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In this work a theoretical description for practical quantita-
tive estimation of the noise enhancement in generalized au-
tocalibrating partially parallel acquisitions (GRAPPA) recon-
structions, equivalent to the geometry (g)-factor in sensitivity
encoding for fast MRI (SENSE) reconstructions, is described.
The GRAPPA g-factor is derived directly from the GRAPPA
reconstruction weights. The procedure presented here also
allows the calculation of quantitative g-factor maps for both
the uncombined and combined accelerated GRAPPA images.
This enables, for example, a fast comparison between the
performances of various GRAPPA reconstruction kernels or
SENSE reconstructions. The applicability of this approach is
validated on phantom studies and demonstrated using in vivo
images for 1D and 2D parallel imaging. Magn Reson Med 62:
739 –746, 2009. © 2009 Wiley-Liss, Inc.
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The signal-to-noise ratio (SNR) is the dominating limiting
factor in MRI. In recent years the advent of multicoil arrays
has offered the possibility to significantly increase the
intrinsic SNR in an image; however, this increase is at the
expense of nonuniform SNR in the final images (1). In
addition, both the increased sensitivity and the encoding
capability of modern multicoil arrays has opened the door
for parallel MRI (pMRI), which is associated with signifi-
cant scan time reductions in many clinical applications.
However, pMRI reconstruction methods such as sensitiv-
ity encoding for fast MRI (SENSE) (2), simultaneous acqui-
sition of spatial harmonics (SMASH) (3), and generalized
autocalibrating partially parallel acquisitions (GRAPPA)
(4) also come with a nonuniform loss in SNR compared to
nonaccelerated images. In general, the SNR after parallel
imaging reconstruction is decreased by the square root of
the reduction factor R as well as by an additional coil-
geometry dependent factor. This second factor, known as
geometry (g)-factor in the parallel imaging community,
results in a spatially variant noise enhancement that
strongly depends on the reduction factor and the encoding
capability of the receiver array. Analytical approaches for

determining this geometry factor for SENSE (2) and
SMASH (5) reconstructions have already been derived.
Both have been used to complement the reconstructions in
SNR units proposed by Kellman and McVeigh (6). In ad-
dition, Yeh et al. (7) presented a general framework for
calculating the g-factor in PARS reconstructions.

In recent years several approaches have been described
to estimate the nonuniform noise enhancement in
GRAPPA reconstructions (8–10). However, a practical an-
alytical description for a quantitative GRAPPA g-factor has
not yet been derived.

The gold standard method for estimation of the spatially
varying noise enhancement is to acquire a fully encoded
series of images with identical parameters. Out of this
image series an SNR map of the fully encoded image can
be derived by taking the mean and the standard deviation
on a pixel-by-pixel basis throughout the image series. An
accelerated experiment for each image in the series can be
mimicked by skipping a portion of the k-space phase en-
coding lines. After subsequent GRAPPA reconstruction of
all retrospectively accelerated images in the series, a
GRAPPA accelerated SNR map can be calculated as in the
fully encoded case. The nonuniform noise enhancement
due to the GRAPPA reconstruction can then be derived on
a pixel-by-pixel basis by dividing the fully encoded SNR
map by the GRAPPA SNR map and the square root of the
acceleration factor. In order to provide accurate results
using this method, at least 100 images are required. As can
be imagined, this method is very time-consuming since at
least 100 fully encoded experiments and 100 GRAPPA
reconstructions have to be performed for accurate SNR
estimation. In addition, this approach is only applicable to
static imaging scenarios. Recently proposed methods, such
as the pseudomultiple replica SNR measurement (10,11),
allow the calculation of SNR maps by acquiring only one
fully encoded image and an additional noise-only dataset,
and thus is also appropriate for applications on moving
objects. However, these methods are still time-consuming
because at least 100 separate image reconstructions are
necessary for accurate results.

