Table of Contents:

e Quick intro without brain analogies
¢ Modeling one neuron
o Biological motivation and connections
o Single neuron as a linear classifier
o Commonly used activation functions
¢ Neural Network architectures
o Layer-wise organization
o Example feed-forward computation
o Representational power
o Setting number of layers and their sizes
e Summary
¢ Additional references

Quick intro

It is possible to introduce neural networks without appealing to brain analogies. In the section on linear
classification we computed scores for different visual categories given the image using the formula s = Wx,
where W was a matrix and x was an input column vector containing all pixel data of the image. In the case of
CIFAR-10, x is a [3072x1] column vector, and W is a [10x3072] matrix, so that the output scores is a vector of 10
class scores.

An example neural network would instead compute s = W, max(0, W x). Here, W; could be, for example, a
[100x3072] matrix transforming the image into a 100-dimensional intermediate vector. The function max(0, —) is
a non-linearity that is applied elementwise. There are several choices we could make for the non-linearity (which
we'll study below), but this one is a common choice and simply thresholds all activations that are below zero to
zero. Finally, the matrix W, would then be of size [10x100], so that we again get 10 numbers out that we interpret
as the class scores. Notice that the non-linearity is critical computationally - if we left it out, the two matrices could
be collapsed to a single matrix, and therefore the predicted class scores would again be a linear function of the
input. The non-linearity is where we get the wiggle. The parameters W, Wy are learned with stochastic gradient
descent, and their gradients are derived with chain rule (and computed with backpropagation).

A three-layer neural network could analogously look like s = W3 max(0, W, max(0, Wix)), where all of
W3, Wy, Wy are parameters to be learned. The sizes of the intermediate hidden vectors are hyperparameters of
the network and we'll see how we can set them later. Lets now look into how we can interpret these computations
from the neuron/network perspective.

Modeling one neuron

The area of Neural Networks has originally been primarily inspired by the goal of modeling biological neural
systems, but has since diverged and become a matter of engineering and achieving good results in Machine
Learning tasks. Nonetheless, we begin our discussion with a very brief and high-level description of the biological
system that a large portion of this area has been inspired by.

Biological motivation and connections

https://cs231n.github.io/
http://cs231n.stanford.edu/

The basic computational unit of the brain is a neuron. Approximately 86 billion neurons can be found in the human
nervous system and they are connected with approximately 10*14 - 1015 synapses. The diagram below shows a
cartoon drawing of a biological neuron (left) and a common mathematical model (right). Each neuron receives
input signals from its dendrites and produces output signals along its (single) axon. The axon eventually branches
out and connects via synapses to dendrites of other neurons. In the computational model of a neuron, the signals
that travel along the axons (e.g. xg) interact multiplicatively (e.g. wgxg) with the dendrites of the other neuron
based on the synaptic strength at that synapse (e.g. wyp). The idea is that the synaptic strengths (the weights w)
are learnable and control the strength of influence (and its direction: excitory (positive weight) or inhibitory
(negative weight)) of one neuron on another. In the basic model, the dendrites carry the signal to the cell body
where they all get summed. If the final sum is above a certain threshold, the neuron can fire, sending a spike along
its axon. In the computational model, we assume that the precise timings of the spikes do not matter, and that only
the frequency of the firing communicates information. Based on this rate code interpretation, we model the firing
rate of the neuron with an activation function f, which represents the frequency of the spikes along the axon.
Historically, a common choice of activation function is the sigmoid function o, since it takes a real-valued input
(the signal strength after the sum) and squashes it to range between 0 and 1. We will see details of these
activation functions later in this section.

o wo
@ s
axon from a neuron T oPoe
WoTo

impulses carried
toward cell body

cell body

Zwi:ﬂi +b

branches f (Z wiT; + b)
of axon 3
output axon

activation
function

/ axon

terminals

\ impulses carried
away from cell body

cell body

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

An example code for forward-propagating a single neuron might look as follows:

class Neuron(object):

def forward(self, inputs):

assume inputs and weights are 1-D numpy arrays and bias is a number
cell body sum = np.sum(inputs * self.weights) + self.bias
firing rate = 1.0 / (1.0 + math.exp(-cell body sum)) # sigmoid activation function

return firing rate

In other words, each neuron performs a dot product with the input and its weights, adds the bias and applies the
non-linearity (or activation function), in this case the sigmoid o(x) = 1/(1 + ™). We will go into more details
about different activation functions at the end of this section.

