizontal 
plane at a right angle to the gyroscope axis. This means that vector L and also the axis of the top 
undergo a regular precession, that is, they both are uniformly revolving about the vertical line 
that passes through the pivot.  

Angular velocity ωpr of this precession can be found by substituting L ≅ L0 = I0ω0n0 into 
the left-hand side of (1) and N = n0а × mg into its right-hand side. If the friction is insignificant, 
we can consider the angular velocity ω0  of the axial rotation to be constant. Therefore in the left-
hand side of equation (1) we can differentiate only n0 in L ≅ I0ω0n0. Then equation (1) yields:  
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As follows from equation (2), at ω0 > 0 (i.e., when the gyroscope rotates counter-clockwise 
about its axis) vector ωpr of the angular velocity of precession is directed upward, oppositely to 
vector g, which means that precession induced by gravity occurs also counter-clockwise – in the 
same sense as the axial rotation. And at clockwise axial rotation of the gyroscope (at ω0 < 0) its 
precession forced by gravity occurs also clockwise. Magnitude ωpr of the angular velocity of pre-
cession is inversely proportional to angular velocity ω0 of the axial rotation and directly propor-
tional to distance а between the pivot and the centre of mass. We note that ωpr is independent of 
the tilt of the axis to the vertical.  

Behaviour of the gyroscope axis described by (2) is called a regular or uniform precession. 
This is a forced, torque-induced precession because the gyroscope undergoes it under the force 
of gravity. All points of the gyroscope that lie on its axis of symmetry move uniformly along cir-
cular paths whose centres are located on the vertical line passing through the supporting pivot. 
Figure 2 shows the applet window of the simulation computer program “Forced Precession of a 
Gyroscope” [7] with an illustration of regular precession.  

The program shows the circular path along which the upper end of the gyroscope axis 
moves (the red circle in figure 2), and also a loopy trajectory of some fixed point of the top, 
which is displaced from the axis of symmetry. The position of this point is indicated by an arrow 
which originates at the centre of mass and ends beyond the bounding surface of the top. This is 
done deliberately in order to show the peculiarities of these trajectories on a larger scale. We can 
imagine this arrow as being attached firmly to the body of gyroscope (plunged into it up to the 
centre of mass). For convenience, the distance from the pivot to the end point of the arrow is 
chosen to be equal to the length of the top’s axis. Therefore both trajectories of the upper end of 
the gyroscope axis and of the arrow spike lie on the same sphere whose centre is located at the 
pivot.   

 3

http://www.ifmo.ru/butikov/Applets/Gyroscope.html
http://www.ifmo.ru/butikov/Applets/Gyroscope.html


 
Figure 2. Simulation of the regular precession of the gyroscope. The image shows the circular 
trajectory of the upper end of the gyroscope axis and the loopy trajectory of the end point of an 
arrow attached firmly to the gyroscope. 

We have considered above the torque-induced regular precession of the gyroscope on the 
basis of an approximate theory in which the total angular momentum L of the gyroscope is as-
sumed to be always directed along its axis of symmetry. However, the most remarkable feature 
of regular precession is that this kind of motion is actually one of possible solutions to the exact 
dynamical equation of motion, equation (1). Next we will show this.  

In the exact theory of the gyroscope we must take into account that the total angular mo-
mentum L is produced not only by rotation about the axis of symmetry. Besides this own angular 
momentum L0 = I0ω0n0, which constitutes the major part of L, some additional investment in L is 
given by (slow) rotation about other axes. In case of a regular precession this additional angular 
momentum is produced by the revolution of the top about the vertical line with (small) angular 
velocity ωpr. Let us denote by Lpr the corresponding vector, which is proportional to ωpr and co-
incides with ωpr in direction, as shown in figure 3. 
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Figure 3. Vector L of the total angular momentum at regular precession of the gyroscope. 

 

When we take Lpr into account, we realize that vector L of the total angular momentum is 
not directed exactly along the axis of the top (see figure 3). Nevertheless, the horizontal compo-
nents of vectors L and L0 are equal when the gyroscope undergoes a regular precession. The end 
points of vectors L and L0 move synchronously along equal circles which are shown in figure 3 
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by dashed lines. This means that these end points of L and L0 have equal velocities. In other 
words, the time derivatives of L and L0 are equal: dL/dt = dL0/dt. Both vectors L and L0 undergo 
precession about the vertical with the same angular velocity ωpr, and their variation with time is 
described by similar equations: 
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The second of these equations testifies that the regular precession with angular velocity ωpr 
is actually a solution to the exact dynamical equation (1). However, this is not the only possible 
solution to the equation of motion (1) under the torque of the force of gravity. The regular pre-
cession of a gyroscope occurs only if the initial conditions are quite definite: in order to observe 
this regular behaviour, we should make the gyroscope spinning around its axis and set to this 
axis a rotation about the vertical line with a certain angular velocity, namely the velocity which 
is characteristic of the subsequent precession. Only this initial angular velocity of the axis will 
provide the regular precession. In this sense we can say that the force of gravity that tends to tip 
over the gyroscope essentially only maintains, but not causes the precession – actually the regu-
lar precession is caused by these specific initial conditions. 

