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The use of cerebral blood volume (CBV) maps gener- 
ated from dynamic MRI studies tracking the bolus pas- 
sage of paramagnetic contrast agents strongly depends 
on the signal-to-noise ratio (SNR) of the maps. The au- 
thors present a semianalytic model for the noise in 
CBV maps and introduce analytic and Monte Carlo 
techniques for determining the effect of experimental 
parameters and processing strategies upon CBV-SNR. 
CBV-SNR increases as more points are used to esti- 
mate the baseline signal level. For typical injections, 
maps made with 10 baseline points have 34Oh more 
noise than those made with 50 baseline points. For a 
given peak percentage signal drop, an optimum TE can 
be chosen that, in general, is less than the baseline T2. 
However, because CBV-SNR is relatively insensitive to 
TE around this optimum value, choosing TE =+ T2 does 
not sacrifice much SNR for typical doses of contrast 
agent. The TR that maximizes spin-echo CBV-SNR sat- 
isfies TR/Tl - 1.26, whereas as short a TR as possible 
should be used to maximize gradient-echo CBV-SNR. In 
general, CBV-SNR is maximized for a given dose of con- 
trast agent by selecting as short an input bolus duration 
as possible. For image SNR exceeding 20-30, the T-fit- 
ting procedure adds little extra noise compared with 
simple numeric integration. However, for noisier input 
images, as can be the case for high resolution echo-pla- 
nar images, the covarying parameters of the r - d a t e  
fit broaden the distribution of the CBV estimate and 
thereby decrease CBV-SNR. The authors compared the 
analytic noise predicted by their model with that of ac- 
tual patient data and found that the analytic model ac- 
counts for roughly 70% of the measured variability of 
CBV within white matter regions of interest. 
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Abbreviations: CBV = cerebral blood volume, Dy-DTPA = dysprosium- 
diethylenetriarnine pentaacetic acid, ' T U G  = flurodeoxyglucose, Gd-DTF'A = 

gddolinium-diethylenetrimine pentaacetic acid, M T I  = mean transit time, 
PET = positron emission tomography, ROl = region of interest, SNR = signal- 
to-noise ratio. 

DYNAMIC MRI STUDIES tracking both gadolinium-di- 
ethylenetriaminc pentaacetic acid (Gd-DTPA) (1-3) and 
dysprosium-diethylenetriamine pentaacetic acid (Jly-DTPA) 
(4) have produced MR cerebral blood volume (CBV) maps. 
Such susceptibility contrast-based CBV maps have been 
used to study normal human brain task activation (5-7) 
and to evaluate patients with brain tumors (23)  and are 
therefore becoming important for both undcrstanding 
fundamental questions of neuroscience and also for im- 
proving diagnostic sensitivity and specificity in various 
neuropathologies. MR CBV maps seem to correlate 
closely to tumor grade, match positron emission tomog- 
raphy (PET) flurodeoxyglucose (IBFDG) maps in most 
cases studied, may have an  important role in guiding tu- 
mor biopsy, and may help to differentiate recurrent tu- 
mor from radiation necrosis (9-1 1). 

The use of CBV maps strongly depends on the signal- 
to-noise ratio (SNR) of the maps. In this paper, we pro- 
duced a semianalytic model that characterizes the main 
sources of noise in computed CBV maps. This model was 
used in conjunction with Monte Carlo techniques to eval- 
uate the effects of the following imaging parameters on 
CBV-SNR: estimation of the baseline signal, choice of TE 
and peak signal drop, choice of TR, duration 01 the bolus 
of contrast agent, and effects of I7-variate fitting (12,13) 
to the signal-time curve. Where appropriate, we used 
Monte Carlo methods to validate the model. To assess the 
validity of the model, we compared the analytic noise pre- 
dicted by our model with an  estimate from gray and white 
matter regions of interest (ROIs) from actual patient data. 

CBVMAPTHEORY 
From elementary tracer kinetics (14), the area under 

the tissue concentration-time curve for a purely intravas- 
cular tracer is proportional to local blood volume. In the 
presence of an intact blood-brain barrier, Gd-DTPA and 
Dy-DTPA remain intravascular during cerebral passage, 
and hence the associated concentration-time curve can 
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be processed to compute CBV. Both experimental data 
(1 5) and Monte Carlo modeling (1 6) have demonstrated a 
relatively linear relationship between the tissue concen- 
tration of contrast agent and transverse relaxivity 
change, AR2* = A(l/T2*) and A R 2  = A(l/T2]. Further- 
more, in many cases, correct relative comparisons of CBV 
can be made even with a nonlinear concentration de- 
pendence. (16) We therefore obtain a first-order relative 
CBV estimate, V, for a voxel by integrating AR2(t) without 
concern for the arterial concentration-time data or the 
proportionality factor-relating agent concentration to 
AR2* or A R 2 .  

As an approximation of the area under the concentra- 
tion-time curve, the CBV map that we frequently create 
is a simple numeric integration of the Am-time curve 
across a time interval chosen to eliminate the effects of 
contrast agent recirculation: 

where 

1 S 
TE So 

A R ~ ,  = - -In (L) 
converts signal magnitude changes on the MR images 
into approximate transverse relaxivity change. S, is the 
MR signal intensity at time point i, N is the number of 
time points used for the integration, TR is the time spac- 
ing between echo-planar or fast-gradient-echo acquisi- 
tions, and 

. Nh 
I so = - c sj 

Nb j=l 
(3) 

is an estimate of the signal, before injection of contrast 
agent, calculated from Nb baseline images. We produce a 
CBV map by calculating V for each voxel within an ROI. 

