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Deep Learning: An Update for 
Radiologists

Deep learning is a class of machine learning methods that has been 
successful in computer vision. Unlike traditional machine learn-
ing methods that require hand-engineered feature extraction from 
input images, deep learning methods learn the image features by 
which to classify data. Convolutional neural networks (CNNs), the 
core of deep learning methods for imaging, are multilayered artifi-
cial neural networks with weighted connections between neurons 
that are iteratively adjusted through repeated exposure to training 
data. These networks have numerous applications in radiology, 
particularly in image classification, object detection, semantic 
segmentation, and instance segmentation. The authors provide an 
update on a recent primer on deep learning for radiologists, and 
they review terminology, data requirements, and recent trends in 
the design of CNNs; illustrate building blocks and architectures 
adapted to computer vision tasks, including generative architec-
tures; and discuss training and validation, performance metrics, 
visualization, and future directions. Familiarity with the key con-
cepts described will help radiologists understand advances of deep 
learning in medical imaging and facilitate clinical adoption of these 
techniques.

Online supplemental material is available for this article.
Published under a CC BY 4.0 license.
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work architectures.

	�Discuss neural network architectures adapted to different computer vision tasks.

See rsna.org/learning-center-rg.

SA-CME LEARNING OBJECTIVES

This copy is for personal use only. To order printed copies, contact reprints@rsna.org



1428  September-October 2021	 radiographics.rsna.org

requirements for training deep learning mod-
els, architectural building blocks that compose 
modern neural network architectures, the valida-
tion process for testing deep learning systems for 
radiology applications, and future directions in 
the field.

Definitions
Four key computer vision tasks for which deep 
learning models have been applied to medical im-
ages are classification, object detection, semantic 
segmentation, and instance segmentation (Fig 1).

Image Classification
Image classification is the task of predicting the 
class or label of an entire image and can be bi-
nary (two classes) or multiclass (more than two). 
An example is the binary classification of normal 
versus diseased chest radiographs.

Object Detection
Object detection refers to the identification and 
localization of individual examples of a specific 
entity of interest on an image or volume, such as 
the detection and localization of liver metastases 
on a CT image. An object detection algorithm 
typically specifies the location and spatial extent 
of detected objects with a rectangular box sur-
rounding the object (bounding box).

Semantic Segmentation
Semantic segmentation assigns each pixel in an 
image to a specific class. For example, each pixel 
in the liver could be assigned to parenchyma, 
tumor, or blood vessel. The output of this task 
would be a binary (black and white) image mask 
for each class, in which a pixel is “on” if it be-
longs to that class.

Instance Segmentation
Instance segmentation is the pixel-level detec-
tion and delineation of multiple objects within 
the same class, such as lung nodules individually 
distinguished on a chest radiograph. In contrast 
to semantic segmentation, instance segmentation 
requires an object detection step to separate the 
different objects (instances) of the same class.

Data
Training an effective CNN is dependent on 
labeled data. In classification, the data are images 
with category labels. In detection, the data are 
images and rectangular bounding box coordi-
nates delimiting features of interest. In segmenta-
tion, the data are images and image masks that 
provide labels for each pixel or voxel.

Preparing medical image data for machine 
learning tasks is a complex process that has been 

Introduction
Deep learning is a subfield of artificial intelligence 
that has achieved recent success and popularity for 
many complex problems (1,2). The breakthrough 
performance gains of deep learning systems in 
automated image analysis tasks have a variety of 
direct applications and implications for radiol-
ogy (3). In a previous article, Chartrand et al (4) 
reviewed the basic concepts underlying deep learn-
ing. We recommend referring to that article as an 
accessible introduction to the basic concepts. This 
article expands on the topics described in the prior 
article, with a deeper discussion of more recent and 
advanced topics.

Briefly, deep learning systems for imaging use 
multilayer neural networks to transform input im-
ages into useful outputs. A deep learning system 
learns not only the mappings of image features 
to the outputs but also the image features them-
selves. Example outputs include image categories 
(for image classification), object locations (for 
detection), and pixel labels (for segmentation). 
For image analysis, the fundamental architecture 
of deep learning systems is the convolutional 
neural network (CNN). A CNN designed for im-
ages contains convolutional layers that compare 
overlapping rectangular patches of the input to 
small learnable weight matrices (termed kernels 
or filters) that encode features.

Neural network architectures have rapidly 
evolved in size, complexity, and applications since 
the breakthrough performances of early CNNs in 
image classification. In this article, we review data 

TEACHING POINTS
	� Four key computer vision tasks for which deep learning mod-
els have been applied to medical images are classification, 
object detection, semantic segmentation, and instance seg-
mentation.

	� Medical images need labels to be used for supervised learn-
ing, the most common form of machine learning, in which 
the goal is to predict labels for new inputs. Depending on the 
task, labels for classification may arise from radiology reports, 
expert reviews, or clinical or pathologic data. 

	� Classification networks are the simplest deep learning archi-
tectures, as their goal is simply to predict a category for an im-
age. However, refinements of these architectures have trans-
lated into improvements in other applications as well, as the 
basic structures of these networks are often used as building 
blocks of more complex architectures.