Coarse model. It's important to stress that this model of a biological neuron is very coarse: For example, there are
many different types of neurons, each with different properties. The dendrites in biological neurons perform
complex nonlinear computations. The synapses are not just a single weight, they’re a complex non-linear
dynamical system. The exact timing of the output spikes in many systems is known to be important, suggesting
that the rate code approximation may not hold. Due to all these and many other simplifications, be prepared to
hear groaning sounds from anyone with some neuroscience background if you draw analogies between Neural
Networks and real brains. See this review (pdf), or more recently this review if you are interested.

Single neuron as a linear classifier

The mathematical form of the model Neuron's forward computation might look familiar to you. As we saw with
linear classifiers, a neuron has the capacity to “like” (activation near one) or “dislike” (activation near zero) certain
linear regions of its input space. Hence, with an appropriate loss function on the neuron’s output, we can turn a
single neuron into a linear classifier:

https://physics.ucsd.edu/neurophysics/courses/physics_171/annurev.neuro.28.061604.135703.pdf
http://www.sciencedirect.com/science/article/pii/S0959438814000130

Binary Softmax classifier. For example, we can interpret O'(Zi wix; + b) to be the probability of one of the
classes Ph; =11 x;w). The probability of the other class would be
Py;=0]|x;w)=1—=P(y; =1]|x;w), since they must sum to one. With this interpretation, we can
formulate the cross-entropy loss as we have seen in the Linear Classification section, and optimizing it would lead
to a binary Softmax classifier (also known as Jogistic regression). Since the sigmoid function is restricted to be
between 0-1, the predictions of this classifier are based on whether the output of the neuron is greater than 0.5.

Binary SVM classifier. Alternatively, we could attach a max-margin hinge loss to the output of the neuron and train
it to become a binary Support Vector Machine.

Regularization interpretation. The regularization loss in both SVM/Softmax cases could in this biological view be

interpreted as gradual forgetting, since it would have the effect of driving all synaptic weights w towards zero after
every parameter update.

A single neuron can be used to implement a binary classifier (e.g. binary Softmax or binary SVM classifiers)

Commonly used activation functions

Every activation function (or non-linearity) takes a single number and performs a certain fixed mathematical
operation on it. There are several activation functions you may encounter in practice:

1o e 10

o/ A

06

U_{f_ _10 _5 | 5 10

l J

e . J

L 1
&g e ; T ———————_]) b

Left: Sigmoid non-linearity squashes real numbers to range between [0,1] Right: The tanh non-linearity squashes real numbers to
range between [-1,1].

Sigmoid. The sigmoid non-linearity has the mathematical form o(x) = 1/(1 + ¢™) and is shown in the image
above on the left. As alluded to in the previous section, it takes a real-valued number and “squashes” it into range
between 0 and 1. In particular, large negative numbers become 0 and large positive numbers become 1. The
sigmoid function has seen frequent use historically since it has a nice interpretation as the firing rate of a neuron:
from not firing at all (0) to fully-saturated firing at an assumed maximum frequency (1). In practice, the sigmoid
non-linearity has recently fallen out of favor and it is rarely ever used. It has two major drawbacks:

» Sigmoids saturate and kill gradients. A very undesirable property of the sigmoid neuron is that when the
neuron’s activation saturates at either tail of 0 or 1, the gradient at these regions is almost zero. Recall that
during backpropagation, this (local) gradient will be multiplied to the gradient of this gate’s output for the
whole objective. Therefore, if the local gradient is very small, it will effectively “kill"” the gradient and almost no
signal will flow through the neuron to its weights and recursively to its data. Additionally, one must pay extra
caution when initializing the weights of sigmoid neurons to prevent saturation. For example, if the initial
weights are too large then most neurons would become saturated and the network will barely learn.