When recirculation of contrast agent is significant, r- 
variate fits to AR2(t) of the form 

(4) 

have been used to eliminate second-pass effects (5,17). 
The area under the first-pass AR2(t) curve is estimated 

(5) 

where T(xl is the r-variate function (18). Integrating the 
resulting r-variate curve may provide a more accurate 
estimate of V, because recirculation artificially elevates 
estimates of CBV, and simple numeric integration of Ami 
with a cutoff before the onset of recirculation probably 
underestimates CBV. 

AR2(t) = K (t - tJw(t ~ 

bY 
v = K .  r (1 + a) p(1 + a), 

METHODS 

Analytic Error Analysis 
To assess the statistic error in the computed estimate 

of CBV, uv, we first propagate the errors, assuming that 
the underlying MR image set has noise uo. Combining 
Equations [ 11 and [3] yields: 

TR M’R 1 Nb 
V = - - c In (SJ + - In(- S). (6) TE i=l TE Nbj=l 

Assuming that the noise is white, so that the fluctuations 
in S, and Sj are uncorrelated, we find that uv can be ap- 
proximated by (19): 

where 

(7) 

is a numeric factor of order unity that incorporates noise 
due to logarithm calculation. Therefore, uv has two terms: 
one due specifically to the variance of the integrated 
AFU(t) images, and one due to the estimate of the base- 
line, So (20). A semianalyhc estimate of SNR is obtained 
by dividing V in Equation 161 by cry in Equation [71. 

For a more intuitive appreciation for CBV-SNR, the 
area under AR2(t) can be expressed as: 

where Nmhm is the number of images across the half-max- 
imum point of AR2(t) ,  Smin is the minimum signal inten- 
sity during passage of the contrast agent bolus, and A is 
a numeric factor of order unity that makes the area under 
AR2(t) is correct. Dividing Equation [91 by uv yields: 

where SNR, equals So/uo. CBV-SNR equals SNR, scaled 
by a factor proportional to the width and peak of AR2(t) 
and inversely related to a noise term including the num- 
ber of integration points, the variance of the integrated 
images, and the number of baseline points. 

Monte Carlo Error Analysis 
We used Monte Carlo techniques to quanhfy the effects 

of nonlinear, r-variate fits to AR2(t) described in Equation 
[4]. We also used a Monte Carlo approach to simulate 
variation in sampling offset relative to the onset of the 
contrast agent bolus. For large TR, varied sampling offset 
influences the characterization of Am(t) and therefore in- 
troduces variance in V. Varied sampling offset also intro- 
duces variance in V through the numeric integration 
process itself, regardless of the sampling rate. Propaga- 
tion of errors is untenable for these nonlinear effects. 

To obtain a Monte Carlo CBV estimate (18), zero-mean 
Gaussian noise with signal-domain variance u2 was 
added to the parent data described below to generate lo4 
synthetic data sets with input signal SNR = S,/u. This 
noise was added to the parent signal domain data using 
variance uz for each data point, and So was re-estimated 
to convert the signal data to the A R 2  domain. Although 
it oversimplifies the Ricean noise in the MR images, this 
Gaussian assumption is nevertheless a good approxi- 
mation for SNR > 5, which was satisfied by all of our 
simulations. 

Sampling offset was included for each synthetic data 
set by randomly selecting a starting time point uniformly 
distributed between +TR/2 of the input starting time 
point, regenerating the parent curves using the parent r- 
variate parameters at successive TR intervals, and then 
adding the appropriate noise. The CBV for each synthetic 
data set was then computed either numerically using 
Equation I11 or via a r-variate fit using Equations [4) and 
151. Numeric integration employed the extended trapezoi- 
dal rule (18) with initial and terminal zero-padding over 
a range delineated by the times at which the parent 
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AR2(t) curve first rose above and then fell below one CT. 
For r-variate fitting, we used a modified simplex algo- 
rithm (18) that minimized weighted xz error for the four- 
parameter fit in Equation [4]. A 51-bin histogram of the 
resulting CBV values from the lo4 trials was then con- 
structed. The “signal” of the CBV estimate was defined to 
be the mean of the computed Vvalues for all of the syn- 
thetic data sets. The “noise” of the CBV estimate was de- 
fined to be one-half of the 66% confidence interval of the 
CBV histogram. 

Human Data 
We first acquired images using a fat-suppressed, spin- 

echo echo-planar imaging (EPI) pulse sequence with TE 
= .1 second and TR = 1 .O second, as described by Aronen 
et al (10). A total of 120 axial images with a slice thick- 
ness of 7 mm and an  in-plane resolution of 1.5 X 1.5 mm 
were acquired at  1 .O-second intervals before, during, and 
after antecuhital power-injection (Medrad, Pittsburgh, 
PA) of a 30-cc, .2-mmol/kg dose of Omniscan (Gadodiam- 
ide [Gd-DTPA-BMA], Nycomed, New York, NY) at an in- 
jection rate of 5.0 ml/second. Each image was smoothed 
spatially with a 3 X 3 Hanning filter. A sample pixel was 
selected from a gray matter ROI for which it was assumed 
for purposes of the simulations that T1 = .8 second and 
T2 = . 1 second. The first Nb = 60 baseline images of the 
remaining time series data were used to estimate both 
the baseline, So. and the variance of the background im- 
age signal intensity, cr?, for the sample pixel. The sample 
signal data were converted to AR2, data via Equation [Z]. 
The AR2,  data were then fit to a r-variate function, which 
was resampled at TR, thereby yielding parent A R 2  data. 
Parent signal data were then obtained from the parent 
A R 2  data using Equation 121. 