We can compare the role which the force of gravity plays in the regular precession of a gy-
roscope with the role of the string tension when we make a small body twirling on the end of the 
string. The force of string tension pulls the attached body towards the centre of the circle, but the 
body moves all the time under this force perpendicularly to the force. The force of string tension 
only maintains, but not causes the motion of the body. To produce this motion, we must impart 
to the body an initial velocity in the perpendicular direction. With this analogy in mind, we may 
consider the gyroscope behaviour at a regular precession not as strange and surprising as it may 
seem at first sight.  

Nutation of the gyroscope 
In the general case, i.e., for arbitrary initial conditions, the motion of a gyroscope is a su-

perposition of torque-induced regular precession and torque-free nutation. Nutation (etymologi-
cally a "nodding") of a fast-spinning gyroscope reveals itself as (small) vibration and shivering 
of the precessing axis. Nutation is caused by a possible small deviation of the vector of own an-
gular momentum from the axis of symmetry. This deviation is absent only for carefully chosen 
specific initial conditions.  

In order to understand what will be the motion of the gyroscope at arbitrary initial condi-
tions which do not provide the regular precession, we consider the following auxiliary problem. 
Let us imagine how the gyroscope executing regular precession under gravity torque will move 
if at some moment of time the force of gravity would suddenly vanish. This situation can be real-
ized in practice by letting the whole apparatus (the gyroscope together with its supporting de-
vice) fall freely in the gravitational field, like in Einstein’s thought experiments with a freely fal-
ling elevator cabin. When the cabin starts to fall, the gyroscope instantly becomes weightless.  

For a possible explanation of the further motion of the gyroscope, we should turn to the 
problem of a torque-free inertial rotation of a symmetrical top. This problem is discussed, in par-
ticular, in the preceding paper [8] and illustrated by a simulation computer program “Free rota-
tion of an axially symmetrical body” [9]. The torque-free motion of the top can be represented as 
a superposition of two rotations: spinning about the axis of symmetry with the angular velocity 
ω0, and a simultaneous uniform rotation of this axis about the direction of the angular momen-
tum L. The body axis moves about the vector L in a circular cone. The angular velocity of the 
torque-free precession is directed along and proportional in magnitude to the total angular mo-
mentum L, and inversely proportional to the transverse moment of inertia I⊥ (moment of inertia 

 5

http://www.ifmo.ru/butikov/Applets/Precession.html
http://www.ifmo.ru/butikov/Applets/Precession.html


about an axis, perpendicular to the axis of symmetry): Ω  = L/I⊥. Being applied to a gyroscope, 
this free precession is usually called nutation.   

Returning to the precessing gyroscope which suddenly occurs in weightlessness, we note 
that at this moment its vector L of the total angular momentum does not point along the axis of 
symmetry. This is clearly seen in figure 3. At the time moment when the force of gravity is sud-
denly “switched off,” the torque-induced precession of vector L immediately stops, but the gyro-
scope axis continues its precessing motion. The velocity of this motion should be regarded as the 
initial velocity for the subsequent torque-free motion of the gyroscope. A picture of this motion 
is shown in figure 4. This is a nutation in which the gyroscope axis (vector n0) describes a circu-
lar cone about vector L of the conserved total angular momentum with an angular velocity 
Ω  = L/I⊥. Thus, if we forget for a while about the force of gravity, the motion of the gyroscope 
would be a nutation, which is simply another name for an inertial (torque-free) precession. 

 

L

n0

 
Figure 4. Torque-free precession (nutation) of the gyroscope about the total angular momentum 
L in the absence of gravity. 

