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Abstract

MRI reconstruction using super-resolution is presented and shown to improve spatial resolution in cases when spatially-selective RF
pulses are used for localization. In 2-D multislice MRI, the resolution in the slice direction is often lower than the in-plane resolution. For
certain diagnostic imaging applications, isotropic resolution is necessary but true 3-D acquisition methods are not practical. In this case, if
the imaging volume is acquired two or more times, with small spatial shifts between acquisitions, combination of the data sets using an
iterative super-resolution algorithm gives improved resolution and better edge definition in the slice-select direction. Resolution augmen-
tation in MRI is important for visualization and early diagnosis. The method also improves the signal-to-noise efficiency of the data
acquisition. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

In cases in which true 3-D image acquisition is not
effective or possible in MRI, it is common practice to
acquire a set of 2-D slices. Such is sometimes the case, for
example, in T2-weighted imaging, diffusion-weighted im-
aging, and MR angiography. These are all imaging tech-
niques that are important for early medical diagnosis and
visualization purposes, and usually require coverage of ex-
tensive 3-D volumes in the imaged subject. The problem, as
illustrated in Fig. 1, is that a set of 2-D slices does not give
a good isotropic 3-D image. MRI slice thickness is deter-
mined by hardware limitations coupled with pulse sequence
timing considerations. This results in resolution that is high
in-plane and is lower in the slice-select (or “through-plane”)
direction. Even data acquisition in all three orientations,
would not provide self consistent 3-D data sets viewable in
any oblique orientation.

In this work we address the challenge of achieving high-
resolution, isotropic 3-D MRI images from 2-D MRI slices.

A technique based on super-resolution is proposed in which
several sets of 2-D slices are merged, to provide the high-
resolution 3-D image. The method we present consists of
two stages. First, the acquisition of a small number of
multislice data sets, each volume shifted by a sub-pixel
amount in the slice-select direction with respect to the other
volumes. Second, the use of super-resolution post-process-
ing in the inter-slice ( z) dimension. Experimental validation
of the technique shows that the resolution in the z direction
is significantly improved. We show also that the SNR effi-
ciency (SNR per unit acquisition time) of image data sets
reconstructed using super-resolution is better than that of
images acquired directly with higher spatial resolution in
the slice-select direction. Preliminary results appeared in a
short abstract [1].

The structure of the paper is as follows: In section 2 a
brief overview of MRI is given, with a specific focus on 2-D
vs. 3-D MRI spatial encoding techniques. Section 3 dis-
cusses super-resolution algorithms. In section 4 the appli-
cation of super-resolution algorithms to MRI data sets is
investigated. Experimental results using echo-planar and
fast spin-echo imaging methods are given in section 5.
Computational aspects and quantitative performance evalu-
ation are discussed in section 6 and conclusions are drawn
in section 7.
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2. Background

Conventional two-dimensional multi-slice MR imaging
usually relies on the selection of 2-D planes (or slices) using
radio frequency (RF) pulses, and on in-plane encoding us-
ing frequency encoding of the signal in one direction and
phase encoding in the other in-plane direction. Usually each
slice requires multiple RF excitations to be applied to it in
order to be fully encoded. For reasons of pulse sequence
timing, and signal-to-noise ratio (SNR), there are disadvan-
tages to thin-slice excitation. RF pulses are finite in dura-
tion, thus a perfectly rectangular slice excitation is not
feasible. The thinner the slice that should be excited by the
RF pulse (i.e., the narrower the frequency band), the sharper
the edges of the slice excitation profile are required to be.
This translates to longer pulse durations, given the same
magnetic field gradient strength. Thin slice excitation is
particularly problematic when spectral-spatial pulses (used
for fat suppression) are applied. Long slice-selective pulses
increase echo times which increases the signal loss caused
by dephasing of the magnetization.

Three-dimensional acquisition techniques provide thin
sections and the ability to view interpolated data at high
resolution from any angle. In true 3-D image acquisition,
the third dimension is also phase encoded, and the RF
excitation pulses excite a thick slab defining the whole
imaging volume. Use of a short echo time is possible be-
cause of the short duration of the minimally-selective RF
excitation pulses. T1-weighted imaging is compatible with
3-D acquisitions, and, in this case, a short repetition time
improves the image contrast. True 3-D acquisition may not
be advisable in other imaging cases, such as in T2-weighted
imaging, diffusion-weighted imaging, and occasionally in
MR angiographic (MRA) imaging.