Signal Baseline Estimation 
Equation [7] relates the number of baseline images, Nb, 

to uV neglecting sampling effects. The fraction of (T” due 
to signal baseline estimation was calculated by compar- 
ing uv for Nb ranging from 0 to 100 with (T” for Nb -+ m. N 
= 15 (typical for TR = 1 second) and 5 = 1.0, 1.2 (the 
value for our sample data), 2.0, and 3.0 were chosen. A 
Monte Carlo estimate of u,, for Nb ranging from 3 to 60, 
stepping by 3,  also was performed and compared with a 
Monte Carlo estimate of crv, for which noise was added 
directly to A R 2  without re-estimation of baseline (N,  4 

X I ) .  The Monte Carlo noise fraction estimate was com- 
pared with the analytic estimate for ( = 1.2. In each sim- 
ulation, identical input signal noise, uo, was added, but 
So was re-estimated for each Nb. We also used the Monte 
Carlo technique on the parent data to produce CBV-SNR 
versus input-SNR curves for 5 = 1.2, N = 15, and Nb = 
2, 10, 60, and X I .  The range of input noise was chosen to 
yield an input image SNR range of 10 to 1,000. 

Choice of TE and Peak Signal Drop 
To determine the TE that maximizes CBV-SNR, we 

propagated errors for AR2, as in Equations 161 and [71 
using 

S, - (1 - e-TR/n)e-C/n = (1 - e-TR/n)e-TE(Wo+ AR2J (11) 
for a spin-echo sequence (with TE << 2T1), and 

for a spoiled gradient-echo sequence acquired at the 
Ernst angle, 0 = c ~ s - l ( e - ~ ~ / ~ ~ ) .  We then set the derivative 
of the noise with respect to TE = 0 and solved for TE. 

To test the derived analytic relationships, we generated 
synthetic data sets with maximum signal drops of lo%, 
30%, 5096, 70%, and 90% of baseline So from the parent 
data set. Scaled signal curves with TE ranging from 20 to 
160 msec with an increment of 2 msec were then gener- 
ated for each maximum signal drop. First, the original 
signal data, S,, with baseline So were appropriately scaled 
to simulate the tissue response, also with baseline So, to 
a contrast agent dose yielding the desired maximum sig- 
nal drops. Next, the transformed data were further scaled 
by an  exponential factor to properly account for the signal 
attenuation imposed by each desired TE. This second 
transformation preserved the peak signal drop resulting 
from the first transformation; only the signal data were 
modified. These transformations assumed a linear mono- 
exponential relationship between contrast agent concen- 
tration and signal loss. 

For each generated signal curve, both a Monte Carlo 
estimate and a semianalytic estimate of CBV-SNR were 
obtained with noise C T ~  added to the signal domain. The 
appropriate 5 for the peak A R 2  was calculated directly 
from the S, and So at the original TE using Equation [81, 
and this 1; was used in the analytic estimate. For each 
parent data set for a gwen peak percentage signal drop, 
the optimum TE was estimated as described above and 
compared with the TE yielding maximum Monte Carlo 
and analytic CBV-SNR. 

Choice of TR 
To determine the TR that maximizes CBV-SNR, we 

propagated errors for 4R2, using Equation [ 1 11 for a spin- 
echo signal and Equation [ 121 for a gradient-echo signal. 
We then set the derivative of the noise with respect to TR 
= 0 and solved for TR for both the spin-echo and gradi- 
ent-echo signals. 

To test the derived relationships and to consider the 
effects of undersampling and variation of sampling times, 
synthetic spin-echo and gradient-echo data sets were 
generated from the parent data set with TR ranging from 
150 msec (1.5 TE) to 3.0 seconds with an  increment of 
20 msec and TE constant at 100 msec. To simulate data 
sets acquired at various TRs from the parent data set, S,, 
we started at the initial baseline time point and sampled 
the parent AR2, every TR using the r-variate parameters 
to generate intermediate A R 2  values. Sample time varia- 
tion was simulated by randomly selecting the initial sam- 
ple point, as described above. We next appropriately 
scaled the resampled signal by a scaling factor chosen to 
account for the relative signal attenuation between data 
acquired at various TRs. For each transformed signal 
curve, a Monte Carlo CBV-SNR estimate, with and with- 
out the effects of sample variation, in addition to an an- 
alytic estimate of CBV-SNR were performed. The TR at 
which the Monte Carlo and analyhc SNR peaked were 
compared with the predicted optimum TR. 