	� Detection architectures build on the architectural innovations 
of CNNs, often incorporating the backbone of a trained clas-
sification network. However, detection architectures must not 
only classify objects in an image but also predict the coordi-
nates of bounding boxes that localize the detected objects.

	� Architectures for segmentation tasks such as semantic seg-
mentation and instance segmentation must label every pixel 
in an image.
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Medical images need labels to be used for 
supervised learning, the most common form of 
machine learning, in which the goal is to predict 
labels for new inputs. Depending on the task, 
labels for classification may arise from radiology 
reports, expert reviews, or clinical or pathologic 
data. Labels for detection and segmentation tasks 
are more complicated and time-consuming to 
create compared with classification datasets. Dis-
tributing the labeling task among more human 
labelers reduces the labeling burden on individu-
als but increases overall labeling work and raises 
consistency issues that may require averaged or 
consensus labels among several labelers. Recent 
experiments have found value in crowdsourced 
segmentation labels by nonexpert reviewers 
(10,11). For tasks with abundant imaging data, 
low-quality labels may be sufficient to train a 
network. Weak supervision describes training 
on such low-quality or noisy labels, as may arise 
from natural language processing of radiology 
reports (12).

reviewed in detail (5,6). For deep learning, it is 
critical to have training images that are repre-
sentative of the task to be solved. Images from a 
single medical center may be insufficient to train 
a model for a given task or may be biased because 
of the sampled population. Multicenter datasets 
help to address these problems but introduce 
challenges related to privacy as well as standard-
ization of image acquisition and labels.

With limited data, it is easy for a model to be 
trained to the point of predicting labels perfectly 
on the training data but poorly on new data; such 
a model is said to overfit the training set (7) or to 
exhibit poor generalization. One common way to 
expand the training dataset to prevent overfitting 
is image augmentation (Fig 2). Simple methods of 
increasing the number of training images include 
random translations, rotations, flips, scalings, crops, 
and brightness and contrast adjustments. There has 
also been interest in generative adversarial net-
works (GANs) (discussed further in this article) to 
produce fake images that resemble real images (9).

Figure 1.  Computer vision tasks as depicted on axial contrast-enhanced CT images. (a) Classification aims 
to assign a label from a list to a given image (eg, liver metastases). (b) Object detection aims to locate lesions, 
structures, or organs (eg, liver metastases are in red squares, the aorta is in a green square, the stomach is in a 
blue square, and the spleen is in a yellow square). (c) Semantic segmentation assigns an object category label 
to each pixel in the image (eg, all liver metastases are in yellow). (d) Instance segmentation assigns individual 
labels to each pixel in the image (eg, individual liver metastases are segmented in red, blue, purple, and yellow).
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Since the labeling process is expensive, semisu-
pervised learning methods use unlabeled images 
to augment the dataset, allowing the network 
to learn more about the underlying structure of 
unseen data. The simplest semisupervised method 
is pseudo-labeling, whereby a partially trained 
model predicts labels (termed pseudo-labels) for the 
unlabeled data, and these pseudo-labeled images 
are then incorporated into further training (13).

Innovations in image augmentation and label-
ing cannot fully replace the need for labeled real 
image datasets with sufficient variations in subject 
or lesion appearance. Despite barriers in sharing 
medical image data, there have been increasing 
examples of public medical image datasets. Some 
prominent datasets are listed by the Data Science 
Institute at the American College of Radiology 
(14) and the Cancer Imaging Archive (15).

Convolutional Neural Networks

Toward Deeper Networks
One of the defining features of deep CNNs is the 
number of hidden layers within the networks (Fig 
3). Shortly after the groundbreaking performance 
of AlexNet (17) in the 2012 ImageNet Challenge, 
many networks have been designed to improve 
its performance, with a trend toward larger and 
deeper neural networks (Fig 4). The increase in 
layers has been postulated to increase the capac-

ity of a network to learn complex features (Fig 5). 
However, deeper networks can be more difficult to 
train, and the addition of layers has been observed 
to lead to performance degradation and higher 
training error (23,24). Further architectural refine-
ments were required to improve model training 
and performance, as detailed further in this article.

Skip Connections
Skip connections are shortcut connections from 
one layer to a deeper layer, skipping one or more 
layers (Fig 6). A skip connection typically adds 
or concatenates the output of a shallower layer 
with the output of a deeper layer. These connec-
tions were empirically found to improve training 
of very deep neural networks, starting with the 
residual neural network (ResNet) (23). The in-
formal intuition behind these connections is that 
they allow the skipped layers to fit a residual or 
error mapping, which may be easier than training 
those layers to fit a more complex full mapping. 
Further analysis has shown that skip connections 
facilitate training by eliminating large irregulari-
ties in the shape of the loss function, which mea-
sures the output error of the model (25).