True T2-weighting is difficult to obtain in reasonable
imaging times by 3-D acquisition methods, although
progress is being made in this direction using fast-spin-echo

(FSE) methods [2]. The problem stems from the need for
relatively long signal recovery between excitations to en-
able operation of the spin-echo mechanism that provides T2

contrast. Since all the spins are excited by every pulse, the
recovery time cannot be utilized and the sequence takes a
long time.

Multi-slab 3-D Fourier imaging in which a number of
slabs are excited and each one is encoded by 3-D techniques
attempts to address the problem of wasted time in 3-D T2

imaging, but creates artifacts of its own. The artifacts in-
clude signal deterioration at slab edges, and increased point-
spread function and truncation artifacts due to the small
number of Fourier phase encodes in the slab-select dimen-
sion. A proposed solution to the problems of 3-D multi-slab
encoding involves the use of non-Fourier methods such as
Hadamard wavelets for encoding the third dimension [3].

Time-of-Flight (TOF) MR angiography (MRA) is an-
other popular application that sometimes performs better in
the 2-D rather than the 3-D version, e.g., in peripheral
non-contrast angiography.

For the important MRI application of diffusion imaging,
no 3-D technique for humans currently exists. Sequences
that acquire raw data pertaining to the same slice or volume
over many excitations cannot be modified to provide diffu-
sion-weighted contrast because of motion artifacts resulting
from phase inconsistencies in the data. Today, the most
popular solution is to base diffusion imaging on 2-D single-
shot techniques—mostly echo-planar imaging (EPI). Even
the in-plane resolution here is sub-optimal, but usually bet-
ter than the resolution in the third dimension. Isotropic
resolution is particularly important in diffusion tensor im-
aging—the technique used for delineating white matter fiber
tracts in the human brain in vivo [4].

In cases in which 3-D acquisition is not possible, it is
common practice to use a set, or sets, of 2-D slices. In this
work we propose a novel approach for achieving high-
resolution isotropic 3-D images by merging sets of 2-D
slices.

Newly developed parallel imaging techniques (see, for
example, Ref. [5] and references therein) will allow faster
acquisition, or higher in-plane resolution, at the expense of
SNR. Increasingly high commercial gradient strengths and
slew rates generated by local gradient coils will do the same.
High resolution in plane will call for thin-slice acquisition
which could bring the SNR down to values requiring signal
averaging in order to provide clinically useful images. The
ability to use super-resolution post-processing of thick
slices, as shown in this work, might in some cases provide
a much needed extra boost to the SNR.

3. Super-resolution algorithms

Super-resolution algorithms are a family of techniques
for creating a high resolution image from several lower
resolution images of the same scene, taken from slightly

Fig. 1. MRI slice acquisition. The resolution in the slice-select direction is
usually much lower than in the in-plane directions.
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different viewpoints. The first to address the problem have
been Huang and Tsai [6]. They were followed by Ur and
Gross [7], Irani and Peleg [8], Kim et al. [9], Tekalp et al.
[10] and others. Super-resolution is a very active research
area, motivated by emerging video technologies (e.g., [11]).

A general model of an imaging system is given in Fig. 2.
A high-resolution scene undergoes a geometrical transfor-
mation and optical blur. The low-resolution image is the
outcome of sampling and additive noise. The principle of
super-resolution algorithms is to acquire several low-reso-
lution images { gk}, with slightly different imaging condi-
tions, and then estimate the high-resolution source, f, that
best explains the low-resolution data. A variety of ap-
proaches can be found in the super-resolution literature.