Contrast Agent Bolus Duration 
To determine the effect of contrast agent bolus duration 

on CBV-SNR, the p and K parameters of the parent r- 
function (Equation [4]) were adjusted, keeping the area, 

+ rr), constant. This produced multiple AR2(t) curves 
with constant area, V,, and various first moments, 
thereby simulating tissue responses to input boluses of 
various duration but constant dose of contrast agent. Be- 
cause the mean transit time (M‘IT) of the tissue response 
equals the sum of the MTT of the input bolus and the 
Mm of the tissue impulse function, the M l T  of the tissue 
response directly reflects the MTT (and hence the dura- 
tion) of the input bolus. The rise parameter, a ,  was fixed 
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at cy = 1 ,  and to was set at zero with no loss of generality. 
For each simulated tissue response curve, AR2(t), the op- 
timum TE was estimated as above, and the signal data 
were scaled as described above to optimize CBV-SNRwith 
respect to TE. Each TE-optimized AR2 curve was resarr- 
pled at TR = .5, 1.0, and 1.5 seconds, and sample offset 
was included to simulate the effects of sampling varia- 
tion. Both analytic and Monte Carlo CBV-SNR estima- 
tion, using numeric integration and time-domain noise 
u, equal to that of the sample data, were performed for 
each adjusted p and K pair as a function of tissue re- 
sponse transit time for each TR. 

r-Variate Fitting 
Using the Monte Carlo technique, we assessed the 

amount of noise added to the map generation process by 
estimating V with a r-variate fit instead of numeric in- 
tegration. From the parent data, CBV-SNR versus input 
SNR curves were obtained for Nb = 30 using both nu- 
meric integration and r-variate fitting, and these curves 
were compared to assess the amount of additional noise 
introduced by the r-variate fit. 

Parent Signal ___.___ _ _  

Comparison of Model with Clinical Data 
We compared the analytic noise, u,,, predicted by our 

model (Equation 171) with that of clinical CBV maps. For 
each of n = 7 patients, we obtained a high resolution T1- 
weighted image for differentiating gray and white matter. 
We then obtained a series of spin-echo images during 
first passage of a bolus injection of Gd-DTPA as described 
above. Each image in the time series was then smoothed 
with a 3 X 3 Hanning filter. For each voxel, So was esti- 
mated from the baseline of the corresponding time series 
(Equation [3], N,, = 60 points), and S(t) was converted to 
AR2(t] via Equation [2], Relative CBV maps of Vwere con- 
structed by numerically integrating AR2(t) over N = 16 
points covering the duration of bolus. 

We next made an analytic estimate of uV. Sample- 
smoothed time course data were obtained from one voxel 
in a white matter ROI (8 X 8 voxels) chosen from the T1- 
weighted image. We calculated cro and So from N,, baseline 
points, and we calculated C: from N bolus points. An an- 
alytic estimate of crV was then obtained using Equation 
PI. 

We obtained an experimental estimate of ovby dividing 
the 8 x 8 pixel ROI into 2-pixel, nonoverlapping sub- 
ROIs. We computed the standard deviation of Vwithin 
each sub-ROI and averaged these 32 standard deviations 
to estimate uv in the white matter. This reduces the ef- 
fects of the actual variation in true blood volume found 
within the 8 X 8 pixel ROI. To the extent that neighboring 
pixels reflect similar tissue with equal V, the average 
standard deviation of the sub-ROIs reflects the repeata- 
bility of CBV measurements and is an estimate of uy. 
(This estimate of the variance is analogous to the Allan 
variance used to characterize the fluctuations in atomic 
clocks (21)). We then computed the mean and standard 
deviation of the average sub-ROI standard deviation for 
all n = 7 patients. We also repeated this analysis for 4- 
pixel (2 X 2) sub-ROIs and repeated the 2- and 4-pixel 
sub-ROI analysis for a 8 X 8 gray matter ROI. Because 
the pixels were smoothed spatially before constructing 
these maps, the average standard deviation of the sub- 
ROIs was multiplied by a factor accounting for both the 
correlation introduced by the Hanning filter and the cor- 
relation introduced by the size of the sub-ROI (2.4 for 2- 
pixel sub-ROIs and 1.8 for 4-pixel sub-ROIs; see 
Appendix). We then compared the analytic with the ex- 
perimental uV. 

(a) Signal data 
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Figure 1. (a) The sample and parent signal data with So =_ 924, 
oo = 11, and 6 = 1.2. @) The sample and parent AR2 data. The 
derived r-fit parameters for 15 data points between t = 65 sec- 
onds and t = 80 seconds are K = .l, t, = 68.4, (Y = 3.2, and p 
= 2.4, corresponding to an area V, of 24.1 (AR2 units). 

RESULTS 

Human Data 
Typical sample and parent signal data are shown in 

Figure la ,  and the corresponding A R 2  data are shown in 
Figure lb. For the sample input data, So = 924 and uo = 
11.  The input A R 2  data were fit to a r-function between 
t = 65 seconds and t = 80 seconds ( N  = 15 data points). 
Over this range, 5 (Equation [Sl) was found to be 1.2. The 
derived r-fit parameters were K = , I ,  to = 68.4 seconds, 
cy = 3.2, and p = 2.4 seconds, corresponding to an  area 
V, of 24.1 (AK2 units). 

Signal Baseline Estimation 

estimation, qb, was found to be: 
The fraction of total CBV map noise due to baseline 

In Figure 2a, q b  is plotted as a function of Nh for N = 
15. For 5 = 1.2, roughly 50 baseline images would be 
required to reduce the baseline contribution to 10% of the 
total CBV map noise. By comparison, maps for which < 
= 1.2 and Nb = 10 images have 34% more noise. It is also 
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Mgure 2. (a) Fraction of noise, q,. plotted as a function of Nb 
for N = 15 and 5 = 1.0, 1.2, 2.0, and 3.0. For ( = 1.2, roughly 
50 baseline images would be required to reduce the baseline con- 
tribution to 10% of the total CBV map noise. As ( increases, the 
baseline estimate becomes less significant. The Monte Carlo es- 
timates of q h  (0) for 5 = 1.2 and N = 15 agree well with the 
analytic estimates for the sample data. (b) Input SNR plotted 
against Monte Carlo CBV SNR. With increasing Nb, the SNR 
curves asymptotically approach the Nb + ~0 curve in which base- 
line noise is excluded. 

evident that as 6 increases, baseline estimate becomes 
less significant. The Monte Carlo estimates of q b  [square 
symbols) are compared with the analytic estimates for the 
sample data = 1.2, N = 15), and excellent agreement 
is observed. In Figure 2b, input SNR is plotted against 
Monte Carlo CBV-SNR. With increasing Nb, the SNR 
curves asymptotically approach the Nb -+ cc. curve in 
which baseline noise is excluded. 

