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The fine spatial scales of the structures in the human brain represent an enormous challenge to the successful
integration of information from different images for both within- and between-subject analysis. While many
algorithms to register image pairs from the same subject exist, visual inspection shows that their accuracy
and robustness to be suspect, particularly when there are strong intensity gradients and/or only part of the
brain is imaged. This paper introduces a new algorithm called Boundary-Based Registration, or BBR. The
novelty of BBR is that it treats the two images very differently. The reference image must be of sufficient
resolution and quality to extract surfaces that separate tissue types. The input image is then aligned to the
reference by maximizing the intensity gradient across tissue boundaries. Several lower quality images can be
aligned through their alignment with the reference. Visual inspection and fMRI results show that BBR is more
accurate than correlation ratio or normalized mutual information and is considerably more robust to even
strong intensity inhomogeneities. BBR also excels at aligning partial-brain images to whole-brain images, a
domain in which existing registration algorithms frequently fail. Even in the limit of registering a single slice,
we show the BBR results to be robust and accurate.
© 2009 Elsevier Inc. All rights reserved.
Introduction

The fine spatial scales of the structures in the human brain
represent an enormous challenge to the successful integration of
information from different images. Cortex has a typical thickness of
between 1 and 5 mm (Fischl and Dale, 2000). Thalamic nuclei have
spatial extents on the order of a few millimeters (Kandel et al., 2000).
Cortex is also highly folded, meaning that points that are 20 mm from
each other as measured along the cortical surface can be within a few
millimeters in three-dimensional space. This places stringent require-
ments on the accuracy and precision of algorithms for aligning images.
Even a fewmillimeters of alignment error can cause a voxel in a tissue
type in one image to be assigned to the wrong tissue type in another
image. This challenge extends to several domains, including within-
subject integration of images from awide range of imaging modalities
such as structural MRI, functional MRI (fMRI), arterial spin labeling
(ASL), diffusion weighted imaging (DWI), positron emission tomo-
graphy (PET), within-subject single-mode longitudinal analysis, and
surface-based group analysis (Fischl et al., 1999).

Automatic within- and cross-modal registration has a long
history of research in neuroimaging. The most prominent and
widely used algorithms currently extant are Cross-Correlation
. Greve),
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(Collins et al., 1995), Mutual Information (MI; Maes et al., 1997;
Maes et al., 1999; Wells et al., 1996), Normalized Mutual Informa-
tion (NMI), and Correlation Ratio (CR; Roche et al., 1998). Surface-
to-surface and shape registration (Borgefors, 1988) have also been
used for multimodal registration; however, West et al. (1999) found
that these were not as accurate as intensity-based techniques. The
basic model used in CR is that an intensity value in one mode will
have one, and only one, matching intensity value in the other mode.
MI and NMI are similar to CR but less restrictive in that they
attempt to sharpen the intensity joint histogram. For both methods,
intensity mismatches are evidence for misregistration. Correspon-
dence can be achieved by adjusting the registration parameters (i.e.,
translations, rotations, scalings, shears) until the best match (i.e.,
minimum cost) is achieved. Unfortunately, intensity inconsistencies
can exist for other reasons, which may be mode-specific. For
example, in a Blood-Oxygen-Dependent (BOLD) weighted image,
the tissue outside of the brain often appears quite dark whereas it
will be bright on an anatomical. The brain can be extracted from the
anatomical image (Segonne et al., 2004), but the quality of the
resulting registration will then be sensitive to the aggressiveness
and quality of the extraction. Echo planar images (EPI) are also
subject to B0 distortion in the form of non-linear metric distortion
and intensity “drop out” (Jezzard and Balaban, 1995). In addition,
coil sensitivity profiles and B1 inhomogeneity can create spatial
intensity fluctuations. Coil sensitivity fluctuations can become
extreme when surface coils are used as is often done when studying
retinotopy with fMRI (Sereno et al., 1995). All these effects create
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inconsistencies in input intensity matching that are unrelated to the
quality of alignment, but will be indistinguishable from alignment
errors and thus can drive an alignment away from the true
optimum.

In longitudinal analysis, in which the same subject is imaged
over time in different scan sessions, cross-session alignment of the
brain is well described by a rigid transformation, but there are
significant non-rigid effects such as differences in jaw and tongue
placement or head-neck angle. In theory, these can be accommo-
dated by brain extraction, but, again, the resulting registration will
be sensitive to differences in the extraction of the brain at different
time points. Finally, we point out that some imaging modalities may
not have full-brain coverage. For example, the brain coverage in EPI
must be reduced in order to reduce the slice thickness and maintain
temporal resolution. Partial field-of-view (FoV) brain coverage
creates enormous problems when attempting to register to a
whole head.

Recently, Saad et al. (2009) performed an extensive analysis
comparing CR and MI and found that they had errors that could easily
exceed 3 mm. This led them to propose a new cost function optimized
for T2⁎–T1 registration using a local Pearson correlation (LPC). LPC is a
local method, meaning that the cost at each voxel is only dependent
on the nearby voxels (roughly the 36 nearest neighbors). As part of the
computation of the Pearson correlation, the mean intensity over a
neighborhood is subtracted from the intensity at each voxel in the
neighborhood. This is effectively a spatial high-pass filter and so
enhances edges in both the input and reference images; the
correlation is then computed over the neighborhood. Areas away
from tissue boundaries should contribute little to the overall cost since
these areas tend to have locally homogeneous intensities in both
images which will be suppressed by the local mean removal. This
means that the areas near the tissue boundaries will drive the cost
function; in this way it is similar to BBR.