3.1. The Irani-Peleg algorithm

The algorithm we use is based on the iterative back-
projection (IBP) method of Irani and Peleg [8]. A high
resolution image is constructed iteratively to best explain

the given data set of low resolution images. This is accom-
plished by minimizing the differences between the given
low resolution images, and low resolution versions of the
high resolution image. The latter are obtained by simulating
the imaging process, taking geometric transformations and
blur into account. Formally, if f is the high resolution image
we wish to reconstruct, and { gk}k�1

K are the given set of
low resolution images, the imaging process can be modeled
by:

gk � �Tk� f ��h�2s � �k (1)

where Tk describes the geometric transformation between
the k-th image and the reference frame, h corresponds to the
imaging blur kernel, 2 s is a down-sampling operator that
decreases the resolution by the factor s, and �k is an addi-
tive noise term. A flowchart describing the Irani-Peleg al-
gorithm is shown in Fig. 3.

In the Irani-Peleg algorithm, p is a “back-projection” kernel
(see Fig. 3). In order for the algorithm to converge, p should be
chosen so that the following condition holds: �� � h � p�2 � 1 [8].

Fig. 2. Linear imaging system.

Fig. 3. Block diagram of the Irani-Peleg superresolution algorithm.
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Stability considerations may suggest that p be other than the
inverse of h, at the expense of a slower convergence rate.

4. Super-resolution in MRI

Applying the super-resolution principle to MRI raises
several fundamental as well as technical issues. It turns out
that the differences between an MRI system and a common
camera hinder the straightforward extension of the super-
resolution algorithm to 3-D for use in MRI. These and other
issues specific to the application of super-resolution in MRI
are presented in this section.

4.1. Super-resolution dimensionality

Super-resolution, for images and image sequences, has
customarily been treated as a 2-D problem. Note that super-
resolution can also be applied to 1-D signals; the feasibility
of applying a 1-D super-resolution procedure to 2-D images,
improving resolution in one dimension at a time, depends
primarily on the separability of the physical 2-D blur kernel.
In our investigation of 3-D MRI data-sets we explored the
possibility of extending super-resolution methodologies to
3-D. The 3-D super-resolution methodology is a novel ap-
proach for treating volumetric data. We introduce the gen-
eral 3-D methodology next, and pursue an investigation of
its applicability to MRI data-sets in the following sub-
section.

The concept of obtaining a high resolution 3-D image
volume from a set of low resolution 3-D image volumes is
different from the extraction of a 2-D still image from a

sequence of 2-D video frames, or even from the incremental
generation of high resolution video frames from a low
resolution input sequence, as suggested by Elad and Feuer
[12]. The difference is the pooling, in true 3-D super-
resolution, of several 3-D data sets to simultaneously obtain
an entire 3-D higher resolution output set. An illustration of
the acquisition of voxel-shifted data sets is shown in Fig. 4.
The geometric relationship between low and high resolution
frames in 3-D sampling is shown. The large transparent
boxes represent voxels in the low-resolution acquired data.
The shaded box shows the position of a single high-resolu-
tion voxel within each of the low-resolution data sets. In the
presented example, a voxel in the high resolution image
volume is “covered” by 8 low resolution voxels.

The 3-D methodology is applicable to cases where:

1. Data acquisition covers a 3-D volume;
2. Successive data acquisitions add new information in

each dimension.

The extension of the Irani-Peleg algorithm from 2-D to 3-D
is conceptually straightforward, in principle requiring only
3-D models of the blur kernel h, the back-projection oper-
ator p, the individual geometric transformations Tk and their
inverse. Note that 2-D images (or 1-D “needles”) can be
extracted from the 3-D image.

4.2. In-plane vs. inter-slice investigation

An important issue for consideration when applying su-
per-resolution to MRI data, is the dimensionality of the
problem. An examination of Fourier-encoded MRI data sets
reveals distinct characteristics of the in-plane vs. through-

Fig. 4. Acquisition of voxel-shifted data sets. The geometric relationship between low and high resolution frames in 3-D sampling of MRI data. The large
transparent boxes represent voxels in the low-resolution acquired data. The shaded box shows the position of a single high-resolution voxel within each of
the low-resolution data sets. The Field of View (FOV) defined by the acquisition parameters on the MR scanner is shifted in this case by half a voxel in each
direction. Thus, a voxel in the high resolution image volume is “covered” by 8 low resolution voxels.
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plane encoding. These differences impose constraints on the
dimensions in which super-resolution can lead to useful
results.