Choice of TE and Peak Signal Drop 
From propagation of errors in Equation 121, the error 

for the ith A R 2  (and AR2*) value, ui, in terms of input 
noise, uO, and signal value, S,, is: 

where f is a function of TR and T1 only and sampling 
effects have been omitted. By minimizing total noise, 

150 

100 5 
s 
8 
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b- 
50 

0 
20 40 60 80 100 120 140 160 

TE (ms) 
Figure 3. Effect of TE and peak signal drop on CBV-SNR. An- 
alyhc and Monte Carlo CBV-SNR are plotted against TE for peak 
signal drops of 10%. 30%. 50%, 70%, and 90%. The analytic and 
Monte Carlo results agree exceptionally well. Because constant 
signal domain noise u,, is added to each curve, peak SNR in- 
creases with increasing peak AR2, because V/a, increases. As 
peak A R 2  increases, TE,, decreases. Given a peak signal drop 
and a particular shape of AK2(t), an optimumTE can be chosen. 

N 

o$ 1 TR2 of, (151 
i=l 

with respect to TE, we find that the TE that maximizes 
CBV-SNR, TE,,,, must satisfy: 

with T2, = 1 /R2,. We solved Equation [ 161 numerically 
for TE,,,,. When Am, << R2,, then TE,,, = T2, as ex- 
pected. 

In Figure 3, the analyhc and Monte Carlo CBV-SNR re- 
sults are plotted against TE for each peak signal drop, 
and excellent agreement is observed. Because constant 
signal-domain noise, u~,, is added to each curve, peak 
SNR increases with increasing peak A R 2 ,  because V/u, 
increases. Furthermore, as peak AFU increases, TE,,, de- 
creases, which is predicted by Equation [ 161. 

Choice of TR 
For a spin-echo sequence, neglecting undersampling, 

we propagated errors using Equations [ 1 11 and [ 141 and 
proceeded as we did in Equation [151 using: 

N 

TR 2 e2 TE = C, 
,=I 

where C is independent of TR and is strictly a function of 
the A R 2  curve. We obtained: 

u$ - (181 

The TR that minimizes cry, TK,,, should maximize CBV- 
SNR and must satisfy: 

u: c e2 TE m 
(1 - e- 1'R/T1)2' TE2 

which can be solved numerically to yield: 
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q u r e  4. Effect of TR on CBV-SNR. Monte Carlo and analyhc 
CBV-SNR plotted against TR for (a1 spin-echo and (b] gradient- 
echo acquisitions. TR ranges from 150 msec (1.5 TE) to 3.0 sec- 
onds. For the spin-echo simulation, CBV-SNR peaks at TR = 1 .O 
second = 1.25 T1 in the absence of sample offset variation. For 
the gradient-echo simulation. CBV-SNR monotonically de- 
creases with TR. 

The TR that optimizes CBV-SNR when undersampling is 
neglected is strictly a function of tissue T1 and is inde- 
pendent of the shape of the bolus, at least in the limit 
that fluctuations in the initial timing of the bolus can be 
neglected. 

Proceeding along similar lines for a spoiled gradient- 
echo sequence using Equations I121 and 1141: 

Solving du$/aTR = 0 yields: 

Therefore, we should use as short a TR as possible to 
optimize gradient-echo CBV-SNR. 

Monte Carlo and analytic CBV-SNR are plotted against 
TR for spin-echo acquisitions in Figure 4a and for gra- 
dient-echo acquisitions in Figure 4b. For the spin-echo 
simulation, CBV-SNR peaks at TR = 1.0 second - 1.25 

Figure 5. Effect of input bolus duration as reflected by tissue 
response MTT on CBV-SNR. CBV-SNR for a given contrast agent 
dose is maximized by selecting as  short an input bolus duration 
as possible. For sufficiently short TR such that AR2(t) is sampled 
adequately, CBV-SNR versus tissue response transit time is in- 
dependent of TR. The decrease in Monte Carlo CBV-SNR for 
short tissue response MTT reflects the inability of the numeric 
integration scheme to precisely integrate AR2(t) when the input 
time is unknown. This effect becomes increasingly more pro- 
nounced with increasing m, because AR2(t) is more coarsely 
sampled. 

T1, which agrees with Equation [20]. For the gradient 
echo simulation, CBV-SNR monotonically decreases with 
TR, which supports Equation [22]. 