e Sigmoid outputs are not zero-centered. This is undesirable since neurons in later layers of processing in a
Neural Network (more on this soon) would be receiving data that is not zero-centered. This has implications
on the dynamics during gradient descent, because if the data coming into a neuron is always positive (e.g.
x > 0 elementwise inf = wlx + b)), then the gradient on the weights w will during backpropagation
become either all be positive, or all negative (depending on the gradient of the whole expression f). This
could introduce undesirable zig-zagging dynamics in the gradient updates for the weights. However, notice
that once these gradients are added up across a batch of data the final update for the weights can have
variable signs, somewhat mitigating this issue. Therefore, this is an inconvenience but it has less severe
consequences compared to the saturated activation problem above.

Tanh. The tanh non-linearity is shown on the image above on the right. It squashes a real-valued number to the
range [-1, 1]. Like the sigmoid neuron, its activations saturate, but unlike the sigmoid neuron its output is zero-
centered. Therefore, in practice the tanh non-linearity is always preferred to the sigmoid nonlinearity. Also note that
the tanh neuron is simply a scaled sigmoid neuron, in particular the following holds: tanh(x) = 20(2x) — 1.

10F

0254 ==

Training error rate
1

; . \ . 0§ 10 15 20 25 30 35 40

-10 -5 5 10 Epochs

Left: Rectified Linear Unit (ReLU) activation function, which is zero when x < 0 and then linear with slope 1 when x > 0. Right: A
plot from Krizhevsky et al. (pdf) paper indicating the 6x improvement in convergence with the ReLU unit compared to the tanh
unit.

ReLU. The Rectified Linear Unit has become very popular in the last few years. It computes the function
f(x) = max(0, x). In other words, the activation is simply thresholded at zero (see image above on the left). There
are several pros and cons to using the RelUs:

e (+) It was found to greatly accelerate (e.g. a factor of 6 in Krizhevsky et al.) the convergence of stochastic
gradient descent compared to the sigmoid/tanh functions. It is argued that this is due to its linear, non-
saturating form.

¢ (+) Compared to tanh/sigmoid neurons that involve expensive operations (exponentials, etc.), the ReLU can
be implemented by simply thresholding a matrix of activations at zero.

* (-) Unfortunately, ReLU units can be fragile during training and can “die”. For example, a large gradient flowing
through a ReLU neuron could cause the weights to update in such a way that the neuron will never activate
on any datapoint again. If this happens, then the gradient flowing through the unit will forever be zero from
that point on. That is, the ReLU units can irreversibly die during training since they can get knocked off the
data manifold. For example, you may find that as much as 40% of your network can be “dead” (i.e. neurons
that never activate across the entire training dataset) if the learning rate is set too high. With a proper setting
of the learning rate this is less frequently an issue.

Leaky ReLU. Leaky Rel.Us are one attempt to fix the “dying ReLU" problem. Instead of the function being zero when
x < 0, a leaky RelLU will instead have a small positive slope (of 0.01, or so). That is, the function computes
f@) = T(x < 0)(ax) + T(x >= 0)(x) where a is a small constant. Some people report success with this form
of activation function, but the results are not always consistent. The slope in the negative region can also be made
into a parameter of each neuron, as seen in PRelLU neurons, introduced in Delving Deep into Rectifiers, by Kaiming
He et al,, 2015. However, the consistency of the benefit across tasks is presently unclear.

Maxout. Other types of units have been proposed that do not have the functional formf(wa + b) where a non-
linearity is applied on the dot product between the weights and the data. One relatively popular choice is the
Maxout neuron (introduced recently by Goodfellow et al)) that generalizes the RelLU and its leaky version. The
Maxout neuron computes the function max(wlTx + by, ng + b»). Notice that both RelLU and Leaky RelU are a
special case of this form (for example, for ReLU we have wy, b; = 0). The Maxout neuron therefore enjoys all the
benefits of a RelLU unit (linear regime of operation, no saturation) and does not have its drawbacks (dying ReLU).
However, unlike the RelLU neurons it doubles the number of parameters for every single neuron, leading to a high
total number of parameters.