Fourier-encoded in-plane MRI data is inherently band-
limited. This is due to the time limit of the acquisition
mechanism and the fact that the information is gathered in
the frequency domain (k-space). The spatial frequencies in
the z (inter-slice) direction exhibit a less sharp cut-off.
There is sufficient information in the z dimension such that
sampling of the data in that direction results in aliasing, and
thus provides the basis for using a super-resolution algo-
rithm in enhancing the resolution.

In order to verify that the above statements do in fact
reflect the reality of MR imaging, we acquired multislice
2-D image data sets shifted in all three spatial directions by
half a voxel (as shown in Fig. 4). A 3-D iterative super-
resolution algorithm was applied. In Fig. 5, we see an
original low-resolution image (top left) with its original
power spectrum (top right). This image is parallel to the y �

z plane, where y is one of the in-plane coordinates, and z is
the slice-select direction. The output of the super-resolution
process (double size in each dimension) is shown (bottom
left), with its power spectrum (bottom right). The sharp
frequency cut-off in the y direction is evident. A comparison
between the low-resolution spectrum and high-resolution
spectrum shows that the attempt to augment the in-plane
image resolution is equivalent to zero-padding extension of
the frequency domain. A spreading-out of the power-spec-
trum is evident in the z direction.

The investigation leads to the following conclusions:
First, without prior information about the data, the predic-
tion of higher spatial frequencies is not possible for Fourier-
encoded MR data. The best that can be done in the in-plane
( x and y dimensions) is to interpolate, via zero-padding, the
given data to the desired resolution. Previous results that
show improved images after application of super-resolution
to the in-plane dimensions [13] may be, in most part, rep-
licated by zero-padding. An important second observation is
that in the inter-slice direction, sub-voxel spatial shifts can
in fact be utilized to increase the resolution. It is in this
dimension that we apply the super-resolution algorithm.1

Fig. 6 shows the sub-voxel spatial shifts in the slice-
select direction, as used in this work. The input low-reso-
lution voxels are shown left, with the high-resolution voxels
via sub-voxel shifts, shown right. Experiments are con-
ducted with two, three and four shifts per voxel, enabling a
substantial augmentation in the slice-select resolution. The
number of shifts is determined so as to achieve (as much as
possible) isotropic resolution in all dimensions.

1 In principle, with non-Fourier encoding, other dimensions should also
be amenable to enhancement through super-resolution, although we have
not investigated this route.

Fig. 5. Spectrum analysis, ( y, z) plane. The horizontal axis is the slice-select direction. Top row: Low-resolution input (left), spectrum of low-resolution input
(right). Bottom row: High-resolution output (left), spectrum of high-resolution output (right).

Fig. 6. Acquisition with 1-D voxel shifts in the slice-select direction.
Low-resolution voxels (left). High-resolution voxels (right).

441H. Greenspan et al. / Magnetic Resonance Imaging 20 (2002) 437–446



4.3. Signal-to-noise ratio

When considering a method for resolution improvement
in MRI, one should make sure that the signal-to-noise ratio
(SNR) is not compromised. The signal-to-noise ratio (SNR)
of an MR image is often measured by taking the mean of a
high-intensity region of interest and dividing by the stan-
dard deviation of a region of noise outside the imaged
object. For the purpose of our comparison between recon-
struction methods, this definition is satisfactory.

RF excitation of a volume or slice leaves the affected
nuclear spins in a state of partial saturation. Multi-slice 2-D
imaging takes advantage of the time required for signal
recovery after RF excitation in order to excite and encode
many slices in an interleaved fashion. The time constant
associated with this signal recovery is referred to as T1.
Thus increasing volume coverage by adding more slices
increases the acquisition time approximately in proportion
to the number of slices, but may also improve the SNR due
to a longer repetition time (TR) between individual excita-
tions of a particular slice. However, when many slices need
to be acquired, as is often the case in clinical settings, the
incremental improvement in SNR of adding more slices
(thus adding time between consecutive excitations of the
same slice) is insignificant. In such cases, serial acquisition
of 2 or 3 sets of a smaller number of thicker slices with
correspondingly shorter repetition times, as described in this
work, does not negatively affect the spin recovery. In such
cases we find a clear SNR advantage to using our method of
data acquisition with super-resolution post-processing.

4.4. Parameterization

Successful implementation of the super-resolution algo-
rithm requires an estimate for the transformation and blur
parameters that most closely correspond to the true imaging
system parameters.