Like Saad, et al., we have also observed inaccuracies and
sensitivities in the registrations found by CR and MI. In this paper,
we propose a new algorithm based on the principle that the most
salient registration cue is the contrast across a tissue boundary, and so
we refer to it as Boundary-Based Registration, or BBR. Unlike the
methods reviewed above, BBR does not treat the two images as equal.
One of the images (the “reference image”) must be a high-quality
anatomical volume sufficient for extracting surfaces that separate
brain structures and tissue types. The second image (the “input
image”) can be any modality as long as it has tissue contrast.
Alignment is achieved by maximizing the gradient of the input image
intensity across the surface boundary. Intensity values in the
anatomical image are not part of the cost function. If two or more
input images need to be aligned, they can each be separately aligned to
the reference with BBR. We emphasize that this is not a surface-to-
surface registration like those described above. A surface is only
extracted from one image, the high-quality anatomical; intensities are
used from the second image. It is similar to LPC in that a local cost is
computed from tissue boundaries. However, there are some differ-
ences in that BBR operates over a much smaller neighborhood (a few
millimeters) and uses percent contrast instead of correlation
coefficient. At the time this manuscript was being prepared, LPC had
only recently been published, and so we have not had the chance to
compare it to BBR directly.

We show that BBR yields superior accuracy compared to CR and
NMI using blinded human raters as well as improved fMRI results. We
then show that BBR is extremely robust to variations in its parameters
and initialization, major fluctuations in image intensity inhomogene-
ity, and to partial-brain images, even to the extent of accurately
registering single slices, something for which most current registra-
tion methods fail. The software that implements BBR is publicly
distributed as part of the FreeSurfer (surfer.nmr.mgh.harvard.edu)
software package.
Methods

Cost function derivation

Our fundamental hypothesis in this research is that the quality of
registration is best assessed by the magnitude and direction of the
change of intensity across a tissue boundary. This is essentially what is
done by a human when registering visually (see Fig. 2), which
motivates us to quantify goodness of alignment using boundary
intensity gradients. In this work, the boundary we use is derived from
an anatomical volume using a surface model. An anatomical surface
model is one where a mesh of points, triangles and edges is used to
define the boundary between different tissue types or structures. The
mesh consists of a set of vertices and the neighborhood relations of
each vertex. Each vertex has a coordinate in the 3D anatomical space
that allows us to compute various geometric features of the boundary
such as curvature and surface normal vectors. Though this method can
be applied using the surface between any structures, we focus on the
surface between cortex and adjoining white matter. We believe that
cortex is the best target for two reasons: (1) it is highly folded,
allowing dense sampling of 3D space, and, (2) it is very thin (2.5 mm
on average; Fischl and Dale, 2000), implying that small alignment
errors will generate large changes in the cost function. Despite the fact
that we use the cortex as a target, we emphasize that the goal is to
achieve good registration between the entire input volume and the
entire anatomical volume, not just the locations along the cortex.
However, for affine transformations, good cortical registration is
sufficient to achieve good registration everywhere (assuming no non-
linear distortion).

Several software programs exist to construct computational
models of the cortical surface such as FreeSurfer (Dale et al., 1999;
surfer.nmr.mgh.harvard.edu), Caret (Van Essen et al., 2001), Brain-
VISA (Rivière et al., 2003) and Brain Voyager (www.brainvoyager.
com). In FreeSurfer, the cortical surface models include a representa-
tion of the surface between cortex and white matter (hereafter
referred to as the “white surface”) as well as the outer surface of the
brain (hereafter referred to as the “pial surface”); this allows an
estimate of cortical thickness at each vertex. FreeSurfer also provides
detailed labeling of both cortical and subcortical structures. This can
be useful for excluding certain areas known to have problems in
certain modes (e.g., orbital frontal cortex in EPI).

Let A be the 3D anatomical volume indexed by r (i.e., the intensity
of A at point r is A(r)). Let E be the 3D input volume of the same subject
indexed by p. Then some transform T exists such that p=T(r,θ)
will bring the two volumes into registration where θ is the set of
registration parameters. The input intensity value at anatomical
location r for parameter set θ can be computed as E(T(r,θ)). We
model T as an affine (12 degree-of-freedom (DOF)) transform (i.e., 3
translations and 3 rotations, 3 scales, and 3 shears). The coordinate
system is centered at the center of the anatomical volume, which
puts it near the center of the brain. Transformations are applied in the
order of translation, rotation, scaling, and shear, with translations
measured in mm and rotations measured in degrees. By default, we
use a rigid transform (6 DOFs) because we assume that both volumes
are from the same subject; however, our software can handle as
many as 12 DOFs. The problem, then, is to find T given all the issues
discussed above.

A vertex V on the white surface will have a 3D location rV and
surface normal nV (see Fig. 1A). We can compute a location just inside
the surface (i.e., in the white matter) as rwv=rV−Δwv⁎nV and just
outside the surface (i.e., in the cortical gray matter) as rgv=rV+
Δgv⁎nV, where Δw and Δg are the white and gray matter projection
distances, respectively, and may be vertex-dependent. For a given θ,
these points can then be transformed to the input volume through
T, i.e., pwv(θ)=T(rwv,θ) and pgv(θ)=T(rgv,θ) in order to sample the
intensity at these points given the set of registration parameters,
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Fig. 1. Diagram of how the BBR cost function is computed. (A) The gray scale
background is a BOLD-weighted image approximately axially sliced through the central
sulcus. The black line (“pial surface”) is the boundary between cortical gray matter and
sulcal CSF. The white curve (“white surface”) is the boundary between cortical gray
matter and white matter. The distance between the white and pial surfaces is the
thickness, which is computed at each vertex V. The gray matter intensity at a vertex (gv)
is computed at a fractional distance Δgv along the surface normal (nv) into cortex. The
white matter intensity at a vertex (wv) is computed at an absolute distance Δwv along
the surface normal (nv) into the white matter. The percent contrast at a vertex (Qv, Eq.
(1)) is then computed as the relative difference between the gray and white matter
intensities. (B) Function that converts contrast into a cost, with large contrasts in the
expected direction (positive for BOLD-weighted) having a low cost and those in the
unexpected direction (negative) having a large but saturating cost.

65D.N. Greve, B. Fischl / NeuroImage 48 (2009) 63–72
i.e., the nominal white matter intensity would be wv=E(pwv(θ)),
and the nominal gray matter intensity would be gv=E(pgv(θ)). We
emphasize that gv and wv may or may not be in their respective
tissue classes — that depends on the quality of the registration θ. If
they are in their proper tissue classes, then we would expect the
difference Dv(θ)=gv−wv to be large and of a predictable sign (e.g.,
positive for BOLD). If they actually fell into the same tissue class, then
we would expect the difference to be close to 0. This difference then
becomes a measure of the quality of the registration at vertex V. If
either gv orwv fall outside of the 3D FoV of E, then vertex V is excluded
entirely from contributing to the final measure of goodness.