Contrast Agent Bolus Duration 
Figure 5 shows plots of analytic and Monte Carlo [nu- 

meric integration) CBV-SNR as a function of the M’IT of 
the tissue response with TEop, chosen for each AR2(t) 
curve. To the extent that the tissue response transit time 
reflects input bolus duration, Figure 5 demonstrates that 
over a range of physiologic bolus durations, we maximize 
CBV-SNR for a given contrast agent dose by selecting as 
short an input bolus duration as possible. For sufficiently 
short TR such that AR2(f) is adequately sampled, CBV- 
SNR versus tissue response transit time is independent 
of TR. 

r-Variate Fitting 
Figure 6 plots CBV-SNR versus input SNR curves for 

Nb = 30 using numeric integration and r-variate fitting. 
For input image SNR exceeding 20 to 30, the r-fitting 
procedure adds little extra noise compared with simple 
integration. However, for noisier input images, the co- 
varying parameters of the r-variate fit process broaden 
the distribution of the blood volume estimate, V, and 
thereby decrease the CBV-SNR. This threshold was ob- 
served consistently across the sampled patient data. 

Comparison of Model with Clinical Data 
Table 1 summarizes the comparison of the analytic 

model of uv with the experimental variability of CBV. The 
mean and standard deviations of the average sub-ROI 
standard deviations for all n = 7 subjects are tabulated 
for both the 2- and 4-pixel sub-ROIs and for both gray 
and white matter. The 2- and 4-pixel “adjusted’ columns 
include the factor accounting for Hanning filter and sub- 
ROI correlation. Also tabulated are the mean and stan- 
dard deviation of analytic ut7 for all n = 7 patients. 
Because V is dimensionless and independent of receiver 
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figure 6. Effect of r-variate fitting on CBV-SNR. Monte Car10 
CBV-SNR is plotted against input SNR for Nh = 30 using numeric 
integration and r-variate fitting. For input image SNR exceeding 
20 to 30, the r-fitting procedure adds little extra noise compared 
with simple integration. However, for noisier input images, the 
covarying parameters of the r-variate fit process broaden the 
distribution of the blood volume estimate, V, and thereby de- 
crease the CBV-SNR. 

gain, the entries in Table 1 are unitless. For gray matter, 
the analytic uv accounts for 56% and 49% of the 2- and 
4-pixel adjusted noises, respectively. For white matter, 
however, the a n a l y t ~  uy is much closer to experimental 
variability and accounts for roughly 70% and 6 1% of the 
2- and 4-pixel adjusted noises, respectively. 

DISCUSSION 
This study characterizes the main sources of noise in 

computed CBV maps and determines the experimental 
parameters and processing strategies that maximize 
CBV-SNR. This work focuses on the noise introduced in 
the map generation process itself and does not consider 
those factors that influence uo, such as inherent imaging 
system noise and temporal physiologic variations. We 
propagated errors for a simple expression of calculated 
CBV, the numeric integration of AR2(t) over a time inter- 
val covering only the first-pass bolus response. Altema- 
tive methods to compute relative CBV have been 
employed, including numeric integration over the entire 
ARZ(t] response, integration over the r-variate fit (7,8), 
selection of the peak AW (61, and techniques that work 
directly in the signal domain without conversion to A R 2  
(22). Equation (71 suggests that integration over the en- 
tire AR2(t) response adds considerable noise to the CBV 
maps, because N is large in such cases, and u,, increases 
with N even if the number of points used for baseline es- 
timation, Nbr is substantial. To minimize CBV map noise 
but maintain fair comparisons of relative CBV, N should 
be chosen to be no larger than is necessary to entirely 
cover the duration of the first-pass bolus. As depicted in 
Figure 6, r-variate fits do not contribute additional CBV 
map noise if the input SNR is sufficiently large to elimi- 
nate the variability introduced by the covarying param- 
eters of the fit. As the input data become noisier, this 
variability worsens, and r-variate fits yield decreased 
CBV-SNR. In practice, we typically obtain high resolution 
CBV maps (to see increasingly small structures) so that 
the underlying functionally weighted images often are 
near or below this SNR limit. Selecting the peak A R 2  is 

Table 1 
Comparison of Analytical and Experimental CBV Map 
Noise 

2-pixel 4-pixel I 2-pixel Adiusted 4-pixel Adiusted Analvtic 
White 1.2 i .3 2.9 t .7 1.8 2 .4 3.3 5 .8 2.0 -t .4 
Gray 2.0 t .5 4.8 F 1.2 3.1 ? .8 5.5 * 1.4 2.7 ? .7 

Note.-Comparison of the analytic model of uv with the ex- 
perimental variability of CBV. The mean and standard devi- 
ations of the average sub-ROI standard deviations for n = 7 
subjects are tabulated for 2- and 4-pixel sub-ROIs and for 
ray and white matter. The “adjusted” columns include the f actor accounting for Hanning filter and sub-ROI correlation. 

Also tabulated are the mean and SD of analytic uv for all n = 
7 subjects. For gray matter, the analytical uv accounts for 
57% and 49% of the 2- and 4-pixel adjusted noises, respcc- 
tively. For white matter. however, the analytical u,, is much 
closer to experimental variability and accounts for 70% and 
61% of the 2- and 4-pixel adjusted noises, respectively. 

I 

suboptimal because the peak is not always directly pro- 
portional to the area under AK2(t). In the single-step 
method introduced by Bahn (221, CBV as well as  S,, are 
parameters in a model fit directly to the original S, data, 
thereby eliminating the log and baseline components of 
our model for uv Although it remains to be shown how 
the propagation of noise in the multiparameter fit of the 
single-step method compares with the noise introduced 
by baseline estimation and logarithm calculation in the 
numeric integration technique, it is reasonable to expect 
that our predictions could be used, with the noise behav- 
ing as  if all of the points (N,, + N) were used for the base- 
line estimation. 

