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Abstract. The dielectric properties of tissues have been extracted from the literature of the
past five decades and presented in a graphical format. The purpose is to assess the current state
of knowledge, expose the gaps there are and provide a basis for the evaluation and analysis of
corresponding data from an on-going measurement programme.

1. Introduction

The study of the dielectric properties of tissues belongs to basic as well as applied science.
The theoretical aspects and the main findings in this subject have been widely reviewed
(Schwan 1957, Schwan and Foster 1980, Pethig 1984, Pethig and Kell 1987, Foster and
Schwan 1989 and Stuchly and Stuchly 1980). Foster and Schwan reflect on the historical
perspective provided by over 100 years of interest in the electrical properties of tissues,
and review the basic concepts of dielectric phenomena in biological materials and their
interpretation in terms of interactions at the cellular level. Pethig and Kell cover similar
ground and provide an overview of theories formulated to explain the dielectric properties
in terms of the underlying molecular processes. Common to all papers is a more or less
extensive tabulation of dielectric properties of tissues selected to illustrate the theoretical
deliberations provided by the authors. More extensive literature reviews of dielectric
properties have been provided by Geddes and Baker (1967), who summarized the early
reports on the specific resistance of tissues; Stuchly and Stuchly (1980), who tabulated the
dielectric properties of tissues in the frequency range 10 kHz to 10 GHz; and Duck (1990),
who extended the survey by including more recent data.

The purpose of this survey is to assess the current state of knowledge in terms of
dielectric properties of tissues over ten frequency decades, expose the gaps there are and
provide a basis for the evaluation and analysis of the data from an on-going measurement
programme (Gabrielet al 1996a, b).

The present study was instigated by the need for such information in electromagnetic
(em) dosimetry. This area of science deals with the simulation of em exposure situations
and the calculation of internal fields within exposed structures. Recent developments in
this field have produced high-resolution, anatomically correct man and animal models from
medical imaging data (Dimbylow 1996). The level of detail is such that over 30 tissue
types can be identified. The use of such models for em dosimetry require that dielectric
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properties be allocated to the various tissues at all the frequencies to which the model is
exposed. There is, as yet, no consensus on the dielectric data. This paper is a first step
towards achieving this objective.

2. Overview of dielectric properties: terms and definitions

The dielectric properties of materials are obtained from their measured complex relative
permittivity, ε̂ expressed as

ε̂ = ε′ − jε′′

where ε′ is the relative permittivity of the material andε′′ the out-of-phase loss factor
associated with it such that

ε′′ = σ/ε0ω.

σ is the total conductivity of the material which, depending on the nature of the sample,
may include a contribution from a frequency-independent ionic conductivity,σi . In this
expression,ε0 is the permittivity of free space andω the angular frequency of the field.
The SI unit of conductivity is siemens per metre (S m−1) which presumes that in the above
expressionε0 is expressed in farads per metre (F m−1) andω in radians per second. The
dielectric properties are determined asε′ and ε′′ values, orε′ and σ values, as a function
of frequency.

The dielectric properties of a biological tissue result from the interaction of
electromagnetic radiation with its constituents at the cellular and molecular level. The
mechanisms of the interaction are well understood and discussed in the review articles
mentioned in the previous section. Very briefly, the main features of the dielectric spectrum
of a biological tissue are as follows:

• The relative permittivity of a tissue may reach values of up to 106 or 107 at frequencies
below 100 Hz.

• It decreases at high frequencies in three main steps known as theα, β and γ

dispersions. Other dispersions may also be present.
• Theγ dispersion, in the gigahertz region, is due to the polarization of water molecules.
• Theβ dispersion, in the hundreds of kilohertz region, is due mainly to the polarization

of cellular membranes which act as barriers to the flow of ions between the intra and extra
cellular media. Other contributions to theβ dispersion come from the polarization of protein
and other organic macromolecules.

• The low frequencyα dispersion is associated with ionic diffusion processes at the site
of the cellular membrane.

• Tissues have finite ionic conductivities commensurate with the nature and extent of
their ionic content and ionic mobility.