In this work a general framework for quantitative esti-
mation of the spatially varying noise enhancement in
GRAPPA reconstructions is described. The presented
method works by calculating the GRAPPA-related noise
enhancement directly from the GRAPPA reconstruction
weights for both uncombined single coil GRAPPA images
as well as combined images (e.g., sum of squares [SOS] or
B1 normalized). In addition, it is demonstrated that the
framework presented here is also applicable to imaging
scenarios where multiple GRAPPA kernels are employed,
such as in variable density (12) and non-Cartesian
GRAPPA (13–16).
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The GRAPPA reconstruction procedure is normally per-
formed in k-space as a convolution of the GRAPPA
weights with the undersampled k-space data. However, by
exploiting the convolution theorem GRAPPA can also be
reinterpreted in image space and thus formulated as a
pixel-by-pixel matrix multiplication of GRAPPA weights
in image space with the folded (undersampled) multicoil
images (8,17). It will be shown that the GRAPPA recon-
struction formalism in image space can be useful when
analyzing the noise propagation into the final GRAPPA
reconstruction. It is also demonstrated that it is essential to
take potential noise correlations into account when calcu-
lating the GRAPPA g-factors for accurate results. Both 2D
phantom and 3D in vivo results demonstrate the accuracy
and general applicability of this approach.

THEORY

In the following section a short review of the GRAPPA
reconstruction procedure is given. Before the actual
GRAPPA reconstruction can be performed a GRAPPA re-
construction weight set has to be derived. These GRAPPA
weights are typically derived in k-space from a low-reso-
lution fully encoded autocalibration (ACS) dataset with
sufficient SNR.

Weights Determination in GRAPPA

In the first step the GRAPPA kernel source and target
points are identified according to the reduced sampling
scheme used (e.g., R � 3, 2 � 3 kernel) as depicted in Fig.
1. In a second step the reconstruction kernel is slid
through the ACS data and the source and target points for
all available kernel repetitions Nrep are assembled into a
source matrix Ssrc (size: Nc � Nsrc � Nrep) and a target matrix
Strg (size: Nc � Ntrg � Nrep). In a third step, the reconstruction
weights w (size: Nc � Ntrg � Nc � Nsrc) are derived by solving
Eq. [1] for the reconstruction weight set w via the Moore–
Penrose pseudoinverse.

w�Ssrc � Strg [1]

Since the GRAPPA weights are derived from a low-
resolution dataset with sufficient SNR and a sufficient
number of kernel repetitions within the ACS the weights
can be considered “noise free.” Similar to the smoothing/
denoising/fitting algorithm employed in the coil mapping
procedure for SENSE reconstructions the Moore–Penrose
Pseudoinverse (least-square fit) ensures accurate “noise-
free” weights in the GRAPPA reconstruction.

GRAPPA Reconstruction Weights

Once the weight set w has been derived, the missing Ntrg �
R-1 data points in each coil (not acquired data) can be
calculated by applying the weight set w to the acquired
undersampled dataset. In order to arrive at the GRAPPA-
accelerated fully encoded k-space signal Sacc this proce-
dure is repeated for each acquired point in the reduced
k-space signal Sred.

Thus, GRAPPA can also be seen as a convolution pro-
cedure of the acquired reduced k-space signal Sl

red with a
GRAPPA convolution kernel wkl where k and l run from 1
to the number of coils Nc in the receiver array. The con-
volution kernel is made up of the GRAPPA weight set from
Eq. [1] as schematically depicted in Fig. 2.

Sk
acc � �

l�1

Nc

Sl
red � wkl [2]

The convolution theorem states that this convolution
process in k-space can also be formulated in image space

FIG. 1. Schematic description of GRAPPA weights determination:
According to the undersampling scheme (here R � 3), a GRAPPA
reconstruction kernel is defined (here 2 � 3) in which source and
target points are identified (coil dimension omitted). The kernel is
slid through the ACS data and all the kernel repetitions are collected
in a source matrix Ssrc and target matrix Strg. The GRAPPA recon-
struction weights are then derived by solving Eq. [1].