For the current methods, baseline estimation strongly 
influences CBV-SNR. Figure 2b demonstrates that for 5 = 
1.2 and N = 15, Nb = 60 and N,, = 50 baseline points yield 
a CBV-SNR only 9% and 12% worse, respectively, than 
that provided by infinite baseline points. N,, > 50 therefore 
seems to be a reasonable protocol before injection of agent 
to effectively minimize the noise from baseline estimation. 
As Nb increases, so too does the number of images ac- 
quired during a first-pass study, which often is limited by 
hardware constraints. However, for typical injections, the 
duration of the first-pass signal drop is approximately 20 
seconds. Even with Nb = 60 and for the relatively short TR 
= 1 second needed to maximize CBV-SNR with respect to 
TR, the complete first pass can be acquired well within 120 
images, as illustrated in Figure la. 

Figure 2b also suggests that the improvement in CBV- 
SNR gained by incorporating many baseline points is still 
realized even at very high input SNR. Therefore, large N,, 
is beneficial, even if vo is small or So is large, although in 
such cases, the fractional improvement in SNR due to 
increasing N,, will not be as great. 

In Equations [7] and [13], the dependence of CBV-SNR 
on 5 has implications for the selection of N,, for various 
contrast agents. Contrast agents with greater molar re- 
laxivity than Gd-DTPA (such as  Dy-DTPA or iron oxide 
compounds) will yield a greater signal drop per dose of 
contrast agent. For these agents, the Nb required to 
achieve a particular SNR will decrease because 5 (a func- 
tion of the shape of the signal drop) increases with per- 
cent signal drop and will outweigh the N,, term in 
Equation [ 71. 

The results illustrated in Figure 3 demonstrate that we 
should opt for as large a percentage signal drop (large 
dose of contrast agent) as possible, because we can 
choose an  appropriate TE to maximize CBV-SNR. As the 
dose and subsequent signal drop increases, CBV-SNR 
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peaks at a shorter TE, which is essentially a weighted 
average between the baseline T2 and the effective T2 at 
each time point during bolus passage. The larger the 
dose, the more the optimum TE falls below baseline T2. 
Nonetheless, CBV-SNR is relatively insensitive to TE 
around the optimum value even for doses of contrast 
agent yielding 70% signal drops. With the exception of 
very large signal drops (eg, 90% in Fig. 3) ,  it is clear that 
for typical contrast agents, choosing TE equal to baseline 
T2 will provide nearly optimal results. For larger per- 
centage signal drops, CBV-SNR drops more precipitously 
with increasing TE, suggesting that the appropriate 
choice of TE is more critical in these circumstances. 

Figure 4a demonstrates that an optimal TR exists for 
spin-echo SNR. For very short TR, the reduced image 
SNR overwhelms the SNR improvement due to increased 
temporal resolution for the integration. For longer TR, 
there are simply too few points across the bolus to ade- 
quately estimate the area, and CBV-SNR diminishes. The 
effects of sample offset variation, included in the Monte 
Carlo numeric simulation, further reduce CBV-SNR with 
increasing TR for TR exceeding 1 to 2 seconds. For suf- 
ficiently large TR and concomitant coarse sampling of 
AR2(t) ,  the numeric integration techniques yield a 
broader distribution of CBV. Variation in sampling times 
is particularly relevant either for tissue responses of 
short duration, for which a minimum TR is imposed, or 
for data sets with relatively high SNR, for which the var- 
iance due to integration scheme error predominates. The 
analytic and r-fit simulation results agree and exclude 
sample offset effects. 

The analysis of optimal TR ignores the dependence of 
TE on TR. As TR approaches zero, TE must also approach 
zero. This has little effect on the spimecho results for 
which peak SNR is attained with TR 1.25 T1. For gra- 
dient-echo acquisitions with a TE optimally chosen for a 
given dose and expected peak signal change, SNR im- 
proves with decreasing TR and images should be ac- 
quired with the shortest TR that is permitted. 

Figure 5 suggests that we should use as short an input 
bolus as possible. For a given TE, TR, and dose of con- 
trast agent, as the bolus duration decreases, S,/S,,,,, in- 
creases and both the transit time and N decrease. As long 
as AR2( t )  can be reconstructed (ie, sampling is not too 
coarse), the increase in SJS,, decreases the noise in 
measurement of V and therefore increases CBV-SNR. In 
Figure 5. the Monte Carlo results agree with the analytic 
model for sufficiently large input bolus duration (tissue 
response rKLT > 5 seconds). The decrease in Monte Carlo 
CBV-SNR for short tissue response MTT reflects the in- 
ability of the numeric integration scheme to precisely in- 
tegrate AR2(t)  when the input time is unknown. This 
effect becomes increasingly more pronounced with in- 
creasing TR, because AR2(t)  is more coarsely sampled. 
Monte Carlo studies using r-variate fits to estimate CBV 
suffer much less from this effect and agreed well with the 
analytic results (comparison not shown). 

The results illustrated in Figure 6 suggest that a trade- 
off exists between CBV-SNR and the accuracy of relative 
CBV estimates. In the presence of recirculation or for ves- 
sels that are permeable to contrast agent (eg, leaky tu- 
mors), AR2(t)  may not uniformly reflect CBV. A 1'-variate 
fit to ilR2ftl may yield more accurate estimates of CBV, 
but these estimates may be less precise than those made 
with numeric integration. On the other hand, the r-var- 
iate correction for recirculation is, by its nature, an ap- 
proximation; therefore, a complete numeric integration 
over a time scale that is long compared with the transit 
times is likely to be more accurate as well. 