Bottleneck Blocks
Bottlenecks in neural networks improve com-
putational efficiency by reducing the number of 
feature maps (Fig 7). A feature map or channel 

Figure 2.  Diagrams demonstrate data augmentation. (a) Classic data augmentation consists of applying various transformations 
(random translations, rotations, flips, scalings, crops, and brightness and contrast adjustments) to initial CT images and using these 
new CT images for training. (b) Synthetic data augmentation uses a generative adversarial network (GAN) to produce additional syn-
thetic images that have a statistical distribution similar to that of the initial dataset. In this example, a CycleGAN is trained to convert 
contrast-enhanced CT images to noncontrast images. The trained generator is then used to augment the initial dataset for training 
on a task segmenting noncontrast images, as proposed in reference 8.
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in a CNN is the output of a convolution kernel 
applied to either an input image or to the set of 
feature maps produced by the previous neural 
network layer. The number of output feature 
maps from a layer is therefore the number of 
convolution kernels in the layer. Bottlenecks are 
implemented by a set of 1 3 1 convolution ker-
nels, which preserve the spatial dimensions of the 
previous layer but can change the number of fea-
ture maps (dependent on the number of convo-
lution kernels). Reducing the number of feature 
maps reduces the computational complexity of 
subsequent convolution operations and effectively 
compresses the input feature maps into a more 
compact representation. The number of feature 
maps can be subsequently augmented by a 1 3 
1 convolution layer with more output channels 
than input channels. This architecture was used 
effectively in Inception modules (27), as well as 
in the building blocks of ResNets (23).

Multibranch Convolutions
Multibranch convolutional architectures use 
convolutional operations in parallel in place of 
a single convolution (Fig 8). Each branch, for 
instance, can process information at a different 
spatial scale; the outputs of the branches are then 
aggregated by concatenation or summation. Such 
multibranch architectures (Fig E1) are postulated 

to efficiently increase the representational power 
of the network, with prominent examples again 
seen in Inception modules (Fig E1) (27) and the 
ResNeXt architecture (23).

Wider Networks
Owing to diminishing returns in neural network 
performance with increasing depth, there has also 
been work on scaling the width of the networks, 
referring to the number of feature maps or 
channels per convolutional layer. Wide residual 
networks (Wide ResNets) in some cases can 
be trained more easily and perform better than 
deeper conventional ResNets (28) although at 
the expense of increased number of parameters 
and memory requirements. More recently, the 
EfficientNet family of models scales depth, width, 
and resolution of networks in a balanced manner 
to provide an effective trade-off between size and 
accuracy (29).

Ensembles of Networks
Combining the results of an ensemble of inde-
pendently trained neural networks can improve 
performance (Fig 9). Ensembles have produced 
winning results in ImageNet image classification 
competitions (30), as well as in radiology tasks 
such as pediatric bone age prediction and pneu-
monia detection (31,32). Recent experimental 

Figure 3.  Fully convolutional networks typically consist of a stack of layers performing successive convolutions on an input (eg, an 
image), as depicted in this diagram. The first input layer on the left corresponds to the original image, with individual signal intensities 
for each pixel. The successive convolutional layers color coded in orange allow the extraction of features to compute intermediate 
representations. The changes in box size indicate the evolution of the dimension of the feature maps after successive convolutions 
and pooling operations. The prediction layer color coded in green predicts the class of each pixel. In this example, the presented 
architecture allows further segmentation and detection of lesions and organs (16).
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Figure 4.  Evolution of deep neural networks toward deeper architectures. The increase in layers may increase the capacity of a 
network to learn complex features. Representative models are shown here: AlexNet (a) (17), VGG16 (b) (18), and VGG19 (c) (18). 
The numbers below the convolution layers color coded in orange indicate the two-dimensional (2D) kernel size and the number 
of channels. The maximum (Max) pooling operations color coded in blue consist in extracting the maximum value in a kernel to 
preserve information while reducing computation requirements. The changes in box size indicate the evolution of dimensions of the 
feature maps after successive convolutions and pooling operations. The fully connected layers color coded in pink allow reasoning 
about the entire image.

work with neural network ensembles suggests that 
independently trained networks effectively sample 
from different local optima in the solution space 
and improve accuracy through functional diver-
sity (33).

Architectures Adapted to Tasks

Classification Architectures
Classification networks are the simplest deep learn-
ing architectures, as their goal is simply to predict 
a category for an image. However, refinements of 
these architectures have translated into improve-
ments in other applications as well, as the basic 
structures of these networks are often used as build-
ing blocks of more complex architectures (Fig 10).

The basic CNN building blocks described pre-
viously are combined to create the architecture 
of a backbone encoding CNN network. This base 
network progressively downsamples the input 
image in the spatial dimensions while translating 
the spatial information into semantic information 

encoded in the channel dimension. The final lay-
ers distill the encoded semantic information into 
a limited number of task-specific classes.

Detection Architectures
Detection architectures build on the architectural 
innovations of CNNs, often incorporating the 
backbone of a trained classification network. How-
ever, detection architectures must not only classify 
objects in an image but also predict the coordi-
nates of bounding boxes that localize the detected 
objects. The most common detection architectures 
can be organized into two categories on the basis 
of the number of stages in the detector (Fig 11).