FIG. 2. Determination of GRAPPA weights in
image space (coil dimensions are omitted):
Step 1: The GRAPPA reconstruction weights in
k-space for each target point (blue and red) are
reordered to build a convolution kernel in k-
space with a mutual kernel center. Step 2: The
convolution kernel in k-space is flipped in both
dimensions (indicated by arrows) and zero-
padded to the final image size (Ny,Nx). Step 3:
Inverse 2D Fourier transformation of zero-pad-
ded, flipped convolution kernel to derive the
GRAPPA weights in image space.
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by applying a two-dimensional inverse Fourier transfor-
mation to Eq. [2]. The accelerated GRAPPA image in the
k-th coil Ik

acc is then simply given by a pixel-by-pixel mul-
tiplication of the GRAPPA weights in image space Wkl with
the folded coil images Il

red (8). Using the properties of the
convolution theorem, the Wkl can be derived by 2D inverse
Fourier transformation of the convolution kernel wkl in
k-space.

Ik
acc � �

l�1

Nc Wkl � Il
red [3]

A schematic description of the practical implementation
of GRAPPA in the image domain is given in Fig. 2. In Eq.
[2], the GRAPPA weights in k-space can be seen to contain
also the weights that will transform the acquired data
untouched. Thus, these weights are 0 for all points in the
kernel except for the points that are transformed un-
touched. These weights have value 1. This corresponds to
setting the kernel center to 1 when calculating the weights
in image space (see Fig. 2). The mathematics given in Eqs.
[2] and [3] are simplified in order to provide a practical
and comprehensive analytical instruction of GRAPPA in
image space. However, in Ref. (17) a more complete math-
ematical description of viewing GRAPPA as a multiplica-
tion in image space can be found.

Noise Propagation in GRAPPA Reconstructions

In order to investigate how the acquired noise propagates
into the accelerated GRAPPA images the GRAPPA repre-
sentation in the image domain (Eq. [3]) is examined and
the variances �2(Ik

acc) of the GRAPPA reconstructed single
coil images Ik

acc are determined. In order to simplify the
process, in the following considerations the noise term is
separated from the signal and Eq. [3] yields:

Ik
acc � nk

acc � �
l�1

N Wkl � �Il
red � nl

red� [4]

The noise-free signal terms cancel when calculating the
variances of the GRAPPA single coil images and only the
variance of a weighted sum of noise contributions remain.
Thus, the variance of the accelerated GRAPPA images can
be written as:

�2�nk
acc� � �2� �

l�1

N Wkl � nl
red� � �

l�1

N �Wkl�2 � �2�nl
red�

� 2�
l�1

N �
m�l�1

N �WklWkm� � �2�nl
red,nm

red� [5]

In this equation �2(nl
red) � �2

ll represents the noise vari-
ance in channel l and �2(nl

red,nm
red) � �2

lm the noise covari-
ance between channel l and m. Eq. [5] can greatly be
simplified when switching to matrix notation. Introducing
the GRAPPA weights matrix W in image space and the
noise covariance matrix �2

W � � W11 · · · W1N···
· · ·

···
WN1 · · · WNN

� and

�2 � � �11
2 · · · �1N

2

···
· · ·

···
�N1

2 · · · �NN
2
� [6]

Eq. [5] calculates to:

�2�nk
acc� � �2� �

l�1

N Wkl � nl
red� � �W��2�WH�kk [7]

In this equation H denotes the transpose complex con-
jugate of a matrix. Taking into account that the variance of
the fully encoded k-th coil image Ik

full is reduced by the
acceleration factor R the variance of the fully encoded
image is given by:

�2�nk
full� �

1
R

� �kk
2 �

1
R

� ��2�kk [8]

Thus, similar to the g-factor definition known from
SENSE-type reconstructions:

g �
SNRfull

SNRacc � �R
[9]

the GRAPPA g-factor for the k-th coil image can be de-
rived:

gk �
SNRk

full

SNRk
acc � �R

�
��nk

acc�

��nk
full� � �R

�
��W��2�WH�kk

���2�kk

[10]