One of the advantages to thismethod is thatDV ismostly insensitive
to spatial intensity inhomogeneities due to coil profiles or B1
inhomogeneities. These fluctuations are slowly varying over space,
whereas DV is computed from points that are only a few millimeters
apart. We also use a percent contrast measure at each vertex:

Qv θð Þ = 100
gv θð Þ− wv θð Þ

0:5 gv θð Þ + wv θð Þð Þ : ð1Þ

Using a percent contrast assures that bright regions do not get a
larger weight than dark regions. We pass the percent contrast through
a non-linearity (see Fig. 1B) and sum over the surface to compute the
final cost as given in the equation below:

J θð Þ = 1
N

X
vaB;E

hv 1 + tanh Mv � Qv − Q0ð Þð Þ;ð ð2Þ

where Q0 is an offset parameter, Mv is a slope parameter the sign of
which is dependent upon the expected direction of contrast in the
input image (positive for gray matter brighter than white), and hv is a
weight for vertex V. Allowing the slope parameter to change with
vertex can allow the modeling of contrast changes with anatomy. The
tanh() function is motivated by the desire to have a smooth function
with saturating non-linearity that reduces the weight for vertices that
have a large contrast in the unexpected direction. In this way it is
similar to the saturating cost functions used in robust statistics
(Hampel et al., 1986). It also assures that vertices with a large direction
of contrast in the expected direction have a low cost. We could have
used a binarization (i.e., setting the cost to 0 if the direction of contrast
is in the expected direction or 1 otherwise), but this would have made
the cost function less smooth. We expect that most any function that
meets these criteria would work, and we show that the final results
are quite insensitive to parametric variations in the cost function. The
total cost is summed over a (possible) subset B of vertices that fall
within the 3D FoV of E. A subset allows for speed increases during an
initialization phase and/or avoidance of problem regions. N is the total
number of vertices participating; this might be less than the number
of vertices in B if some vertices fell out of the 3D FoV of E.

By default, we use the following parameter settings: Q0=0;
Mv=+0.5 for modalities where we expect gray matter to be
brighter than white matter (e.g., a T2-weighted MRI) and −0.5 for
the reversed contrast; hV=1 for all vertices; Subset B: only vertices
in cortex; the second and third optimization stages (below) sample
every 100th vertex; the fourth and fifth sample every vertex. Δg and
Δw are the distances from the gray/white junction that we sample
the gray matter and white matter. Ideally, we want to push these as
far apart as possible so as to avoid sampling the same voxel (easily
possible at fMRI resolutions). However, if we sample the cortical
gray matter too far away from the junction, we might miss it
entirely. If we sample the white matter too far away from the
junction, we might sample some other structure, although having
access to the explicit surface models allows us to prevent this from
happening. Since the gray matter thickness changes across cortex,
we allow Δg to change with location (though it is certainly possible
to fix it). By default we sample midway (Δg=0.5) between the
white and pial surfaces. We set the default value of Δw=2 mm
independent of spatial location. Another advantage to separating
these two points is that it will make the registration less sensitive to
errors in surface placement during anatomical analysis. Given the
values above, the surface could be off by +/−1 mm, and gv and wv

should still be located in their respective tissue types. Below, we
show that the final registration is not very sensitive to even wide
changes in these parameters. Finally, we use trilinear interpolation
by default to assure smoothness in the cost function. If a vertex falls
into an input image edge voxel, then nearest neighbor is used. We
chose not to exclude edge voxels entirely as this would limit
applications to those with 3 or more slices.

Handling B0 distortion

B0 distortion is the geometric and intensity distortion caused by
inhomogeneities in the main magnetic (B0) field caused predomi-
nantly by air–tissue interfaces in the scanner (Jezzard and Balaban,
1995). Acquisitions with long k-space readouts (such EPI) are most
susceptible, and the B0 distortion tends to increase with an increase in
resolution as this will usually increase the readout time. The metric
distortion is non-linear and can be corrected through the use of a B0
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map (Jezzard and Balaban, 1995). The intensity distortion (also called
“dropout”) cannot be corrected. The metric and intensity distortions
tend to occur in known anatomical locations (e.g., orbital frontal,
medial temporal gyrus, etc.), and these areas are automatically labeled
in FreeSurfer (Desikan et al., 2006). This gives us the ability to exclude
them from the cost function. Note that these regions will still be
aligned properly if the B0 distortion has been corrected, though the
signal may be less useful due to dropout. If the B0 distortion has not
been corrected, then these areas will be misregistered. We have built
into our BBR implementation the ability to mask out the following
regions: middle temporal gyrus, inferior temporal gyrus, temporal
pole, fusiform gyrus, entorhinal, medial orbital frontal gyrus, caudal
anterior cingulate gyrus, and rostral anterior cingulate gyrus. Below,
we explore the effect that this has.

Optimization

Optimization is the process of finding the global cost minimum
over the parameter space. No method except a costly, and possibly
intractable, brute-force search can guarantee that the global optimum
has been found. Registrationmethods typically rely on a course search
over a wide range of parameter space followed by gradient descent to
the optimum (Jenkinson et al., 2002). Suboptimal registrations can
occur if the gradient descent gets trapped in a local minimum because
the course search did not yield a starting point in the basin of the
global minimum; the first two stages of the BBR optimization below
are designed to avoid this problem. A local minimum may also be
encountered because discontinuities exist near the global optimum
(Jenkinson et al., 2002). This type of local minimum is avoided
because, as we show, the BBR cost function is very smooth. The BBR
optimization stages are:

(1) Initialization. In this stepwe compute an initial registration that
falls into the capture region, roughly within 7 mm and 7° of the
optimum (Fig. 3). This can be accomplished in several ways:
a. The anatomical and input volumes were acquired in the

same session, in which case the initial registration can be
performed in scanner coordinates based purely on the
geometry as long as the subject has not moved excessively
between acquisitions.

b. The input volume is whole-brain, in which case we use
existing software that implements a global method (e.g.,
FSL/FLIRT or SPM/spm_coreg) to obtain an initial registra-
tion that will fall into the BBR capture region.

c. The input volume is partial-brain or surface coil but a whole-
brain volume was also acquired, in which case methods (a)
and (b) can be combined. Note that any whole-brain volume
is sufficient; it does not need to be an anatomical. If a surface
coil is used, then the whole-brain should be acquired with
the body coil.

d. If the above methods fail, the initial registration can be
determined manually.