The existence of nutation explains one more peculiarity in gyroscope behaviour which may 
seem to be paradoxical. According to equation (1), the angular momentum L of a gyroscope can 
change with time only under external forces whose torque N has a non-zero value. If the external 
forces suddenly vanish like in the example discussed above, the time variation of the angular 
momentum L stops just at the same moment. One may think that this implies the immediate ter-
mination of the axis’ motion – the gyroscope axis should stop at once. The centre of mass which 
during the precession was moving in a circle should also stop immediately together with the axis. 
Can this behaviour of the gyroscope be in agreement with the law of inertia?   

Such a contradiction would actually exist if the described absence of inertia referred to the 
motion of the gyroscope axis rather than of vector L. The angular momentum L actually exhibits 
no inertia and, as follows from equation (1), stops to change immediately if the external torque 
vanishes. The fake conclusion regarding the absence of inertia in the behaviour of the axis is im-
posed by the approximate theory of a gyroscope in which vector L of the angular momentum is 
supposed to be directed always along the gyroscope axis. In reality vector L of the total angular 
momentum deviates during a torque-induced precession from the axis of the gyroscope by some 
angle, and if the external force vanishes, a nutation starts immediately: the axis describes a cone 
about the final direction of L which is preserved further on. The velocity of the centre of mass at 
the initial moment of nutation is the same as during the preceding forced precession. Therefore 
the contradiction with the law of inertia disappears when nutation is taken into account.  

Forced precess on accompanied by a nutation i
Now we are ready to investigate the problem of spinning gyroscope behaviour under gravi-

tational torque at initial conditions which do not provide the regular precession from the very 
beginning. The previous discussion brings us to a conclusion that in the general case gyroscope 
motion is a superposition of torque-induced precession and free nutation.   
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Next we treat for definite the most typical situation: first we set the tilted gyroscope to a 
fast spinning about its axis, supporting simultaneously the upper end of its axis against gravity. 
To do this, we exert on the axel an additional upward force. The torque of this force about the 
pivot compensates for the torque of the force of gravity. If we release the upper end of the axel 
before setting the gyroscope to spin, the force of gravity would simply tip it over, turning down 
in the vertical plane around the pivot with acceleration. But what will be the motion of the tilted 
gyroscope if we release it only after setting it into a fast spinning?   

Obviously, for these initial conditions vector L of the total angular momentum is directed 
initially along the axis. As soon as we release the axis, the torque of gravity appears, and under 
this torque vector L, according to (1), starts to change. Its variation occurs exactly in the same 
way as during the regular precession. We emphasize that this precession of vector L starts with a 
finite angular velocity ωpr immediately after we release the axis, but the axis itself and the centre 
of mass of the gyroscope are still immovable, that is, they have zero velocity at the initial time 
moment. Using these initial conditions, next we try to represent the subsequent motion of the gy-
roscope as a superposition of torque-induced precession and nutation.  

The involvement of the gyroscope in torque-induced precession implies that vector L of 
the total angular momentum has a vertical component Lpr due to the revolution of the top about 
the vertical line with an angular velocity ωpr. Let us single out Lpr from the total angular momen-
tum L, i.e., represent L as the sum Lpr + L1 (see figure 5 (a)). The remaining part L1 can be con-
sidered as the contribution of spin (own rotation of the top) into the total angular momentum L.  
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Figure 5. Superimposition of nutation about the direction of  L1 onto the forced precession. 

We conclude from figure 5 (a) that the angular momentum L1 associated with this spinning 
is not directed along the gyroscope axis: vector L1 deviates from the vertical through a greater 
angle than the axis. Let us forget for a while about the torque-induced precession of the top and 
concentrate on its spinning. The deviation of vector L1 from the axis implies that simultaneously 
with the slow forced precession the gyroscope undergoes fast nutation, i.e., the axis describes a 
circular cone (with a small semi-angle) with an angular velocity Ω  = L1/I⊥ about the slowly pre-
cessing vector L1. Superposition of these two motions can provide the zero velocity of the axis 
and of the centre of mass for the initial moment, as required by the initial conditions. This re-
quirement of initial velocity zero for the axis fulfils only if vector L1 is deviated from the gyro-
scope axis (from vector n0) through a definite angle which depends on the tilt of the axis and on 
the ratio of the angular velocities of nutation and the forced precession. This angle between L1 
and n0 determines the semi-angle of the nutation cone.  

For a fast-spinning gyroscope L1 ≈ I0ω0, whence Ω  = L1/I⊥ ≈ (I0/I⊥)ω0, that is, the angular 
speed Ω  of nutation is of the same order of magnitude as the angular speed ω0 of spin (provided 
the longitudinal and transverse moments of inertia do not differ considerably). 