Two-Stage Detection.—In two-stage detectors, 
the first stage is used to propose a sparse set of 
candidate regions for objects in the image, and 
the second stage classifies the proposals. Regions 
with CNN features (R-CNN) (37), Fast R-CNN 
(38), and Faster R-CNN (35) were a pioneer-
ing series of detectors that used this two-stage 
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design. Successive architectures within the series 
were characterized by progressive optimizations, 
including sharing of computations between the 
first and second stages.

Single-Stage Detection.—Single-stage detec-
tors directly provide classifications and bound-
ing boxes in a single CNN. These networks 
have the advantage of high efficiency but until 
recently have been less accurate than two-stage 
approaches. A series of networks called You Only 
Look Once introduced the approach of predict-
ing a fixed number of bounding boxes regularly 
distributed over an image and classifying the 
presence of objects within the boxes (36,39). The 
Single-Shot Detector network was one of the first 
to demonstrate that the pyramidal shape of the 

feature hierarchy of a CNN could be leveraged to 
predict objects at different scales (40).

A limiting factor for accuracy in early single-
stage architectures was the large imbalance 
between true and false positives among the large 
number of candidate object locations. To ad-
dress this problem, the RetinaNet architecture 
introduced a new focal loss function that helped 
focus training on difficult misclassified train-
ing examples (41). RetinaNets were the basis of 
several top-ranking solutions in the Radiological 
Society of North America pneumonia detection 
challenge (32).

Feature Pyramid Networks.—Feature pyramid 
networks (FPNs), proposed by Lin et al (42), 
are a cornerstone of modern object detection 

Figure 5.  Graphs show the evolution of performance for three 
computer vision tasks (object detection, classification, and seg-
mentation). The highest performance per model and year are 
shown in red. (a) Graph shows the average precision (AP) for ob-
ject detection task on the Common Objects in Context (COCO) 
dataset (19). (b) Graph shows the top-1 accuracy (accuracy of 
predicted class with the highest probability) for classification 
task on the ImageNet dataset (20). (c) Graph shows the mean 
intersection over union (mIOU) for segmentation task on the 
PASCAL VOC 2012 dataset (21). The data were extracted from 
reference 22. The mIOU depicts the mean overlap of the pre-
dicted segmentations with ground truths. CFNet = cascade and 
fused network, CSP = cross stage partial network, D-RFCN = de-
formable region-based fully convolutional networks, DetectoRS = 
detecting objects with recursive feature pyramid and switchable 
atrous convolution, FCN = fully convolutional network, FPN = 
feature pyramid networks, HiRes = high resolution, NAS = neural 
architecture search, PSPNet = pyramid scene parsing network,  
SNIP = scale normalization for image pyramids, TDM = top-
down modulation, VGG = Visual Geometry Group.
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Figure 7.  Bottleneck blocks.  
(a) Diagram shows a convolution 
layer color-coded in orange that 
indicates a 3 3 3 kernel size with 
256 channels. (b) Diagram shows 
a bottleneck block that takes ad-
vantage of convolution layers 
color coded in green to indicate a 
1 3 1 kernel size to decrease the 
dimension of channels to 64 and 
reduce the computation burden. 
(c) Graph shows that the number 
of channels (color coded in blue) 
is preserved without a bottleneck 
block and reduced with bottle-
neck blocks (color coded in red). 
(d) Example table shows the cal-
culations for the two scenarios in 
a and b (26).

Figure 6.  Skip connections are shortcut 
connections from one layer to a deeper 
layer, skipping one or more layers. (a) Di-
agram shows the standard neural network 
architecture, with successive connections 
between layers. (b) Diagram shows the 
skip connection by element-wise addition 
as used in the ResNet architecture, color 
coded in red. (c) Diagram shows the skip 
connection by channel-wise concatena-
tion as used in DenseNet architecture, 
color coded in red. (d) Artistic rendering 
of the loss function in the case of direct 
connections, as presented in a. (e) Artis-
tic rendering of the loss function in the 
case of skip connections, as shown in b 
and c. Skip connections tend to induce 
smoother loss landscapes compared with 
direct connections, thus facilitating con-
vergence (ie, iteratively converging to-
ward the minimum of the loss function) 
during training (25).
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Figure 8.  Multibranch convolutions diagrams. (a) The input is processed in parallel by several layers, 
and the output consists in the concatenation of these layers. (b) The Inception module diagram exhibits 
four parallel branches (27).

Figure 9.  Ensemble networks diagram. A set of trained models, with identical or different architectures, is used to generate multiple 
predictions, which are then processed by fully connected layers to provide a prediction. This ensemble architecture can be used for 
various computer vision tasks (eg, detection, classification, and segmentation) (30).