(2) Coarse Search. Here we sample the cost function at 3 points
along each parameter dimension to form a 6 dimensional grid
in parameter space. The translations are sampled at −4, 0, and
+4 mm and the rotations are sampled at −4, 0, and +4° for a
total of 36=729 points; the point with the smallest cost is fed
to the next step. This is done in order to extend the effective
capture range of the algorithm, allowing datasets with large
translations and rotations to be accurately registered. The
surface is sampled every 100th vertex to speed computations
(our typical surfaces have on the order of 150,000 vertices, so
this still results in a dramatically over-determined problem
with 1500 data points and 6 unknowns). For problem data sets,
the FoV and sampling resolution of this grid can be expanded at
the cost of more computation time.
(3) Gradient Descent I. The tolerance (see below) is set to 10−4 and
the surface is sampled every 100th vertex to speed computa-
tions. The result is fed to the next stage.

(4) Fine Search. Again, we sample the cost function at 3 points
along each parameter dimension to form a 6 dimensional grid
in parameter space. The translations are sampled at −0.1, 0,
and +0.1 mm and the rotations are sampled at −0.1, 0, and
+0.1° for a total of 36=729 points; the point with the smallest
cost is fed to the next step. This is done for cases where the
topography around the minimum is very flat. This step assures
that the bowl will be approached from the best nearby position.
The surface is sampled every vertex.

(5) Gradient Descent II. The tolerance (see below) is set to 10−8

and the surface is sampled every vertex. If the registration is
being done with more than 6 DOF, then the extra DOFs are
optimized here. The previous steps use only 6 DOF.

The gradient descent is performed using a series of 1D mini-
mizations (i.e., Powell's method (Press et al., 1988) as implemented
in the VXL library (vxl.sourceforge.net)). The gradient descent has
one parameter, the tolerance used to terminate the descent. The
tolerance is the absolute difference in costs between successive steps
divided by the average cost at those steps. The minimal tolerance
achievable is constrained by the machine precision. In our tests, we
found that setting the tolerance below 10−8 had no effect on a 64 bit
machine.

Evaluation criteria

In order to evaluate the accuracy of the BBR, we compare it to two
other popular registration algorithms: CR and NMI. Except where
noted, all algorithms are constrained to 6 DOF. Many neuroimaging
software packages have implementations of CR and NMI, e.g., FSL
(www.fmrib.ox.ac.uk/fsl); SPM (www.fil.ion.ucl.ac.uk/spm), AFNI
(afni.nimh.nih.gov/afni), AIR (bishopw.loni.ucla.edu/AIR), and MINC
(www.bic.mni.mcgill.ca/software). For our evaluations, we use the
FSL implementation of CR (the FLIRT program), and the SPM
implementation NMI (the spm_coreg program). These will be
evaluated based on accuracy and robustness. Accuracy is judged
based on visual inspection in which the raters are blinded to the
registration algorithm identity, and ability to map fMRI activation to
the surface. Robustness is assessed based on the ability of an algorithm
tomaintain a registrationwhen the input image or the algorithm itself
is changed in some way. The accuracy and robustness tests are
performed on the same data set. Using the accuracy tests, we show
that the accuracy of BBR equals or exceeds that of CR and NMI on
whole-brain, artifact-free data. Using the robustness tests, we show
that the BBR registration deviates little from the whole-brain result
even under substantial changes to the data or to the implementation
parameters. This implies that BBR remains accurate under these
conditions. One way to measure accuracy is to know the ground truth
under simulated conditions. While, it is not a simple matter to
simulate metric and intensity distortion in MRI, some progress has
been made in this area (Drobnjak et al., 2006; Xu et al., 2007).
However, we have chosen to use a combination of visual inspection
and consistency tests on real images.

Visual inspection
We use the FreeSurfer interactive tool called “tkregister2” for

visually inspecting (and possibly changing) a registration. The tool
allows the anatomical and functional images to be displayed. The
cortical surface can also be displayed on both images. Screen shots are
shown in Fig. 2. Panel A shows the T1-weighted anatomical with the
white surface shown in red; notice how the white surface closely
follows the gray/white boundary. Panel B shows a BOLD-weighted EPI
image. While the cortical anatomy is blurry, it can clearly be seen.

http://www.fmrib.ox.ac.uk/fsl
http://www.fil.ion.ucl.ac.uk/spm
http://www.bic.mni.mcgill.ca/software


Fig. 2. FreeSurfer manual registration tool (tkregister2), coronal and sagittal views. (A)
T1-weighted anatomical with white surface. (B) T2⁎-weighted Functional. The cortex
can be seen as bright patches against the darker white matter. (C, D) Functional with
surface placed by the given registration technique. (C) CR. (D) NMI. (E). BBR. The green
arrows are in the same place relative to the surface in each panel and indicate places
where the registration in CR or NMI are inaccurate.
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Panels C–E show the EPI with the white surface overlaid, where the
EPI has been registered to the anatomical with the given method (C:
CR; D: NMI, and E: BBR). The brighter patches in the EPI indicate gray
matter (and/or cerebral spinal fluid (CSF)), whereas white matter
appears darker. A good registration, then, is one where the red line
closely follows the boundary of the bright patches. For each subject in
the evaluation data set, the authors (DNG and BRF) ranked the three
registrations. The raters were blinded as to the identity of each
registration. The raters were also asked tomake a subjective judgment
as to whether the best registration was “acceptable”. Neither one of
these measures gives an actual measurement as to how far off a
registration is from “true”.
fMRI activation
Activation in an fMRI experiment should appear in graymatter and

so the amount of activation measured on the cortical surface can be
used as a measure of the quality of the registration between the
anatomical and the fMRI volumes. For a given registration, we sample
the fMRI activation onto the surface and simply count the number of
voxels above a threshold (pb .001); with the idea that themore voxels,
the better the registration. Of course, some of those voxels will be false
positives; however, the fMRI analysis we used (see below) includes
temporal whitening so that the actual false positive rate should be
close to the nominal rate of 0.1%. More importantly, we apply the
registration after the analysis, so each registration will see the same
false positive rate, and so false positives should not bias our ranking of
methods. For more details, see fMRI analysis methods below.