The point-spread function (PSF), or blur, h, in the slice-
select direction can be inferred from the slice excitation
profile. We measured typical slice profiles and found them
to be well approximated by Gaussian functions, where the
full width at half maximum (FWHM) was the originally
selected slice width. In our work we experiment with two
PSFs. The first is a rectangular pulse PSF (a crude estima-
tion for the slice profile), hereon termed Box-PSF. The box
width is taken as the selected slice width, in the desired
high-resolution pixel units. The second is a Gaussian PSF
(Gaussian-PSF), with FWHM set to the selected slice
width. In the implementation of the Irani-Peleg algorithm,
the h filter is taken as one of the above two PSFs. In both
cases, the p filter is taken as an impulse function. The choice
for p satisfies the Irani-Peleg requirement for convergence.

A key requirement for successful implementation of su-
per-resolution algorithms in general is precise image regis-
tration accurate to a small fraction of a pixel and capable of
bringing all the input images to a common reference frame.

The difficulty here depends on the number of degrees of
freedom in the inter-image transformations that have to be
accommodated. In the Irani-Peleg algorithm, the geometric
transformations Tk need to be known to sub-pixel accuracy,
preferably to 1/10th of a pixel. Then the iterative process
converges rapidly and provides good results. The threshold
used as a stopping condition in the Irani-Peleg algorithm
was 2% (see Fig. 3).

In our case, the accuracy and stability in the field of view
of MRI machines allows us to acquire a set of images of a
subject, each translated by a predefined sub-voxel vector
with respect to the 3-D reference frame. Depending on the
physical orientation of the slice-select direction, the shift
will be implemented either by shifting the patient bed, or by
moving the RF transmitter center frequency. In the super-
resolution algorithm, this eliminates the need for registra-
tion, since all the geometric transformations Tk (and their
inverse) are known in advance. We are provided with the
keys necessary for successful super-resolution processing:
all image volumes are brought to the same 3-D reference
frame reliably, accurately and without any computational
effort. It should be noted that we are assuming minimal
movement of the subject. For the more general case of a
moving imaged subject, the method proposed herein would
also benefit from image registration.

5. Experimental results

In order to evaluate the inter-slice super-resolution meth-
odology in MRI, we carried out a number of experiments:

Y Phantom experiments, in which acquired MRI data
sets of inanimate objects, thus assuring no subject
motion.

Y MR brain imaging experiments, in which we use
human brain data as input to the super-resolution
algorithm.

All imaging was performed with an RF head coil on either
a 1.5 Tesla General Electric Signa Echospeed MRI system
or a 3 Tesla General Electric MRI system.

We present a sample result from each of the experimen-
tal paradigms. The presented results include visual compar-
isons between the input low-resolution image (zoomed to
the desired size of the high-resolution result), the low-
resolution image following Sinc interpolation (zero-pad-
ding), the result of interleaving the sets of low-resolution
images and the result of using the super-resolution algo-
rithm on the low-resolution image set.

Interleaving is a method to achieve a high-resolution
image from a set of shifted low-resolution images by com-
bining the pixels, one by one from alternating low-resolu-
tion image inputs, to generate a single large image. This
method will give best results when the PSF of the sensor is
the same size as the high-resolution pixel. In our case, the
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PSF is much larger and its width is approximated by the size
of the low-resolution pixel in the z direction.

5.1. MRI resolution phantom

The homemade phantom consists of long thin plastic
partitions (“teeth”), lodged in a plastic block, placed 4 mm
apart, surrounded by Gd-DTPA-doped water. The imaging
sequence consists of multislice fast spin-echo (FSE) with 16
slices, 3 mm thick, approximately parallel to the plastic
partitions. Three sets of multislice data were acquired, with
1 mm shifts in the slice-select direction. The low-resolution
input voxel size is 1 � 1 � 3 mm. Following the super-
resolution procedure, an output voxel will be a 1 mm iso-
tropic cube.

Fig. 7 shows the results of super-resolution applied to

the comb-phantom MRI data. The horizontal axis is the
slice-select direction. In (a), the original low resolution
data is shown, followed by zero-padding interpolation
(b), interleaving (c) and super-resolution results in the
inter-slice direction (d, e). The super-resolution results
include a box-PSF (d) and a Gaussian-PSF (e).