Thus, the axis of the top (vector n0 in figure 5), being released with zero velocity, under-
goes simultaneously two rather simple motions: along the vertical cone due to the torque-induced 
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steady (uniform) precession (figure 5 (a)) and along a small cone of nutation about vector L1 of 
the angular momentum related to own rotation (figure 5 (b)). The upper end point of the axis 
moves due to precession along a horizontal circle shown by a dashed line in figure 5 (a); due to 
nutation, along the small circle whose centre lies on L1, as shown in figure 5 (b). Both these mo-
tions start at the moment of time at which the axis of the spinning top is released – before this 
moment the top was simply spinning about its axis. Addition of these two motions generates for 
the end of the axis a trajectory that reminds us of a cycloid – the curve traced by a point on the 
rim of a wheel rolling without slipping. The simulation program [7] allows us to see details of 
this three-dimensional curve (figure 6) traced by the axis end on the surface of the sphere cen-
tered at the pivot. The red horizontal circle is the trajectory traced by the precessing vector L1.  

 

 
Figure 6. Simulation of the precession induced by the force of gravity. This precession occurring 
after the axis of a spinning top is released with initial velocity zero is accompanied by nutation. 

 

We note that firstly, after we release the axis, it actually starts to fall down under the influ-
ence of gravity, in accordance with our intuition, and the tilt increases. But as the top falls and 
gains speed, the trajectory of its end deviates more and more from the vertical. Soon the velocity 
of the axis becomes horizontal, just as this velocity is directed at regular precession, but its mag-
nitude is greater than is needed for regular precession. This makes the axis move up. When the 
axis reaches the initial height, its velocity turns to zero. Then all the motion repeats. But now we 
realize that this strange at first sight behaviour of the axis is explained by addition of two mo-
tions – fast nutation about vector L1 due to deviation of L1 from the axis of symmetry, and simul-
taneous torque-induced slow precession of this vector about the vertical. 

For different initial conditions the superposition of precession and nutation can produce for 
the upper end of the axis, instead of the cycloid-like, wavy (sine-like) or loopy trajectories. A 
wavy trajectory fully straightens and transforms into a circle (see figure 2) only if the initial ve-
locity of the axis is exactly equal to the velocity characteristic of regular precession.  

When the cone of nutation is narrow, torque-induced precession is called pseudo-regular. 
For fast-spinning gyroscopes used in technical applications, pseudo regular precession is almost 
indistinguishable from the regular. In these cases nutation reveals itself as hardly noticeable very 
fast shivering of the gyroscope axis. Moreover, this fast nutation damps out rapidly by virtue of 
friction, and pseudo regular precession transforms into a regular precession. 
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The simulation program allows us to observe the damping out of nutation due to friction. 
Figure 7 shows how the “beaks” of the axis trajectory smooth over and the curve tends gradually 
to the circle corresponding to the steady forced precession. This circle (shown in figure 7 by the 
red line) is generated by the end point of vector L1. After nutation fades out completely, the axis 
assumes the direction of vector L1 (of the angular momentum due to spin).    

 

 
Figure 7. Damping out of nutation due to friction, and smoothing of the axis trajectory during 
transition to steady precession.  

 

 
Figure 8. Trajectories traced by the axis and by some point displaced from the axis of the gyro-
scope during the transition of pseudo-regular precession to steady regular precession.   

Figure 8 gives an impression about the trajectory traced by some point displaced from the 
axis of the gyroscope during the transition of pseudo-regular precession to steady regular preces-
sion. The looped curve is generated by the spike of an arrow fixed to the gyroscope (plunged into 
its body) and making an angle of 20° with its axis. This curve and the trajectory of the end point 
of the axis both lie on the same spherical surface whose center is located at the pivot. When the 
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gyroscope undergoes a regular precession, all the loops of this curve are equal (see figure 2). If 
the precession is accompanied by nutation, the axis wobbles about a middle position correspond-
ing to the cone of steady precession. Due to this wobbling of the axis, the trajectory of the arrow 
spike is more complicated – its loops are no more equal.  

Concluding remarks 
In this paper we have reconsidered an important old problem of the torque-induced rotation 

of a spinning symmetrical top. The origin of nutation that accompanies forced precession is ex-
plained in detail, with an accent on its relationship to the torque-free precession of a symmetrical 
body. Our treatment is appropriate for teaching introductory mechanics and general physics to 
undergraduate students. The approach suggested is free from the difficulties inherent in a tradi-
tional treatment of the problem. A simulation program (Java-applet) [7] visualizes the investi-
gated motion and is intended to help students in developing physical intuition about the phe-
nomenon. 
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