Robustness
As mentioned above “robustness” is the ability of an algorithm to

maintain a registration when the input image or the algorithm itself
is changed in some way. The basic idea here is that there is only one
optimum registration, and that the optimum should be invariant to
initialization, image corruptions and a wide range of algorithm
parameters. Note this makes no statement about whether the
optimum is a good registration. To quantify the robustness, we need
a measure of the difference between two registrations. For this we
have chosen to use a measure we call the Average Absolute Distance
(AAD); this is the distance that the cortical surface moves between
the two sets of registrations parameters θ1 and θ2. The AAD is
defined to be:

AAD θ1; θ2ð Þ =

P
v

jT rv; θ1ð Þ− T rv; θ2ð Þ j

NV
: ð3Þ

The AAD is measured in mm and gives us an easily interpretable
metric for registration consistency. Note that this is not biased by the
fact that we generate the cost function from the surface. The surface is
simply a convenient way to sparsely sample the registration
differences over the entire brain. This measure is similar to the
measure introduced in Jenkinson et al. (2002) in which a closed-form
expression was used to compute the average RMS deviation between
two registrations averaged over a sphere. However, AAD is computed
over the actual cortical surface instead of a sphere and uses the
absolute value instead of the square.

We propose several robustness tests:

1. Cost Function Parameter Manipulation (BBR only). The purpose of
this test is to determine how sensitive the registration is to changes
in the parameters of the cost function and the way algorithm is
implemented. The parameters we perturbed are Q0,Mv, Δg, and Δw.
We generate the first set of registration parameters (θ1) using the
default parameters. We then change the cost function parameters
and re-register the original volume, using the first registration as
initialization, to generate the second set of parameters (θ2). We
then compute the AAD between the two sets of registrations.
Ideally, the AAD would be 0.

2. B0 Masking (BBR only): in this test, the first registration is
generated using all cortical vertices on the surface. This registration
seeds a second registration in which the vertices in the B0 regions
described above are masked out (i.e., do no contribute to the cost
function). The AAD is then computed between the two
registrations.

3. Initialization Test (BBR only): in this test, we register a data set, then
modify the resulting registration by translating and rotating it, and
then use this modified registration as the initial starting point for
Stages 2–5 to see how closely we return to the original registration.
This simulates the case were Stage 1 is inaccurate. For each subject,
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we randomly selected 30 translations and rotations uniformly in
the range of +/−10 mm and +/−10° (i.e., all 6 registration
parameters were simultaneously changed). The size of the
“perturbation” was defined to be the maximum of these transla-
tions and rotations (measured in mm or degrees). The re-
registration was deemed to have failed if it did not return to within
0.100 mm AAD of its original location.

4. Reduced Field-of-View (FoV) Test: the first registration is generated
from a whole-brain fMRI volume. The second registration is
generated from the same volume after removing some number of
slices from the top and bottom and using the first registration as
initialization. These should generate exactly the same set of
registration parameters. Thus we can measure the AAD as a
function of the number of remaining slices. This simulates the case
where data of interest is acquired with a reduced FoV, and a full
FoV data set is acquired in the same scanning session to assist in
registration.

5. Intensity Inhomogeneity Test: the first registration is generated from
the original fMRI volume. The bottom half of the slices are then
discarded while the top half have their intensity scaled on a slice-
by-slice basis. This situation simulates the case where a surface coil
is used (which induces a sharp fall-off in intensity away from the
coil). The initial whole-brain volume largely free from intensity
inhomogeneity can be obtained using the body coil for reception
(this is noisy but adequate). The coil profile is implemented as a
half-cosine function: F = 1

2 α cos πS
NS

� �
+ 2− αð Þ

� �
where S is the

slice number, Ns is the number of slices, and α is a control
parameter (see Fig. 6). For slices nearest the top of the brain (i.e.,
low values of S), F is nearly 1 (no intensity distortion). For slices
further away from the top, F drops off and reaches 0 when S=Ns.
When α is 0, F=1 for all values of S (i.e., no distortion), as α
increases to 1, the amount of drop off increases. Thus, we can
measure the AAD as a function of α.

6. Surface Inaccuracy Test: in this test we evaluate how the BBR results
change when a less accurate surface is used. For this we used the
FMRIB's Automated Segmentation Tool (FAST; Zhang et al., 2001)
distributed with FSL. We used this program to segment the
anatomical images into gray, white, and CSF, and then used
FreeSurfer to generate a surface between white matter and the
other tissue types. We then ran BBR with this surface, initializing
with the registration from when the FreeSurfer surface was used.
The AAD was then computed between these two registrations.
Since this application only has one surface, we used an absolute
gray matter projection distance of 2 mm. Note that we are not
trying to do a quantitative comparison between FreeSurfer and
FAST, we simply want to generate reasonable surfaces that we do
not expect to be as accurate as those generated by FreeSurfer.

7. Degree-of-Freedom Test: in this test we evaluate how the BBR
registration changes when higher DOFs are used. We use the 6
DOF registration to seed the 9 (+scale) and 12 (+scale+shear)
DOF optimizations, then measure the AAD between the pairs for
all 18 subjects.