Several observations may be made from the presented
results. The visibility of the comb teeth has greatly im-
proved by using super-resolution rather than zero-padding
interpolation. Moreover, super-resolution brings out more
information than interleaving. The super-resolution brings
out features that are inseparable in the source images. The
implementation of the super-resolution algorithm with a
Gaussian-PSF (e) gives slightly better results than when
using a Box-PSF (d). The comparison between the two PSFs
is interesting: better estimation of the high resolution image

Fig. 7. Super-resolution applied to comb-phantom MRI data. The horizontal axis is the slice-select direction. Shown are: original low resolution data (a);
zero-padded data (b); interleaved slices (c); inter-slice direction improved by super-resolution (Box-PSF) (d); inter-slice direction improved by super-
resolution (Gaussian-PSF) (e).
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is achieved by using a blurring filter, h, that more closely
matches with the MRI imaging system and the MRI image
characteristics in the slice-select direction.

5.2. Human brain

In the following example, we show super-resolution on
human brain data. The imaging sequence was fast-spin-echo
(FSE) with 3 shifts in the slice direction. The slice thickness
was 4.5 mm, the in-plane resolution was 1.5 mm and the
number of slices was 22.

Fig. 8 shows the low-resolution image (a), zero-padding
interpolation (b), super-resolution result with Box-PSF (c),
and the super-resolution result with Gaussian-PSF (d).
There is a clear improvement in the resolution of the images
as we progress from the low-resolution input to the Gauss-
ian-PSF super-resolution result.

6. Image analysis—resolution and SNR efficiency

In addition to visual evaluation of the output images,
quantitative measures of resolution and signal-to-noise ratio
(SNR) are computed and used to evaluate the performance
of the super-resolution algorithm.

6.1. Spatial resolution

Quantitative comparison of resolution is not a trivial
process. Currently we are basing our resolution estimate on
the measurement of edge widths. A sample of edges are
selected in one image, and then consistently compared
across all the images. The width of each edge is measured
by least-squares fitting it to a sigmoid function of the form:

y� x� �
1

1 � exp ��a� x � c��
. (2)

The parameter a is inversely proportional to the width, and
c corresponds to the center location. Following the fitting
step, a measure of “rise length” is computed, defined as the
width (in high-resolution pixels) from 10% to 90% of the
edge height. It is easy to show that:

width [pixels] �
4.4

a
. (3)

For the quantitative analysis of super-resolution, we used
an apple as the input source (due to the well defined outer
edges and relative lack of structure close to those edges).
Imaging was performed using the FSE sequence with an
echo train length of 16, a slice width of 4.5 mm with no gap
between them, and 3 shifts differing in spatial location by
1/3 of a pixel. The number of slices in each low resolution
data set was 22 and the repetition time between RF excita-
tions of the same slice was 8 sec. A high resolution data set
of 66 contiguous slices covering the same volume was also
acquired. We compared the width of 20 outer edges of the
apple for 5 different data sets: (a) the input low resolution
images following sinc interpolation (zero padding), (b) in-
terleaved result, (c) super-resolution result, Box-PSF, (d)
super-resolution result, Gaussian-PSF and (e) high-resolu-
tion source. A sample edge from the apple image is shown
in Fig. 9, along with the corresponding sigmoid function
that was fitted to it, for each of the cases compared. Results
are summarized in Table 1.

Several points may be learned from Table 1. Looking
across the columns, we note that the resolution in edge
width improves as we shift from the zero-padded input to
the high-resolution source. A clear improvement is present

Fig. 8. Human brain MRI. Shown are the low-resolution image (a), zero-padding interpolation (b), super-resolution result, Box-PSF (c), super-resolution
result, Gaussian-PSF (d).
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in the edge-width of the super resolution result, in compar-
ison to the zero-padded low-resolution source and the in-
terleaved results. The super-resolution process with Box-
PSF gives high-resolution results but not as high as a true
high-resolution acquisition (in cases where such an acqui-

sition is possible). The mean edge width of the Gaussian-
PSF super-resolution result is (almost exactly) identical to
the mean width of the edges in the high-resolution source.
This statistic indicates a successful augmentation of the
image resolution via the super-resolution procedure.