Although the single coil GRAPPA g-factor directly rep-
resents the noise enhancement resulting from the GRAPPA
reconstruction, it is important to derive also a GRAPPA
g-factor for combined images. It is important to note that
the g-factor becomes also a function of the coil combining
algorithm. Considering the image combination as a linear
combination of the single coil images,

Icomb
acc � �

k�1

N pk � Ik
acc � �

k�1

N pk � �
l�1

N Wkl � Il
red [11]

a g-factor for combined GRAPPA images can be derived
similar to the considerations above:

gcomb �
SNRcomb

full

SNRcomb
acc � �R

�
���pT � W)��2�(pT � W�H�
���pT � 1� � �2 � �pT � 1�H�

[12]

The coefficients pk in the vector p can simply be deter-
mined either from the low-resolution ACS data or the
high-resolution accelerated GRAPPA images. In the case of
an SOS reconstruction, these coefficients are given by pk �
I*

k / ISOS (8). Roemer et al. (1) have shown that the SOS-
image combination represents a near SNR optimal image
reconstruction without the need of extra knowledge of the
coil sensitivity profiles. An SNR-optimal image combina-
tion, however, requires the knowledge of the coil sensitiv-
ity profiles for both nonnormalized and B1-normalized
image combination. The difference between both combi-
nation methods is just a scalar scaling factor for each image
pixel that depends only on the coil sensitivities. However,
since the GRAPPA g-factor is given in relation to the fully
encoded image SNR on a pixel-by-pixel basis this scaling
factor cancels out in Eq. [12]. Therefore, the GRAPPA

GRAPPA G-factors 741



g-factors for nonnormalized and B1-normalized image re-
construction with optimal SNR are identical and the SOS-
GRAPPA g-factor can be considered an accurate estimate
for basically all commonly used combining methods.

So far, the framework presented here has been described
for scenarios where only a single GRAPPA weight-set was
used for image reconstruction (conventional Cartesian
GRAPPA for 2D and 3D imaging). However, the concept
described here can be extended to more complicated
GRAPPA applications where multiple GRAPPA weight
sets are required or the ACS data is included in the final
reconstruction. Each time a certain kernel is applied in
k-space the noise propagates according to Eq. [7] into the
image independent from the location where the kernel has
been applied. This concept is applicable even in the case
of shared source points at the border between multiple
kernels. Thus, when analyzing the noise propagation after
application of multiple GRAPPA kernels (or included ACS
data) the variance for each GRAPPA kernel according to
Eq. [7] must be determined and weighted with the fraction
of k-space to which the kernel has been applied. One can
show that for the final g-factor calculation the g-factor for
each GRAPPA kernel can be determined (Eq. [10] for un-
combined, Eq. [12] for combined g-factor) and weighted
with the corresponding reduction factor Rm and the frac-
tion fm of k-space in which the specific kernel has been
applied. Thus, in general the effective g-factor (geff) for
GRAPPA reconstructions with multiple kernels or in-
cluded ACS data (R1 � 1, g1 � 1, f1 � number of ACS
lines/total number of lines in fully encoded k-space) cal-
culates to:

geff � ��
m�1

N fm � Rm � gm
2 /Reff with Reff � ��

m�1

N fm

Rm
��1

[13]

MATERIALS AND METHODS

All experiments were performed on a 1.5T clinical Scan-
ner (Avanto, Siemens Medical Solutions, Erlangen, Ger-
many) equipped with a 12-channel head coil array for
signal reception. Image reconstructions, g-factor calcula-
tions and analyses were performed offline using the Mat-
Lab programming environment (MathWorks, Natick, MA).

Phantom Experiments

In order to provide an accurate reference for g-factor anal-
ysis, a fully encoded phantom image was acquired with
following parameters: TE/TR � 7.1/40 ms, 	 � 30°, bw �
100 Hz/px, FOV � 210 � 210 mm2, matrix � 256 � 256.
To allow for a correction of the noise correlations between
the individual receiver channels, an additional noise-only
image (	 � 0°) was acquired with identical imaging pa-
rameters. Various accelerated (R � 2, 3 and 4) GRAPPA
acquisitions were mimicked by removing the correspond-
ing phase-encoding steps retrospectively. For the fully en-
coded image and each acceleration scenario, an artificial
image series was generated using the pseudomultiple rep-
lica approach as described below. The GRAPPA weights

were derived in k-space as described in Fig. 1 using a 4 �
5 kernel and 32 � 32 ACS block.