Evaluation data set, MRI methods, and fMRI analysis

The data set used to evaluate the registrationmethodwas collected
as part of the Functional Biomedical Informatics Network (fBIRN,
www.nbirn.net) East Coast Traveling Subjects (ECTS) pilot study.
Eighteen subjects were each scanned at four sites undergoing both
functional and anatomical protocols. This evaluation only deals with
the data collected at MGH (Siemens 3 T Tim-Trio with 12-channel
head coil). A T1-weighted MP-RAGE volume was collected for each
subject and analyzed in FreeSurfer to create the white and pial
cortical surfaces and compute thickness and surface normal vectors
at each vertex. Eight whole-brain fMRI data sets (TR=2000 ms,
TE=30 ms, flip=77°, bandwidth=2298 Hz/pixel, 30 slices, slice
thickness 4 mm skip 1 mm, matrix size 64×64 at 220×220 mm,
142 time points, sequential slice order) were acquired for each
subject. Subjects performed a working memory task that consisted
of four block types (1) Scrambled images, (2) Encode, (3) Distractor,
(4) Probe. During Encode, subjects passively viewed line drawings
which they were asked to remember. During the Distractor block,
subjects were shown complex pictures and asked to respond with a
button press as to whether there was or was not a human face.
During the Probe phase, subjects were shown pairs of line drawings,
one of which they had seen during the Encode phase and asked to
respond with a button press as to which drawing they had seen
before. Each block lasted 16 s. The middle time point of each run
was used as the fMRI template for both registration and motion
correction. The fMRI data were motion corrected using MCFLIRT and
slice-time corrected using the FSL slicetimer program. The fMRI data
were not spatially smoothed or otherwise interpolated as this would
have made the results less sensitive to registration errors. The fMRI
data were not corrected for B0 distortion. The fMRI time series
analysis was performed using FEAT (Woolrich et al., 2001),
modeling each block as a separate explanatory variable using the
default gamma hemodynamic response model. The contrast
between Probe and Scrambled blocks was thresholded at a voxel-
wise threshold of pb .001 (uncorrected). This contrast yields robust
activation across wide areas of the brain. Note that at this point, the
thresholded map is still in the native functional space. The fMRI
template was then registered to the anatomical using CR (FLIRT),
NMI (spm_coreg), and BBR (with CR registration as initialization),
all constrained to 6 DOF. For each registration method, the binarized
activation map was sampled onto the cortical surface midway
between the white and pial surfaces using nearest-neighbor
interpolation (no attempt was made to exclude regions of high B0
distortion). The activation percentage was computed as the total
number of positives divided by the number of vertices. This yielded
8 values for each subject. These were averaged to give 18 values for
each method, and a paired permutation test was used to asses the
significance of the differences between BBR, CR, and NMI.

Results

Cost function smoothness, optimality, and capture region

The cost function for 1D translations and rotations are shown in
Fig. 3 for a single subject; the 0-point is the location of the optimal
solution (visually, the alignment looked very accurate). The cost func-
tionwas evaluated by translating (Fig. 3A) in each axis by+/−100mm
in 0.010 mm steps; this 200 mm FoV was enough to encompass the
entire brain in all dimensions. It was also evaluated by rotating about
each axis by +/−100° in steps of 0.01° (Fig. 3B). The three panels in
Figs. 3A and B show the behavior of the cost function at different
scales around the optimum. There are two things to note about these
results. First, the optimum is sharp and global — while there are
many local minima, none come close in cost at the true optimum;
this is expected given the thin and highly folded nature of cortex. The
actual cost at the optimum will depend on the average contrast
between gray and white matter and so dependent on the modality
and pulse sequence preparation. As this contrast drops, the cost at
the optimum will rise. However, the cost far away from the optimum
will always be around 1.0 regardless of the nature of the image. This
is because, away from the optimum, the surface cuts randomly
through the volume, and so the average contrast should be about 0,
making the cost about 1.0 (see Fig. 1, panel B). While this suggests we
can detect inaccurate registrations as those with costs “close” to 1.0,
we cannot select a single cost threshold that will be good for all
possible input images because of the dependence of the optimal cost
on the actual contrast. However, once we do know what the expected
contrast is, we can determine such a threshold. Note that costs near
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Fig. 3. Cost function (Eq. (2)) when each of the 6 DOF is parametrically varied. (A)
Translations in the left–right (LR), superior–inferior (SI), and anterior–posterior (AP)
directions. (B) Rotations about each of those axes. Each panel shows a different scale:
(1) +/−100 mm, (2) +/−10 mm, (3), +/−0.2 mm. This shows that the minimum is
global and that the cost function is extremely smooth, even at the sub-millimeter level.

Fig. 4. Robustness of BBR to random changes in initial position. Failure is defined as an
inability to return to the original solution to within 0.100 mm AAD. Panel A shows the
probability of a failure as a function of maximum perturbation. The asterisks show the
maximum perturbation for 18 subjects between their first fMRI run and their eighth
within a scanning session. Panel B shows the value of the cost function for successes and
failures (asterisks are individual data points) and demonstrates that the failures can be
detected by a simple threshold.
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to or far from the optimum will not change much with intensity
shading or partial-brain FoV because we used a locally computed
percent contrast. We explore this further below. The second thing to
note about Fig. 3 is that the cost function is extremely smooth, even
at the scale of tens of micrometers and 100ths of a degree. The
implication of this is that once the gradient descent starts inside the
capture region, it is very likely to find the optimum. The capture
range is quite sharp, about +/−5 mm and +/−5°, though we
expect this to be expanded by about 4 mm and 4° due to the course
search (Stage 2).

Visual inspection test

Fig. 2 shows typical results for the three registration techniques. As
discussed above, the accuracy is judged by how well the red line
(white surface) approximates the boundary of the bright patches.
Inaccuracies in registration are indicated by bright patches outside of
the red line or dark patches inside the red line. Both CR (panel 2C) and
NMI (panel 2D) have some problem areas indicated by the green
arrows (these are in the same place relative to the red line in all three
panels). There are extremely few locations in the BBR (panel 2E)
registration that are problematic. For reference, the AAD between BBR
and CR for this data set was 3.74 mm; the AAD was 2.86 mm between
BBR and NMI. Authors DNG and BRF rated the three registrations for
each of the 18 subjects (blinded to registration algorithm, as noted
above). The best registration was found to be “Acceptable” for all
subjects. For both raters (DNG and BRF), BBR was rated best for all
subjects; NMI received 17 second place rankings; CR received 1 second
place. The only difference between the raters was the one CR case
receiving a second place rating was different. The difference between
BBR and CR was 4.895 mm AAD; the difference between BBR and NMI
was 2.686 mm AAD. These are similar to the errors for CR and MI
found by the raters in Saad et al. (2009).