This concludes our discussion of the most common types of neurons and their activation functions. As a last
comment, it is very rare to mix and match different types of neurons in the same network, even though there is no
fundamental problem with doing so.

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1302.4389

TLDR: “What neuron type should | use? Use the RelLU non-linearity, be careful with your learning rates and possibly
monitor the fraction of “dead” units in a network. If this concerns you, give Leaky RelLU or Maxout a try. Never use
sigmoid. Try tanh, but expect it to work worse than ReLU/Maxout.

Neural Network architectures

Layer-wise organization

Neural Networks as neurons in graphs. Neural Networks are modeled as collections of neurons that are connected
in an acyclic graph. In other words, the outputs of some neurons can become inputs to other neurons. Cycles are
not allowed since that would imply an infinite loop in the forward pass of a network. Instead of an amorphous
blobs of connected neurons, Neural Network models are often organized into distinct layers of neurons. For regular
neural networks, the most common layer type is the fully-connected layer in which neurons between two adjacent
layers are fully pairwise connected, but neurons within a single layer share no connections. Below are two example
Neural Network topologies that use a stack of fully-connected layers:

UK
i

s
3

output layer

tput layer
input layer input layer

hidden layer hidden layer 1 hidden layer 2

Left: A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and one output layer with 2 neurons), and three inputs.
Right: A 3-layer neural network with three inputs, two hidden layers of 4 neurons each and one output layer. Notice that in both
cases there are connections (synapses) between neurons across layers, but not within a layer.

Naming conventions. Notice that when we say N-layer neural network, we do not count the input layer. Therefore, a
single-layer neural network describes a network with no hidden layers (input directly mapped to output). In that
sense, you can sometimes hear people say that logistic regression or SVMs are simply a special case of single-
layer Neural Networks. You may also hear these networks interchangeably referred to as ‘Artificial Neural
Networks” (ANN) or “Multi-Layer Perceptrons” (MLP). Many people do not like the analogies between Neural
Networks and real brains and prefer to refer to neurons as units.

Output layer. Unlike all layers in a Neural Network, the output layer neurons most commonly do not have an
activation function (or you can think of them as having a linear identity activation function). This is because the last
output layer is usually taken to represent the class scores (e.g. in classification), which are arbitrary real-valued
numbers, or some kind of real-valued target (e.g. in regression).

Sizing neural networks. The two metrics that people commonly use to measure the size of neural networks are the
number of neurons, or more commonly the number of parameters. Working with the two example networks in the
above picture:

» The first network (left) has 4 + 2 = 6 neurons (not counting the inputs), [3 x 4] + [4 x 2] = 20 weights and 4 + 2
= 6 biases, for a total of 26 learnable parameters.

» The second network (right) has 4 + 4+ 1 =9 neurons, [3x 4] + [4 x 4] + [4x 1] =12 + 16 + 4 = 32 weights and
4+ 4+ 1 =9 biases, for a total of 41 learnable parameters.

To give you some context, modern Convolutional Networks contain on orders of 100 million parameters and are
usually made up of approximately 10-20 layers (hence deep learning). However, as we will see the number of
effective connections is significantly greater due to parameter sharing. More on this in the Convolutional Neural
Networks module.

Example feed-forward computation

Repeated matrix multiplications interwoven with activation function. One of the primary reasons that Neural
Networks are organized into layers is that this structure makes it very simple and efficient to evaluate Neural
Networks using matrix vector operations. Working with the example three-layer neural network in the diagram
above, the input would be a [3x1] vector. All connection strengths for a layer can be stored in a single matrix. For
example, the first hidden layer's weights w1 would be of size [4x3], and the biases for all units would be in the
vector bl , of size [4x1]. Here, every single neuron has its weights in a row of w1, so the matrix vector
multiplication np.dot(W1,x) evaluates the activations of all neurons in that layer. Similarly, w2 would be a [4x4]
matrix that stores the connections of the second hidden layer, and w3 a [1x4] matrix for the last (output) layer.
The full forward pass of this 3-layer neural network is then simply three matrix multiplications, interwoven with the
application of the activation function:

forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

b4 np.random.randn(3, 1) # random input vector of three numbers (3x1)
hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)

out = np.dot(W3, h2) + b3 # output neuron (1x1)