Figure 10.  Architecture for classification diagram. A deep convolutional network for image classification can combine several con-
volution, maximum pooling, and average pooling layers. A convolution layer comprises image filters that detect features relevant to 
the task at hand. Maximum pooling operations (MaxPool) downsample by sliding a small window (eg, 2 3 2 pixels) across the image 
and taking the maximum value within the window. Average pooling (AvgPool) is analogous to maximum pooling, except the aver-
age value is used. Dropout randomly turns off neurons (ie, weights) within a layer to prevent overfitting. Fully connected layers are 
typically used at the end of the CNN to map the feature vector to the predicted classes. Throughout the architecture, feature maps 
from different branches are joined together (concatenation), and outputs from different layers are summed (residual connections). 
This increases the representational power of the CNN and stabilizes the training process (34).
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approaches in both single-stage and two-stage de-
tectors (Fig 12). CNN architectures progressively 
increase the number of feature maps throughout 
the depth of the network; for computational ef-
ficiency, the input image must be downsampled 
to accommodate more feature maps. Thus, there 
is a trade-off between the spatial resolution of 
the feature maps and the semantic richness of 
their contents. This is especially relevant in object 
detection, as the decreased spatial resolution of 
deeper feature maps leads to difficulty in identify-
ing small objects. FPNs were developed as a solu-
tion to this problem and comprise two parts: a 
bottom-up pathway, which is simply the conven-
tional CNN backbone, and a top-down pathway, 
which progressively upsamples the deeper seman-
tically rich feature maps to a higher spatial reso-
lution (43). Importantly, shallower feature maps 
are processed by a 1 3 1 convolutional layer and 
added to the output of each level of the top-down 
pathway to provide valuable spatial information 
for object detection. These more powerful feature 
maps are then provided as input to the final clas-
sification and bounding box heads.

Segmentation Architectures
Architectures for segmentation tasks such as se-
mantic segmentation and instance segmentation 

must label every pixel in an image. Using CNNs 
efficiently for segmentation requires solving an 
upsampling problem, in which low-resolution se-
mantically rich maps produced by convolutional 
and pooling layers must be converted to high-
resolution segmentation masks.

Upsampling Techniques.—Two important opera-
tions that perform upsampling are unpooling 
and transpose convolution (Fig 13). Unpool-
ing involves recording the locations of maxima 
in each pooling operation and later using these 
locations to convert a low-resolution feature map 
into a sparse higher-resolution representation. 
Transpose convolution is an upsampling opera-
tion using kernels with learnable weights. In 
contrast to conventional convolution, which sums 
the products of kernel elements with input pixel 
values, transpose convolution uses pixel values of 
the input as weights for copies of the kernel to be 
added to the higher-resolution output.

Encoder-Decoder.—The fully convolutional net-
work (16) pioneered an encoder-decoder design 
for segmentation. An encoder network uses a 
series of downsampling convolutional layers from 
a classification model to output a low-resolution 
spatial map instead of classification scores. A 

Figure 11.  Architectures for object detection diagrams. (a) Two-stage detection involves a region proposal network (RPN), which 
generates a set of region of interest (ROI) proposals based on possible objectness (step 1) before further classification (step 2) (35). 
(b) Single-stage detection combines a class probability mask with regions extracted from the initial image (36).
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Figure 12.  Feature pyramid network diagram. Bottom-up pathway (left) consists of consecutive convolutions produc-
ing a pyramidal hierarchy of feature maps at several scales. The coarsest feature map, which encodes the semantically 
strongest features, is then upsampled along the top-down pathway (right). Lateral connections (horizontal arrows) 
merge localization-rich information from bottom-up feature maps with semantic-rich information from the top-down 
feature maps. (Adapted and reprinted, under a CC BY 4.0 license, from reference 33.)

Figure 13.  Diagrams of upsampling techniques. (a) Unpooling saves locations of maxima in pooling operations, using them later 
to upsample low-resolution feature maps. (b) An example of transposed convolution to upsample initial dimensions of a 2 3 2 input 
image to a 3 3 3 output image. First, each element of the input separately multiplies the kernel. Products are then summed, taking 
into account initial locations in the input, leading to a final 3 3 3 output (44).
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subsequent decoder network upsamples these 
maps by using transpose convolutions to produce 
per-pixel labeled outputs. SegNet uses both trans-
pose convolution and unpooling in the decoder to 
upsample low-resolution encoder maps (45).

U-Net for Semantic Segmentation.—The U-Net 
is a popular architecture originally developed for 
segmenting microscopy images (46) but which 
continues to be widely used both within and out-
side the medical domain. U-Net has a symmetric 
U-shaped architecture in which a descending 
encoder portion downsamples the image and 
produces increasingly abstract representations 
and a subsequent ascending decoder portion 
uses transpose convolutions to upsample these 
representations to the original dimensions of the 
image (Fig 14). A key component of the U-Net 
design is the use of horizontal skip connections 
that facilitate the upsampling process by copying 
features from encoder stages directly to resolu-
tion-matched decoder stages.

An alternative method for evaluating features 
at several scales is to use dilated (also known 
as atrous) convolutions (Fig 15) (49). Dilated 
convolutions are convolution operations with 
expanded kernels that contain spaces between 
adjacent kernel elements. These kernels allow 
modeling of larger scale dependencies among 
pixels without losing resolution. Dilated convolu-
tions are a central component of the DeepLab 
family of segmentation architectures (50).