fMRI activation comparison

All methods achieved activation in excess of 13% of the cortical
surface, averaged over all 18 subjects and 8 runs (BBR: 15.5%, NMI:
15.2%, CR: 13.9%). As discussed above, false positives will add about
0.1% and should not systematically bias any method since each
method sees the same false positive rate. BBR increased the activation
percentage over CR by about 12% (pb10−6). Each subject individually
showed improvement, making the difference systematic and highly
significant. BBR increased the activation percentage over NMI by only
about 2% (pb .01). While modest, this difference was also systematic
with 15/18 subject showing improvement. The significances quoted
above were determined using a permutation test (Nichols and
Holmes, 2001) with 1,000,000 iterations on the subject-wise
difference between the activation percentages.

BBR sensitivity to starting point

The starting point perturbation results are shown in Fig. 4A. For
perturbations below 5 (mm or degrees), all registrations were
successful (i.e., AADb0.100 mm). At a perturbation of 7, fewer than
5% failed (i.e., were caught in a local minimum). Fig. 4B shows the
mean cost of the successes and of the failures. One can see that there is
a clear distinction between the two, meaning that failures can
automatically be detected by evaluating the cost functional. This
property is also evident from Fig. 3, which shows that the costs at local
minima are much higher than that at the optimum. The actual
threshold needed to detect failures will be dependent on the contrast
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properties of the images being registered, so it will need to be
computed from a representative set of data. This starting-point test is
important because BBR must start within its basin of attraction of the
global optimum to be successful. The initialization may be inaccurate
due to inaccuracies in the Stage 1 technique (i.e., CR or NMI). For
whole-brain data, we do not expect this to be likely from our
experience, and (Saad et al., 2009) found that most of the CR and MI
errors were no worse than 5 mm.

If a partial FoV registration is being performed using a same-
session whole-brain image as an intermediate step, then the subject
may have moved between the acquisition of the whole- and partial-
brain images. To get an idea of how big this motion might be in a
real-world setting, we measured the maximum perturbation
between the first and last fMRI runs for each of the 18 subjects
(shown as asterisks in Fig. 4A). Seventeen of the subjects were less
than 3; the worst was 5, and none were failures. Based on these
findings, we expect there to be very few cases where Stage 3 does not
start in the capture region. When failures do occur, we expect to be
able to automatically detect them.

BBR sensitivity to parametric variation and B0 masking

There are four parameters in the BBR cost function: (1) offset (Q0),
(2) Slope (M), (3) Cortical Projection Distance (Δg), and (4) White
Matter Projection Distance (Δw). The sensitivity to these parameters
was tested by varying them individually over a range, re-registering,
and seeing how much the registration changed (as measured with
AAD). When the offset was varied from −2 to 5 (nominal 0), the
worst AAD across all subjects was 0.400 mm. When the slope was
varied from 0.1 to 1 (nominal 0.5), the AAD for all subjects was less
than 0.225 mm. When the WM Projection Distance was varied from
0.1 to 4 mm (nominal 2), the worst AAD was 0.425 mm. When the
Cortical Projection Distance was varied from 0.1 to 1 (nominal 0.5),
the AAD was no worse than 0.300 mm. This shows that the BBR
solution is exceedingly robust with respect to wide changes in the
parameters of the cost function, with the worst results across all
subjects and parameter ranges being only 0.425 mm. Including
Fig. 5. The effect of reducing the number of slices on the ability of each registration algorithm
good repeatability, even down to one slice. The large error bar for BBR on the single slice is
masking of B0 regions only changed the registration by an average of
0.200 mm AAD with a maximum of 0.260 mm AAD. In this case,
masking out susceptibility regions had little effect, but this might not
be the case in data sets where the B0 distortion is more extreme. To
get an idea of the amount of B0 distortion in this data set, we used the
FSL PRELUDE and FUGUE programs to compute the amount of voxel
shift in various regions. In the medial orbital frontal regions, the shift
was about 5 mm (1.5 voxels); in inferior and medial temporal regions,
the shift was about 3 mm (.9 voxels).

Partial FoV consistency test

Fig. 5 shows how the methods performwhen the number of slices
is systematically reduced. At full-brain (30 slices) and near full-brain
coverage, the methods are similar in their ability to maintain
consistency. However, as brain coverage drops, the performance of
CR and NMI degrades considerably. At approximately half-brain
coverage, the AAD is equal to the average human cortical thickness
(2.5mm), meaning that cortical voxels in the functional images would
likely not bemapped to cortex in the anatomical (or would bemapped
to the wrong part of cortex). Below 4 slices, CR and NMI fail
catastrophically. In contrast, BBR maintains AAD of better than
1 mm down to 2 slices. Even using a single functional slice, the AAD
is just above 1 mm. In fact, 17 of the 18 subjects had better than 1 mm
AAD for a single slice. This is an important result because it is often the
case that researchers need to acquire partial-brain FoV in high-
resolution fMRI applications (e.g., Duong et al., 2002; Hyde et al.,
2001; Kirwan et al., 2007; Miller et al., 2006).

Intensity bias consistency test

Fig. 6 shows how the methods perform as increasing levels of
intensity bias are applied. For allmethods, the performance dropswith
more bias, but BBR clearly outperforms bothCR andNMI. Atα=0.5, CR
and NMI have an AAD equal to the average cortical thickness, and
beyond that level they begin to fail catastrophically. BBR maintains
better than 1 mm consistency all the way out to α=0.9.
to stay at the same position found from the full-brain registration. BBR maintains very
because 1 of the 18 subjects failed. The confidence intervals represent 1 standard error.