3. Review of the dielectric properties of tissues

Reports of dielectric properties of tissues prior to 1950 are difficult to get hold of; they are
of more historical than practical interest and, with the exception of Osswald (1937), are not
reported in this article. The literature in the 1950s and 1960s is dominated by the work of
Schwan and his collaborators and has been extensively reviewed and tabulated by Durney
et al (1986).
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The data reported are those that correspond more closely to living human tissues.
Consequently, human tissue andin vivo measurements were selected in preference to animal
tissue andin vitro. For in vitro measurements, data obtained at temperatures closest to that
of the body and nearest to the time after death were used when available.

Most of the literature data were in graphical rather than tabular form, and in a logarithmic
rather than linear format. Such data were retrieved for each decade. When tables were
available, a more extensive frequency range was often provided. The data were translated
from the various authors’ preferred set of parameters and units to relative permittivity and
conductivity expressed in S m−1.

Data obtained at temperatures as low as 20◦C are included in this survey. It was not
considered advisable to translate them to body temperature. The temperature coefficients, for
both permittivity and conductivity, are tissue-type and frequency dependent. Information
on these coefficients is scarce and not sufficiently robust to warrant generalization and
extrapolation. Moreover, the coefficients are highest (∼ 1–2%◦C−1) at low frequencies
where the uncertainties and the scatter in the data are also high.

4. Presentation of data

The data are presented in a graphical format in order to highlight the information with respect
to the frequency coverage and the scatter in the data. Details of the tissue, measurement
temperature and the reference are included in the legend. To facilitate the comparison, the
same scale is used for all tissues except where the conductivity of the tissue falls below
10−2 S m−1.

The plot for blood (figure 1(a)) benefits from recent high frequency data extending to
90 GHz (Alison and Sheppard 1993). The two types of bone: cancellous (figure 1(b)) and
cortical (figure 1(c)) were treated separately; some authors reported measurement in the
longitudinal, transverse and radial directions; in such cases the average is reported. There
are large systematic differences between data for fat from various origins (figure 1(d));
there are almost certainly due to naturally wide variations in sample composition leading
certain authors to publish a range of values rather than an average (Schwan 1955, Land and
Campbell 1992). Both the grey and white matter of the brain have been widely studied in
the frequency range above 10 kHz (figures 1(e) and (f )). This is also the case for kidney
(figure 1(g)) and spleen (figure 1(h)). By contrast, the few data sets for heart (figure 1(i ))
are spread across ten frequency decades. The data for liver (figure 1(j)) extend over the
same frequency range. The dielectric properties of lung tissue (figure 1(k)) depend on
the degree of inflation and therefore vary with the physical state. In the case of muscle
tissue, the dielectric properties are known to be anisotropic at frequencies below 10 MHz;
the literature data reflect this property. Figure 1(l ) shows all the data for muscle tissue
including those for which no orientation is specified. Skin (figure 1(m)) is a laminar tissue
in which the uppermost layer, the stratum corneum, is significantly less hydrated than the
deeper granular tissue. The dielectric properties of composite skin would fall within the
bounds formed by the two components.

5. Comments

The review includes all the main tissues for which there are three or more literature reports.
The list is much shorter than what is needed to provide data for state-of-the-art voxel models
used in theoretical dosimetry, in which many more tissues are identified. Among the tissues
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Figure 1. Survey of permittivity and conductivity of tissues in the frequency range 10 Hz to
100 GHz. (a) Blood.



Dielectric properties of biological tissues I 2235

Figure 1. (b) Bone cancellous.
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Figure 1. (c) Bone cortical.
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Figure 1. (d) Fat.
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Figure 1. (e) Grey matter.
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Figure 1. (f ) White matter.
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Figure 1. (g) Kidney.
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Figure 1. (h) Spleen.
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Figure 1. (i ) Heart.
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Figure 1. (j) Liver.
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Figure 1. (k) Lung.
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Figure 1. (l ) Muscle.
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Figure 1. (m) Skin.
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of the head, brain is well characterized above 100 kHz, but data for dura, cerebrospinal
fluid and cartilage are not reported at all. For most tissues the data below 100 kHz are
either very limited or non-existent. This omission is not a reflection of the interest in such
data but a limitation imposed by measurement techniques not designed to cope with well
known sources of systematic errors at low frequencies. Data for tissues such as muscle are
well characterized in terms of number of reports, but illustrate the spread in values from
studies that extend over limited frequency ranges. Averaging the values available at each
frequency will distort the frequency dependence, which is best determined by measuring
a sample across the whole range. These issues are addressed in the following two papers
(Gabrielet al 1996a, b).
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