In Vivo Experiments

In addition to the 2D phantom experiments a fully en-
coded 3D in vivo axial MPRAGE (magnetization prepared
rapid gradient echo) head experiment was performed on a
volunteer and informed consent was obtained prior to the
acquisition. The following sequence parameters were
used: TE/TR � 4.38/1350 ms, TI � 800 ms, 	 � 15°, bw �
180 Hz/px, FOV � 250 � 187 � 160 mm3, matrix � 256 �
192 � 160. Rectangular (R � 2 � 2) and CAIPIRINHA-type
(R � 2 � 2(1)) (18) accelerated acquisitions were mimicked
by removing the corresponding phase-encoding steps. The
GRAPPA reconstructions were performed with a 3D
GRAPPA kernel according to the 2D undersampled phase-
encoding scheme. In both cases the kernel size was 3 � 3 �
3 and a 24 � 24 � 32 ACS block was used. The GRAPPA
weights were derived in k-space as schematically depicted
in Fig. 1 for a 2D kernel; however, by extending the con-
cept to the third dimension (19,20).

Simulations

In order to examine the effects of the noise enhancement in
non-Cartesian GRAPPA, a simulated PROPELLER dataset
was constructed. To this end, a standard Shepp–Logan
phantom was employed with a simulated eight-element
one-ring head coil array where sensitivities were derived
using an analytic integration of the Biot–Savart equations.
The Cartesian data were resampled as PROPELLER data (8
blades, 32 phase encoding steps per blade and 128 readout
points, base matrix of 128 � 128) by sinc interpolation and
normal complex noise were applied to the PROPELLER
k-space data. Accelerated (R � 2, 3, and 4) PROPELLER
acquisitions were mimicked by uniformly removing not
required k-space lines in each blade. For GRAPPA recon-
struction each blade was reconstructed separately and fi-
nally gridded to a Cartesian grid using INNG (21).

G-factor Calculation from an Image Series

Recently, the pseudomultiple-replica SNR measurement
method using bootstrapped statistics (10) has been intro-
duced as a powerful method for accurate estimation of
nonuniform image SNR and therefore serves here as the
gold standard method.

A fully encoded image and an extra noise-only image
(no RF pulse) were acquired for both the phantom and in
vivo measurements. From these acquisitions a series of
300 images/volumes were artificially generated by ran-
domly reordering the noise in the noise-only image mul-
tiple times for each receiver channel separately. After this
procedure the artificial noise data are added to the fully
encoded image to arrive at the artificially generated fully
encoded image series. In order to generate a series of
GRAPPA images, acceleration was mimicked by simply
removing not required phase encoding steps for each im-
age in the series. GRAPPA reconstructions were then per-
formed on each image in the series. The SNR for both
scenarios was calculated by evaluating the mean and stan-
dard deviation of the signal intensities through the stack of

742 Breuer et al.



images on a pixel-by-pixel basis. The spatially variant
noise enhancement after GRAPPA reconstruction (refer-
ence GRAPPA g-factor) is then calculated according to Eq.
[9] for both the single coil images and SOS combined
images.

G-factor Estimation from GRAPPA Weights

In contrast to the reference method described above, the
GRAPPA g-factor estimation proposed in this work can be
extracted directly from the GRAPPA reconstruction
weights. In addition to the GRAPPA weights, knowledge of
the noise correlations between the individual receiver
channels is required, which can be derived from an addi-
tional noise scan. The GRAPPA reconstruction weights are
derived from ACS data in k-space (see Fig. 1) and after-
wards transformed into the image domain (see Fig. 2). As
stated above, the g-factor maps can be calculated for each
coil separately according to Eq. [10] and for SOS-combined
or B1 normalized combined images according to Eq. [12].
The latter case requires an additional knowledge of the
coil combination parameter p, which can be extracted
from the low-resolution ACS data or from the high-resolu-
tion reconstructed GRAPPA images themselves.