In the above code, w1,w2,w3,bl,b2,b3 are the learnable parameters of the network. Notice also that instead of
having a single input column vector, the variable x could hold an entire batch of training data (where each input
example would be a column of x) and then all examples would be efficiently evaluated in parallel. Notice that the
final Neural Network layer usually doesn't have an activation function (e.g. it represents a (real-valued) class score
in a classification setting).

The forward pass of a fully-connected layer corresponds to one matrix multiplication followed by a bias offset
and an activation function.

Representational power

One way to look at Neural Networks with fully-connected layers is that they define a family of functions that are
parameterized by the weights of the network. A natural question that arises is: What is the representational power
of this family of functions? In particular, are there functions that cannot be modeled with a Neural Network?

It turns out that Neural Networks with at least one hidden layer are universal approximators. That is, it can be
shown (e.g. see Approximation by Superpositions of Sigmoidal Function from 1989 (pdf), or this intuitive
explanation from Michael Nielsen) that given any continuous function f(x) and some € > 0, there exists a Neural
Network g(x) with one hidden layer (with a reasonable choice of non-linearity, e.g. sigmoid) such that
Vx, | f(x) — g(x) |< €. In other words, the neural network can approximate any continuous function.

If one hidden layer suffices to approximate any function, why use more layers and go deeper? The answer is that
the fact that a two-layer Neural Network is a universal approximator is, while mathematically cute, a relatively weak
and useless statement in practice. In one dimension, the “sum of indicator bumps” function
glx) = Zi ¢;1(a; < x < b;) where a, b, ¢ are parameter vectors is also a universal approximator, but noone
would suggest that we use this functional form in Machine Learning. Neural Networks work well in practice
because they compactly express nice, smooth functions that fit well with the statistical properties of data we
encounter in practice, and are also easy to learn using our optimization algorithms (e.g. gradient descent).
Similarly, the fact that deeper networks (with multiple hidden layers) can work better than a single-hidden-layer
networks is an empirical observation, despite the fact that their representational power is equal.

As an aside, in practice it is often the case that 3-layer neural networks will outperform 2-layer nets, but going even
deeper (4,5,6-layer) rarely helps much more. This is in stark contrast to Convolutional Networks, where depth has
been found to be an extremely important component for a good recognition system (e.g. on order of 10 learnable
layers). One argument for this observation is that images contain hierarchical structure (e.g. faces are made up of
eyes, which are made up of edges, etc.), so several layers of processing make intuitive sense for this data domain.

http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
http://neuralnetworksanddeeplearning.com/chap4.html

The full story is, of course, much more involved and a topic of much recent research. If you are interested in these
topics we recommend for further reading:

¢ Deep Learning book in press by Bengio, Goodfellow, Courville, in particular Chapter 6.4.
e Do Deep Nets Really Need to be Deep?
¢ FitNets: Hints for Thin Deep Nets

Setting number of layers and their sizes

How do we decide on what architecture to use when faced with a practical problem? Should we use no hidden
layers? One hidden layer? Two hidden layers? How large should each layer be? First, note that as we increase the
size and number of layers in a Neural Network, the capacity of the network increases. That is, the space of
representable functions grows since the neurons can collaborate to express many different functions. For example,
suppose we had a binary classification problem in two dimensions. We could train three separate neural networks,
each with one hidden layer of some size and obtain the following classifiers:

3 hidden neurons 6 hidden neurons 20 hidden neurons
@ @ @
(] @ @ { 3 o @ @ o
@ @ @ @ @ @
® @ ®
® e o ® L ® s o
& @ L} @ ls @ @ © @
® ® ® ® ® ®
& & o
e © e @© e ©
e © @ e © © B, o
e o " e o [o e P
@ Y L]) @ @
@ ® - @ [] . @ @ L
@® ® @
@® ® @

Larger Neural Networks can represent more complicated functions. The data are shown as circles colored by their class, and
the decision regions by a trained neural network are shown underneath. You can play with these examples in this ConvNetsJS
demo.