Mask R-CNN for Instance Segmentation.—Com-
pared with semantic segmentation, there has 
been less work on instance segmentation owing 
to fewer use cases and increased complexity of 
the instance segmentation problem. Instance 
segmentation can be considered as a problem 
of simultaneous object detection and semantic 
segmentation. The Mask R-CNN architecture 
is a prototypical two-stage network for instance 
segmentation that extends previous work on two-
stage detection models (47). As in the detection 

Figure 14.  Diagrams show segmentation architectures: U-Net for semantic segmentation and Mask R-CNN for instance segmenta-
tion. (a) In the U-Net architecture, an input image first follows a succession of convolution and pooling operations to downsample 
the image and produce feature maps that represent an abstract representation. Then, features maps are upsampled and concat-
enated along the expanding path through skip connections to provide a segmentation map with the same spatial dimensions as the 
input image. The U-Net architecture, dedicated for segmentation, may be as deep as required by the data (46). (b) The Mask R-CNN 
architecture contains two parts: the first part includes a region proposal network applied to feature maps (red and yellow map beside 
convolution layer) to identify multiple regions of interest, followed by a second part to generate three outputs: bounding box for 
detection, classification for the category of object (eg, metastasis, hemangioma, or cyst), and instance segmentation of individual 
objects (47).
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models, the first stage proposes candidate regions 
of interest, while the second stage predicts 
bounding boxes and object classifications. Mask 
R-CNN adds a branch to the second stage that 
predicts a binary mask for the region of inter-
est for each object category by using a convolu-
tional architecture based on a fully convolutional 
network. The detection and mask components of 
the model are trained jointly to produce instance 
segmentation masks (Fig 14).

Generative Architectures
GANs (8) have rapidly evolved with a broad 
range of computer vision applications. Typi-
cally, a GAN consists of two distinct networks: 
a generator, which aims to learn to create “fake” 
images that appear to fit into the distribution of 
training samples, and a discriminator, dedicated 
to distinguishing samples from the training set 
(real) or from the generator (fake). In the origi-
nal vanilla GAN (Fig 16), random noise is trans-
formed by the generator and submitted to the 
discriminator. Training alternates between the 
discriminator and generator, with both networks 
improving to a point where ideally the generator 
produces realistic images. Conditional GANs, 
or cGANs (51), use extra input information (eg, 
labels or data from other modalities) to force 
structure on how the generator produces images. 
CycleGANs (52) use images as input to trans-
late them from one domain to another, such as 
T2-weighted MR images into T1-weighted MR 
images (53).

In medical imaging, GANs have been applied 
to classic tasks such as detection, classification 
(54), and segmentation (55), as well as to image 
reconstruction (56), synthesis (57), and registra-
tion (58). GANs have also been used for data 
augmentation to increase the training dataset 
size (8).

Training and Validation

Training
Training a neural network involves fitting the 
model weights to a training dataset to achieve 
good performance on a given task, such as clas-
sification or detection. Several factors affect the 
training performance, speed of convergence 
(finding a solution), and whether the model will 
perform well on new data.

Model Selection.—Given the wide variety of neural 
network designs, selecting a suitable architecture 
for a task may be an iterative process. Design 
choices are often based on one’s intuition about 
the task. Experimenting with different loss func-
tions and probing intermediate results within the 
network can also provide useful information about 
how to use specific layers or network configura-
tions. Model exploration may start with a simple 
architecture known to work on a similar task. Once 
convergence is observed on the first training itera-
tions, the capacity of the network, represented by 
the number of trainable parameters, is increased 
until overfitting is observed on a validation dataset.

Hyperparameters.—While millions of parameters 
are automatically optimized during the training 
phase, some of them called hyperparameters are 
set manually, such as the number of layers and 
the learning rate. Using systematic grid search 
or random search for hyperparameters may be a 
good strategy to find suitable values (59).

Among the hyperparameters for training, the 
learning rate most directly affects the training 
convergence speed by specifying how much the 
model weights are updated with respect to the loss 
gradient at each training step. A small learning rate 
can result in slow training and possibly overfitting 
(60), while a large learning rate causes the training 

Figure 15.  Dilated convolutions as depicted on axial contrast-enhanced CT images. (a) One-dilated convolution is equivalent to a 
standard convolution; that is the receptive field (yellow tiles) has the same size as the kernel (red dots). (b, c) Two-dilated (b) and 
four-dilated (c) convolutions increase the receptive field and thus introduce more contextual information in the process while main-
taining a constant output shape (48).
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process to diverge. A cyclical learning rate which 
rises and falls during training may reduce training 
time and improve accuracy (61), likely by overcom-
ing local minima in the loss landscape.

Regularization.—Regularization refers to strate-
gies designed to prevent overfitting during train-
ing, sometimes at the expense of increased train-
ing error. Regularization can take many forms. 
Early stopping involves monitoring validation 
error during training and stopping training when 
validation error starts increasing (2). Weight de-
cay penalizes extreme values of network weights, 
considered a symptom of overfitting. Dropout 
directly affects the capacity of the model by 
randomly removing a subset of neurons from the 
network at each training step, forcing the network 
to employ different computation pathways to 
reach the same output, and making the network 
as a whole more robust (62).