RESULTS

In order to demonstrate and validate the accuracy of the
g-factor estimation presented in this work Fig. 3 provides
quantitative g-factor maps for each coil image of acceler-
ated (R � 3) GRAPPA reconstructions using (Fig. 3a) the
pseudomultiple replica method and (Fig. 3b) the proposed
strategy using the GRAPPA reconstruction weights.

In order to demonstrate that the quantitative g-factor
estimation described here is also applicable to combined
GRAPPA images g-factor maps of SOS-combined GRAPPA
reconstructions (R � 4) calculated from (Fig. 4a) the
pseudomultiple replica gold standard method and (Fig.
4b) the proposed strategy using the GRAPPA reconstruc-
tion weights are depicted. In addition, the g-factor map
calculated without taking the noise correlations into ac-
count (Fig. 4c) is displayed. While the g-factor map in Fig.

4b perfectly matches the reference g-factor derived from
the image series (Fig. 4a), the g-factor map in Fig. 4c
significantly diverges from the actual g-factor due to the
lack of noise correlations. The coil combining coefficients
were derived from the reconstructed GRAPPA images it-
self.

The g-factor calculation presented here allows one to
calculate GRAPPA g-factors at various reduction factors. In
Fig. 5 quantitative GRAPPA g-factor maps derived accord-
ing to the proposed method at reduction factors of R � 2,
3, 4 and the corresponding reconstructed GRAPPA images
are displayed. The expected increase of noise with increas-
ing acceleration can be appreciated.

Besides the quantitative evaluation of GRAPPA recon-
struction performance at different image accelerations, the
proposed method allows a direct comparison with other
reconstruction methods at the same image acceleration. To
this end the quantitative noise enhancement after SENSE
and GRAPPA was calculated at a reduction factor of R � 3.
In Fig. 6 the g-factor maps and corresponding reconstruc-
tion results for (Fig. 6a) SENSE and (Fig. 6b) GRAPPA are
displayed. While the SENSE shows the characteristic
sharp edges in the g-factor map, the GRAPPA g-factor
provides a more continuously varying behavior, although
overall performance is virtually the same in this example.

In order to demonstrate that GRAPPA g-factors can also
be derived using in vivo datasets and for 2D accelerated
imaging in 3D experiments, reconstruction results and cor-
responding g-factor maps of conventional rectangular (R �

FIG. 3. Quantitative g-factor maps for uncombined GRAPPA im-
ages (R � 3, 12 channel head array) derived from (a) pseudomultiple
replica images series derived from a phantom and extra noise scan
and (b) directly from the GRAPPA reconstruction weights.

FIG. 4. Quantitative R � 4 SOS-combined GRAPPA g-factor maps
derived from (a) pseudomultiple replica image series and (b) directly
from the GRAPPA reconstruction weights including noise correla-
tions and (c) neglecting noise correlations.

FIG. 5. Quantitative GRAPPA g-factor maps at various reduction
factors R � 2, 3, 4 (top row) and corresponding SOS-combined
GRAPPA reconstructions (bottom row).
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2 � 2) and 2D CAIPIRINHA-type (R � 2 � 2(1)) acquisition
(16) are displayed for the central sagittal partition in Fig. 7.
The improved performance of 2D CAIPIRINHA compared
to conventional rectangular 2D phase encoding can be
appreciated in both (Fig. 7a) the reconstructed GRAPPA
images and (Fig. 7b) the corresponding quantitative g-
factor maps.