Fig. 9. A sample edge from the apple image and the corresponding sigmoid function fitted to it, for each of three cases compared. The squares, circles and
triangles show points on the sample edge, for zero-padding interpolated low-resolution image, super resolution image and high resolution image, respectively.
The dashed, solid and dotted lines show the sigmoid corresponding to the low-resolution, super resolution and high resolution data, respectively.

Table 1
Quantitative measures of SNR and resolution

Zero-padded Interleaved
Super-resolution
Box-PSF

Super-resolution
Gaussian-PSF High resolution

Acquisition time (min:sec) 1:28 4:24 4:24 4:24 4:00

SNR 287 276 170 124 95

Edge widths (pixels) 2.9 3.0 2.5 1.9 1.9
(7 of 20) 3.9 3.7 3.2 2.6 2.3

3.7 3.5 2.6 2.0 2.3
3.5 3.8 3.3 2.8 2.7
3.3 2.8 2.1 1.8 1.0
4.0 4.2 3.1 2.4 3.1
3.5 3.8 3.1 2.3 1.8
: : : : :

Mean (edge width pixels) 3.7 3.7 2.9 2.2 2.3

Comparison to
high resolution

�58% �57% �25% �3% 0%

SNR values are given as absolute ratio values. Resolution is measured as edge widths in the z direction. Results are given for an apple input. The edge
widths in each row correspond to the same edge. In the two last rows the mean edge width in each data set is listed, as well as the percentage difference
from the high-resolution data.
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6.2. SNR efficiency

The SNR values for the corresponding images decrease
as expected with the increased resolution. As one collects
more data in the MRI process (a long sequence), one obtains
a result with higher SNR for the same resolution. The ratio
between the SNR of the result and the square root of the
time length of the data acquisition sequence is called SNR
Efficiency. In an MRI process the goal is to obtain high
resolution images with a high SNR efficiency. Table 1
shows the SNR obtained from each of the methods under
comparison.

The sequence time of the high-resolution source was
4:00 minutes (�240 sec) and the sequence time for each of
the low resolution data sets was 1:28 min which gives 4:24
minutes (�264 sec) for complete collection of three shifts.
Division of the SNR by the square root of the image acqui-
sition times gives a SNR efficiency of 7.63 sec�1/2 for the
super-resolution result, and 6.13 sec�1/2 for the high-reso-
lution acquisition. It is possible to state from these results
that the super-resolution SNR efficiency is better than a
high-resolution MRI collection (at the same effective reso-
lution as measured by the edge widths).

7. Conclusion

This paper presents and demonstrates MRI inter-slice
reconstruction using super-resolution. With inter-slice su-
per-resolution we may be able to effectively break limits on
slice thickness posed by the physical properties of existing
MR imaging hardware.

For large volume coverage using multislice 2-D imaging
techniques, the acquisition of multiple data sets does not add
significant time to the data acquisition when compared to
the acquisition of thin slices. In such cases, the SNR effi-
ciency of this method appears to be better than 2-D thin
slice acquisitions. From a purely theoretical point of view,
the above finding can be explained by the following argu-
ment: acquisition of n sets of 2-D slices that are n times
thicker results in a SNR per unit volume that is �n greater
than that of a similarly timed total acquisition of one set of
thin slices. In any case, super-resolution provides the flex-
ibility to determine the extent of the trade-off between the
high SNR of the thick slices, and the high anatomical
accuracy of thin slices.

The overall spatial accuracy and stability in the field of
view of MRI machines, in all three axes, is far better than
their voxel size. This means that the imaged subject can be
reliably and accurately shifted by predetermined sub-voxel
steps between scans. Although for Fourier-encoded MRI
data-sets we showed that super-resolution may only be
usefully applied in the slice-select direction, a 3-D super-

resolution methodology is suggested for general volumetric
data-sets.

In conclusion, we are proposing a novel framework of
using super-resolution algorithms in MRI resolution aug-
mentation. The method is easily implementable because it is
based on a simple reconstruction algorithm and on existing
pulse sequences. In the MRI application domain super-
resolution may be of significant potential importance.
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