Fig. 6. The top panel shows a coronal slice of the functional for four values of α in order
to demonstrate how the intensity of each slice was attenuated using a half-cosine
intensity bias model. The white curve is the gray/white boundary. For α=0, there is no
bias; α=1 gives the maximum bias. Bottom panel shows how each method performed
as the bias parameter was changed. The confidence intervals represent 1 standard error.
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Inaccurate surface test

Surfaces generated from the FAST segmentation had some regions
of inaccuracy, particularly near the top of the head, the temporal lobes,
and any place where a gyrus was very thin; however, the surface was
fairly accurate through most of the brain. As mentioned above, this
should not be construed as an evaluation or judgment of the FAST
program; we simply used FAST to generate surfaces that are less
accurate than FreeSurfer. The results show that use of the FAST
surfaces had very little effect on the registration with an average AAD
of 0.575 mm and the worst case of 1.716 mm.

DOF test

The average difference between 6 DOF and 9 DOF registrations was
1.237 mm AAD. The scale changed by about 2 or 3%, which does not
make a big difference at the center of the brain but can be as much as a
few millimeters near the edge. It was very difficult to tell from visual
inspection whether the scale was helping or hurting the final
registration. The average difference between 6 DOF and 12 DOF was
1.315mmAAD; and the average difference between 9 DOF and 12 DOF
was 0.281 mm AAD. From this we conclude that 12 DOFs is probably
not necessary, at least for this data set. It is not our purpose here to
resolve the question as to what the appropriate number of DOFs is for
registering within-subject, cross-modal images, rather we only want
to measure the sensitivity of BBR to changes in DOF.

Computational load

Of the 18 subjects in the evaluation data set, none took more than
4 min to complete all stages of the 6 DOF registration on a 64-bit
2 GHz XEON processor. This included the initialization stage using CR
or NMI, which took about 30 s by itself. The bulk of the time was
spent in Stage 5. Thus BBR only added a few minutes to the total
processing time. For 9 DOF, the time increased to only 6 min; for 12
DOF, the time was about 15 min. Note that the computational load
only depends on the number of vertices on the surface; it is
independent of the size or resolution of the input image. This does
not take into account the amount of time needed to generate the
surfaces, which can be as much as 30 h if FreeSurfer is used. If one
needs to have very accurate registration, then it is likely that one will
need a very accurate model of the anatomy as well, and so generating
the surfaces might not require any additional computational over-
head. We also expect that BBR will perform well on surfaces of much
lower quality. For example, the tests above showed very little
deviation when less accurate FAST-based surfaces were used, and it
only took FAST a few minutes to run.

Other modalities

We have used BBR on several other modalities, including DWI, ex
vivo T1, ASL, and B0maps, which we report on qualitatively here. DWI:
we used the low-b volume as the input (the same that is used for
motion correction). The low-b images of DWI scans have the same
basic contrast and distortions as BOLD scans, and tend to be whole-
brain and of higher resolution (ours had 2 mm isotropic voxel size).
Visual inspection showed a similar pattern to the BOLD, i.e., CR and
NMI performing well but BBR being a little more accurate. Ex vivo T1-
weighted: our test images were very high-resolution (80 μm)
acquisitions of single hemispheres suspended in fluid and were
acquired using a special coil on a 7 T system. This is a real challenge for
CR and NMI, and they nearly always failed catastrophically. However,
BBR performs very robustly and accurately. ASL: we have run BBR on
both the tag and control images as well as on the difference images.
Visually, the registrations look to have about the same accuracy as CR
and NMI. Magnitude images from B0maps: the amount of gray–white
contrast in these images depends on the echo times at which they
were acquired. The ones we evaluated were acquired at 3 ms, which
produced very little gray–white contrast. BBR was still able to register
them, but the performance as about the same as CR and NMI.

Conclusions

Accurate and robust alignment of brain images is critical for
multimodal integration, surface-based intersubject analysis, long-
itudinal analysis, and pre-surgical planning. Due to the size of the
brain structures involved, registration accuracy frequently needs to be
better than 1 mm. Our new alignment procedure, called Boundary-
Based Registration, or BBR, adjusts alignment by maximizing image
contrast across tissue boundaries rather than matching intensities
between two images or by matching surface shapes. One of the
novelties of BBR is that it treats the two images asymmetrically: one
must be a high-quality image with good anatomical contrast suitable
for surface extraction; the other image (the “input image”) can be
from any modality that has at least a minimal amount of gray/white
contrast, e.g., BOLD fMRI, DTI, ASL, and PET; images from computed
tomography (CT) would not be a candidate for BBR as there is usually
no such contrast. The cost function is computed only from the
intensities of the input image. If integration across two input images is
needed, then they are both registered to the anatomical.
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On whole-brain, artifact-free BOLD data, CR and NMI perform
admirably, but BBR still systematically outperforms both. When the
entire brain is not imaged or the images have large intensity biases,
CR and NMI can fail catastrophically whereas BBR is consistent with
the whole-brain, artifact-free result to within 1 mm. BBR can even
accurately align a single functional slice to the anatomical, which
may facilitate some novel analysis techniques. The BBR cost function
capture range is narrow (+/−5 mm and +/−5°), which
necessitates having a method to initialize registration in the correct
basin of attraction. For this, we use existing implementations of CR
or NMI, thus we see BBR as an augmentation of those procedures
and not a full replacement. In the case where a partial-brain FoV is
needed, we recommend that the researcher also collect a fast
whole-brain image in the same session, then use a CR or NMI
whole-brain registration to seed the partial-brain BBR registration.
BBR is also extremely robust to wide variations in its own
parameters, and takes less than 4 min to run.

The key ingredient to BBR's performance is that it is based on a
strong anatomical model derived from a high-quality structural
image. This removes some of the burden from the (often) low-
resolution cross-modal image. For example, it does not need to be
skull-stripped and is insensitive to non-rigid effects such as jaw
position, tongue position, head-neck orientation and differential
image distortions. Using FreeSurfer's automated cortical anatomical
labeling, we can also exclude regions known to have intensity or
distortion problems in the cross-modal images (e.g., B0 distortion
regions in EPI). We have successfully used BBR for several difficult
applications in our lab, including high-resolution ex vivo imaging. We
freely distribute our implementation of BBR with FreeSurfer as the
“bbregister” function. Finally, like Saad et al. (2009), we strongly
encourage researchers to visually inspect the quality of their
registrations.
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