The feasibility of the g-factor estimation of multikernel
GRAPPA reconstructions is demonstrated on a Cartesian
variable density (VD) dataset. This dataset was artificially
created as depicted schematically in Fig. 8b with areas of
different acceleration factors in different k-space regions
(R � 2, 3, or 4) and a fully sampled (R � 1) k-space center,
resulting in an effective reduction factor of R � 2.18. The
GRAPPA reconstruction was performed by applying dif-
ferent weight sets to the appropriate k-space locations. The
corresponding g-factor was calculated using the reference
method (Fig. 8a) and according to the proposed concept

using a weighted sum of variance contributions in Eq. [12]
(Fig. 8b). In addition, the GRAPPA reconstruction result is
displayed (Fig. 8d).

Finally, in order to prove the applicability of the g-factor
approach to non-Cartesian GRAPPA, accelerated PROPEL-
LER experiments were simulated (R � 2, 3, and 4). For
each case, quantitative g-factor maps were derived sepa-
rately for each individual blade. Thereafter, the resulting
single blade g-factors were rotated according to their rota-
tion angle in k-space and finally combined employing Eq.
[13]. In Fig. 9 the reconstruction results from (Fig. 9a) the
fully encoded and (Fig. 9b) the R � 4 accelerated PROPEL-
LER experiment are shown. The PROPELLER g-factor map
is displayed in Fig. 9d and compared to the g-factor map
derived from the multiple pseudoreplica SNR measure-
ment (Fig. 9c).

DISCUSSION

The mathematical framework presented here allows a
practical, fast, and robust quantification of the nonuniform
noise enhancement in GRAPPA reconstructions for both
uncombined and combined images. The results presented
here are in excellent agreement with the g-factor maps
derived using the pseudomultiple replica SNR measure-
ment (10,11), which can be considered the gold standard
method. Thus, quantitative GRAPPA g-factor maps can be
calculated directly from the GRAPPA reconstruction
weights, which are typically derived from a low-resolution
scan, which can be of arbitrary image contrast (22).

It is important to note that even in the case of combined
images no explicit knowledge of the coil sensitivities is
required for accurate g-factor estimation. Since the
GRAPPA g-factor is calculated in relation to the fully en-
coded image, SNR on a pixel by pixel basis the g-factor for
SOS combined images are virtually identical to the g-
factors employing image combinations toward uniform

FIG. 6. Comparison between SENSE and GRAPPA reconstruction
performance at a reduction factor R � 3. In (a) the SENSE recon-
struction and corresponding g-factor map is displayed. In (b) the
GRAPPA reconstruction and corresponding SOS-GRAPPA g-factor
is displayed.

FIG. 7. Central partition in the sagittal orientation of a 4-fold accel-
erated 3D MPRAGE experiment after (a) rectangular (R � 2 � 2) and
(b) CAIPIRINHA-type (R � 2 � 2(1)) acquisition with sampling po-
sitions shifted with respect to each other. Displayed are the SOS-
combined GRAPPA reconstructions, the corresponding GRAPPA
g-factor maps, and 2D phase encoding schemes.

FIG. 8. Variable density acquisition with an effective reduction fac-
tor of R � 2.18. a: VD-GRAPPA reconstruction. b: VD acquisition
scheme. c: G-factor map calculated from pseudomultiple replica
series. d: GRAPPA g-factor map derived directly from the GRAPPA
reconstruction weight sets (R � 1, 2, 3, 4).
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sensitivity or uniform noise distribution. One major ad-
vantage of the proposed strategy is that it allows one to
quantitatively estimate the noise enhancement prior to the
actual GRAPPA reconstruction and thus can be used to
identify the optimal reconstruction kernel (number of
source points, maximum possible/acceptable acceleration,
regularization parameter, etc.) given a certain receiver ar-
ray geometry. However, the results presented here empha-
size the importance of accounting for potential noise cor-
relations between the individual receiver channels in the
calculation for accurate g-factor estimation (see Fig. 4).