In the diagram above, we can see that Neural Networks with more neurons can express more complicated
functions. However, this is both a blessing (since we can learn to classify more complicated data) and a curse
(since it is easier to overfit the training data). Overfitting occurs when a model with high capacity fits the noise in
the data instead of the (assumed) underlying relationship. For example, the model with 20 hidden neurons fits all
the training data but at the cost of segmenting the space into many disjoint red and green decision regions. The
model with 3 hidden neurons only has the representational power to classify the data in broad strokes. It models
the data as two blobs and interprets the few red points inside the green cluster as outliers (noise). In practice, this
could lead to better generalization on the test set.

Based on our discussion above, it seems that smaller neural networks can be preferred if the data is not complex
enough to prevent overfitting. However, this is incorrect - there are many other preferred ways to prevent overfitting
in Neural Networks that we will discuss later (such as L2 regularization, dropout, input noise). In practice, it is
always better to use these methods to control overfitting instead of the number of neurons.

The subtle reason behind this is that smaller networks are harder to train with local methods such as Gradient
Descent: It's clear that their loss functions have relatively few local minima, but it turns out that many of these
minima are easier to converge to, and that they are bad (i.e. with high loss). Conversely, bigger neural networks
contain significantly more local minima, but these minima turn out to be much better in terms of their actual loss.
Since Neural Networks are non-convey, it is hard to study these properties mathematically, but some attempts to
understand these objective functions have been made, e.g. in a recent paper The Loss Surfaces of Multilayer
Networks. In practice, what you find is that if you train a small network the final loss can display a good amount of
variance - in some cases you get lucky and converge to a good place but in some cases you get trapped in one of
the bad minima. On the other hand, if you train a large network you'll start to find many different solutions, but the
variance in the final achieved loss will be much smaller. In other words, all solutions are about equally as good, and
rely less on the luck of random initialization.

http://www.deeplearningbook.org/
http://www.deeplearningbook.org/contents/mlp.html
http://arxiv.org/abs/1312.6184
http://arxiv.org/abs/1412.6550
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://arxiv.org/abs/1412.0233

To reiterate, the regularization strength is the preferred way to control the overfitting of a neural network. We can
look at the results achieved by three different settings:

A =0.001 A=0.01

The effects of regularization strength: Each neural network above has 20 hidden neurons, but changing the regularization
strength makes its final decision regions smoother with a higher regularization. You can play with these examples in this
ConvNetsJS demo.

The takeaway is that you should not be using smaller networks because you are afraid of overfitting. Instead, you
should use as big of a neural network as your computational budget allows, and use other regularization
techniques to control overfitting.

Summary

In summary,

¢ We introduced a very coarse model of a biological neuron.

» We discussed several types of activation functions that are used in practice, with ReL.U being the most
common choice.

» We introduced Neural Networks where neurons are connected with Fully-Connected layers where neurons in
adjacent layers have full pair-wise connections, but neurons within a layer are not connected.

» We saw that this layered architecture enables very efficient evaluation of Neural Networks based on matrix
multiplications interwoven with the application of the activation function.

» We saw that that Neural Networks are universal function approximators, but we also discussed the fact that
this property has little to do with their ubiquitous use. They are used because they make certain “right”
assumptions about the functional forms of functions that come up in practice.

¢ We discussed the fact that larger networks will always work better than smaller networks, but their higher
model capacity must be appropriately addressed with stronger regularization (such as higher weight decay),
or they might overfit. We will see more forms of regularization (especially dropout) in later sections.

Additional References

¢ deeplearning.net tutorial with Theano
e ConvNetJS demos for intuitions
¢ Michael Nielsen's tutorials

() cs231n
%7 ¢s231n

https://github.com/cs231n
https://twitter.com/cs231n
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://www.deeplearning.net/tutorial/mlp.html
http://cs.stanford.edu/people/karpathy/convnetjs/
http://neuralnetworksanddeeplearning.com/chap1.html