Data Sampling.—Data sampling can also affect 
convergence speed and performance. A common 
challenge is imbalance of classes in a dataset, for in-
stance when healthy cases significantly outnumber 
diseased cases. Randomly sampling such a dataset 
is likely to push the model toward classifying most 
cases as healthy, reaching high specificity but poor 
sensitivity for disease. Common solutions to miti-
gate this imbalance include strongly weighting the 
minority class in the loss function (63) or oversam-
pling the minority class to expose the model equally 
to all classes (64). Focusing on difficult recurrently 
misclassified cases may also improve training ef-
ficiency (65). In addition, an example of normaliza-
tion, the process of shifting and scaling variables so 
that they have comparable statistical distributions, 
can be found in Figure E2 (66).

Transfer Learning.—Owing to barriers in shar-
ing medical image data, sufficient labeled training 
images are often not readily available for a given 
task. Transfer learning is a process by which models 
pretrained on larger generic image datasets such 
as ImageNet (20) can be fine-tuned for tasks on 
smaller datasets. Transfer learning can mitigate 
data requirements for model convergence and has 
become routinely used in medical imaging research.

Validation
The performance of a deep learning model on 
training data does not predict its ability to general-
ize to unseen data. A standard strategy to improve 
and predict the generalizability of a model is to 
split a dataset randomly into three subsets: training, 
validation, and test sets. The split should be disjoint, 
such that the same patient is not represented in 
more than one set. It may also be helpful to balance 
the sets by stratifying the split according to variables 
such as sex, age, or label prevalence.

The model’s weights are optimized by using 
the training set data. The validation set is used 
to tune model hyperparameters, with periodic 
evaluation of model performance on validation 
set data guiding the training process. Progres-
sively worsening performance of the model on 
the validation set data is a sign of overfitting.

The test dataset, unseen by the model during 
training, is used to assess a fully trained model’s 
ability to generalize to new data. Ideally the test 
dataset is evaluated only once. Multiple evaluations 
of the test dataset among several training cycles 
may lead to overfitting on the test set, invalidating 
its utility for predicting real-world performance.

Real-world performance of a model can be 
further assessed by separate datasets that are 
completely external from the original data col-

Figure 16.  Standard GAN architecture diagram. A first network, known as the generator (G), aims to transform a random input into 
a realistic image to fool a second network, known as the discriminator (D). During training, the generator learns from the response 
of the discriminator (8).
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lection. Such an assessment may include tempo-
ral validation with newly recruited patients, or 
geographic validation with data from a different 
site (67). Geographic validation may be especially 
helpful to evaluate how a model works on data 
acquired with different equipment or technical 
parameters or with different patient populations.

Once a model is deployed, performance 
should be monitored to detect any bias or loss 
of accuracy. Modes of continuous learning have 
been proposed to keep models current with 
changing data and equipment configurations 
(68). For instance, feedback from radiologist us-
ers who may accept or reject the findings of the 
system could theoretically be used as new train-
ing data to improve performance.

Performance Metrics
Metrics are the quantitative assessment of model 
performance during training, validation, and 
monitoring steps. Appropriate selection of met-
rics is dependent on the task (Fig 17).

For simple binary classification (eg, assess-
ing whether some disease process is present), 
the common biostatistical metrics of sensitivity, 
specificity, and positive and negative predictive 

probability can be applied. As deep learning 
models typically output a probability that an 
image belongs to a particular class, a decision 
threshold probability can be adjusted to trade off 
sensitivity and specificity in the model. Cali-
bration plots assess the accuracy of a model’s 
output probability by plotting the fraction of true 
positives in a test set as a function of the output 
probability. A diagonal line on the calibration 
plot represents perfect calibration, meaning that 
the output probability of the model accurately 
measures the model’s uncertainty.

A receiver operating characteristic (ROC) 
curve depicts the trade-off of sensitivity and spec-
ificity by plotting the true-positive rate (sensitiv-
ity) versus the false-positive rate (1-specificity) as 
the decision threshold is varied. The area under 
the ROC curve (AUC) provides a measure of 
model performance across all decision thresholds, 
with a perfect model having an AUC of 1 and a 
random model having an AUC of 0.5. However, 
from a practical standpoint it is useful to report 
sensitivity and specificity at a decision threshold 
optimized for the intended use case of the model.

For multiclass classifications (eg, for mul-
tiple lesion types), statistics for each class can be 

Figure 17.  Common metrics used to assess model performances on various tasks: calibration plot for prediction probabilities (a), re-
ceiver operating characteristic curve (ROC) for classification of binary classes or dichotomized ordinal classes (b), confusion matrix for 
classification of multiple classes of objects (c), intersection over union (IOU) for segmentation and detection (d), and Dice score (e). 
Both IOU and Dice score quantify the degree of spatial overlap between ground truth and predicted masks.
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reported. These statistics can be averaged across 
classes, optionally weighting each class accord-
ing to its prevalence in the test set. Confusion 
matrices are contingency tables that tabulate the 
predicted classes for the instances of each actual 
class in a test set and are useful to help evaluate 
whether particular classes tend to be confused.