In addition to kernel optimization, the GRAPPA g-factor
can be used for a quantitative comparison of parallel im-
aging performance between different acquisition strategies
such as, for example, rectangular and 2D CAIPIRINHA-
type acceleration. Finally, as an extra benefit this concept
allows a quantitative comparison of reconstruction perfor-
mance of different parallel imaging reconstruction strate-
gies, such as GRAPPA, SENSE, and SMASH. It has been
demonstrated that quantitative g-factor maps for GRAPPA
reconstructions can be derived that are similar to the g-
factor maps for SENSE reconstructions. Since SENSE is
considered the parallel imaging reconstruction method
providing optimal SNR, the GRAPPA g-factors derived
here indicate that GRAPPA indeed represents a near-opti-
mal image reconstruction.

Besides the quantitative assessment of noise enhance-
ment in Cartesian GRAPPA employing only one kernel,
the framework presented here can be extended to acquisi-
tions were multiple GRAPPA kernels are used as required,
for example, in variable density GRAPPA (12) or non-
Cartesian GRAPPA, such as radial (13), spiral (14,15), or
PROPELLER acquisitions. Since only the fraction of k-

space that has been reconstructed with a certain kernel
and not the location in k-space matters for the noise prop-
agation, the image variance can be calculated for each
kernel separately and then weighted accordingly. Each
time when a certain weight set is applied in k-space the
noise originating from the source points propagates into
the reconstructed point(s), respectively, in the image space
according to its g-factor. Acquired points may be used
several times even in the case of only one kernel (e.g., 4 �
3 kernel � 12 times) to calculate different missing points.
The noise in the source points in the kernel region is
uncorrelated for each kernel application. For this reason
the noise propagation is independent of borders between
regions of different GRAPPA kernels and therefore allows
one to calculate the contribution of each individual kernel
g-factor by counting the number of times a certain kernel
has been applied in k-space independent of the fact that
individual kernels shared the same source points. In order
to validate this concept of g-factor map calculation with
multiple kernels, an accelerated Cartesian variable density
acquisition has been mimicked and corresponding g-factor
maps were calculated. This example inherently implies
the case when the ACS data is included in the final image
after GRAPPA reconstruction. It is important to note that
in such cases the g-factor not only reflects the coil encod-
ing performance but also becomes dependent on the ac-
quisition strategy.

In addition, as a proof of principle the applicability of
the g-factor approach to non-Cartesian GRAPPA has been
validated by presenting g-factor results of a simulated R �
4 accelerated PROPELLER acquisition which has been
shown to be in good agreement with the gold standard
pseudomultiple replica method. In future work the appli-
cability to more complex non-Cartesian GRAPPA recon-
structions such as radial or spiral GRAPPA need to be
investigated.

Recently, a generalized pseudo-Cartesian GRAPPA re-
construction method for arbitrary trajectories has been
proposed (16) which uses the GRAPPA operator gridder
(GROG) (23) to shift the undersampled non-Cartesian data
points to their nearest Cartesian locations followed by a
Cartesian multiple kernel GRAPPA reconstruction and
therefore is expected to be a perfect candidate for general-
ized g-factor estimation.

CONCLUSION

In this work a general framework for estimating the non-
uniform noise enhancement in Cartesian GRAPPA recon-
structions is presented. The GRAPPA g-factors can be de-
rived directly from the reconstruction weights themselves
for both uncombined and combined images. The proposed
strategy provides a fast and powerful tool for identifying
the optimal GRAPPA reconstruction parameters and for
optimizing the sampling strategy for a given coil configu-
ration and acceleration factor prior to the actual GRAPPA
reconstruction. Most important, the performances of dif-
ferent reconstruction kernels and regularization strategies
can be quantitatively evaluated. In addition, the GRAPPA
g-factor enables a direct comparison of image quality be-
tween SENSE and GRAPPA reconstructions for a given
application.

FIG. 9. Reconstruction results from (a) an accelerated (R � 4)
simulated PROPELLER acquisition and (b) the fully sampled refer-
ence PROPELLER image (8 blades, 32 phase encoding lines per
blade). c: G-factor map calculated from pseudomultiple replica
series. d: GRAPPA g-factor map derived by calculating the g-factor
for each blade separately according to Eq. [12] followed by a
weighted combination of the single blade g-factors according to Eq.
[13].
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