Object detection and segmentation require 
metrics that describe how well a predicted area 
matches the ground truth area, which is typically 
delineated by a radiologist. The intersection is 
the overlap between the predicted area and the 
ground truth area, while the union is the total 
area encompassed by the prediction and ground 
truth. Intersection over union and Dice score 
(69) combine these measures in slightly different 
ways, but both equal 1 in the case of a perfect 
match between prediction and ground truth.

For object detection, a particular detection can 
be considered correct by comparing intersection 
over union with a cutoff value (eg, 0.5). Preci-
sion is the number of true-positive detections as a 
fraction of all detections and measures the model’s 
positive predictive value. Recall is the number of 
true-positive detections as a fraction of all ground 
truth objects and measures the model’s sensitiv-
ity. Thresholding the confidence values assigned 
to bounding boxes by an object detection model 
is used to trade-off precision and recall, resulting 
in a precision-recall curve (analogous to an ROC 
curve). Average precision (AP) summarizes model 
precision across the entire range of recall values 
and is calculated by a modified area under the 
precision-recall curve, analogous to the AUC. The 
mean AP is the average of the AP calculated for all 
the detected types of objects.

Visualization
While deep neural networks can perform state-of-
the-art image classification, clinical users typically 

want to visualize the areas in an image that ex-
plain a particular classification. Such visualization 
can increase a user’s confidence in the system or 
help reveal confounding factors that influence the 
system’s classification, such as external markers 
on a chest radiograph (70).

The most common methods for visualization 
calculate gradients on the basis of a forward and 
backward pass through the network for an image 
(Fig 18). Saliency maps (71) compute gradients 
of the class score with respect to image pixels; 
these gradients indicate which pixels need to be 
changed the least to affect the class score the 
most. Class activation maps (CAMs) are exem-
plified by gradient-weighted CAM (Grad-CAM) 
(72), which computes gradients of the class score 
with respect to channels in the last convolutional 
layer in the model rather than to the input im-
age. These gradient values are used to produce 
a weighted sum of the channels in this layer, 
resulting in a heat-map of important features in 
the input image. Although this map is coarser 
than a saliency map, the features tend to be more 
specific to the predicted class.

Visualization techniques are less relevant in 
object detection and segmentation tasks, where 
the model output already provides relevant local-
ization information.

Future Directions
A proposed solution to privacy concerns re-
garding multisite sharing of clinical image data 
is federated learning (6). Federated learning 
allows data to stay with the originating hospital, 
with neural network training instead distributed 
among the different institutions. However, there 
remain formidable obstacles to such a strategy, 
including accounting for the heterogeneity of 
patient populations across institutions without 
centralized access to all the data.

Figure 18.  Common visualization techniques for a classification network as depicted on axial contrast-enhanced CT images.  
(a) Features are learned by the CNN from training samples. (b) The saliency map technique computes the gradient of the output class 
with respect to the input image, highlighting which pixels were involved in the final classification result (71). (c) Gradient-weighted 
class activation mapping (grad-CAM) uses class probability and backpropagation from the last convolution layer to provide an atten-
tion map (72).



RG  •  Volume 41  Number 5	 Cheng et al  1443

Most deep learning models in radiology pro-
cess two-dimensional (2D) images even when the 
image datasets are three-dimensional (3D). In-
creased availability of medical 3D image datasets 
will likely result in evolution and optimization of 
3D CNN architectures. Evolving alternatives to 
3D CNNs include combinations of 2D CNNs 
with neural networks specialized for sequence 
data to process sequential 2D images of a 3D 
volume.

As deep learning models transition into clini-
cal applications, we must consider the ethical 
ramifications of their use (73). Bias in machine 
learning remains under-researched. For instance, 
deep learning researchers usually report ag-
gregate metrics over the entire dataset without 
consideration of subgroups, especially under-
served populations that are underrepresented in 
the training data.

Since deep learning models are likely to 
serve as adjunctive tools for radiologists, work 
on model interpretability is crucial to adoption 
and usage of these typically black-box models. 
For example, in contrast to a CNN that learns 
deterministic weights, a Bayesian neural network 
learns parameters of random variables used to 
sample weights. These parameters can be used 
to express the uncertainty of the model’s predic-
tions and thereby help radiologists understand a 
model’s limitations.

Good model performance does not guarantee 
improved patient outcomes. The value of a model 
is dependent on its impact on clinical decisions 
and the nature and prevalence of the clinical 
problem. As a result, analogous to other technol-
ogy assessments, controlled studies measuring 
practical clinical endpoints are necessary for 
understanding the clinical value of deep learning.

Conclusion
Deep learning is an artificial intelligence tech-
nique that has been successful in computer vi-
sion. Familiarity with the key concepts described 
in this article will help radiologists stay informed 
on the advances in deep learning and facilitate 
clinical adoption of these techniques.
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