We note finally that there is a fundamental method- 
ologic difficulty in verifymg our semianalytic model de- 
scribing CBV-SNR for a single voxel over rnuZtiple 
repetitions of the same experiment. Proper verification of 
our estimates would require multiple injections in each 
subject. Practical obstacles to obtaining such data make 
rigorous verification of the model difficult. Our approach 
in this study was to minimize the natural variation in 
CBV that occurs within an ROI by estimating CBV-SNR 
with the average standard deviation of CBV within small 
(2- and 4-pixel) sub-ROIs comprising a larger gray or 
white matter ROI. 

It is worth mentioning the scaling factor used to ac- 
count for the correlation introduced by the sub-ROIs. In 
our study, S(tj had been smoothed in space with a Har- 
ning filter (a normalized 3 X 3 matrix with rows {1/16 
2/16 1/16}, (2/16 4/16 2/16}, and [1/16 2/16 1/16}), 
reflecting the way we typically process our CBV maps. 
The noise characteristics of o, (ie, SNR, - 84) were thus 
of these Hanning-filtered data. The 2- and 4-pixel esti- 
mates of experimental uv were scaled by a factor account- 
ing for the correlation introduced by the size of the 
sub-ROI to make a fair comparison between experimental 
uV and analytic uv 

The comparison summarized in Table 1 shows that 
predicted noise does not account for the total experimen- 
tal noise, although the analytic C T ,  from the 2-pixel sub- 
ROI for white matter accounts for 70% of the experimen- 
tal CBV map noise. There are several explanations for the 
discrepancy. Biologic heterogeneity of CBV within the 
white and gray matter ROIs increases experimental uV 
but is not accounted for in the model. In essence, our 
experimental design assumes that the distribution of 
CBV values within the sub-ROIs is identical to that which 
would be obtained by repeated measurement of CBV within 
a single pixel. For this to be the case, the sub-Rob would 
have to contain voxels with identical blood volume and 
biophysical parameters, including vessel size distribu- 
tion, and the variation of contrast agent arrival times and 
concentrations would have to mimic those that occur on 
multiple injections for a single pixel. The contrast mech- 
anism yielding A R 2  upon which our CBV maps are based 
is complicated and is a function of many biophysical var- 
iables, including volume fraction, vessel size and distri- 
bution, diffusion coefficient, contrast agent concentration, 
and vessel permeability, among others. (16) Therefore, tis- 
sues with identical blood volume may not necessarily have 
the same signal, and this can lead to variability in CBV 
estimates. In addition, the experimental uv reflects local 
tissue heterogeneity as well as true stochastic noise. It also 
is possible that temporal variation exists, perhaps due to 
biologic effects of contrast agent passage, which adds 
noise beyond that modeled by 5 .  

The analytic uv is closer to experimental IT" for white 
matter than it is for gray matter. Because gray matter 
ROIs contain much more contamination from cerebral 
spinal fluid, they are more heterogeneous than white 
matter ROIs and are expected to have more variation in 
CBV. Furthermore, analytic IT" is closer to experimental 
uV for the 2-pixel sub-ROI than for the 4-pixel sub-ROI. 
There also is presumably less biologic heterogeneity 
within the 2-pixel sub-ROI than within the 4-pixel sub- 
ROI. The best we can do without replicating the injection 
in the same patient is two neighboring pixels, because 
it is more likely that biologic differences will be minimal 
(more similar true CBV, distribution of vessel sizes, de- 
livery of contrast agent, etc.). However, like comparable 
estimates of the reproducibility of nuclear quantification 
techniques, the data imply that biologic heterogeneity 
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ultimately dictates the uniformity of computed CBV 
maps. 

CONCLUSIONS 
We have quantified herein the main sources of noise in 

computed CBV maps. Through propagation of errors, we 
produced a semianalyhc model for CBV map noise that 
has two terms: one due specifically to the variance of the 
integrated images, and one due to the estimate of the 
baseline. We introduced analytic and Monte Carlo tech- 
niques for determining the effect of experimental param- 
eters and processing strategies on CBV-SNR. CBV-SNR 
increases as more points are used to estimate the base- 
line signal level. For typical injections, maps made with 
10 baseline points have 34% more noise than those made 
with 50 baseline points. For a given peak signal drop and 
a particular shape of AR2(fj, we can choose a TE that 
maximizes CBV-SNR, and in general, this TE is less than 
the baseline T2. However, because CBV-SNR is relatively 
insensitive to TE around this optimum value, choosing 
TE = T2 does not sacrifice much SNR for typical doses of 
contrast agent. The TR that maximizes spin-echo CBV-SNR 
satisfies TR/Tl - 1.26, and as short a TR as possible 
should be used to maximize gradient-echo CBV-SNR. For 
physiologic input bolus durations at the optimum TE, 
CBV-SNR can be maximized for a given dose of contrast 
agent by selecting as short an input bolus duration as 
possible. For image SNR exceeding 20 to 30, the r-fitting 
procedure adds little extra noise compared with simple 
numeric integration. However, for noisier input images, 
as can be the case for high resolution echo-planar im- 
ages, the covarying parameters of the r-variate fit 
broaden the distribution of the CBV estimate and thereby 
decrease CBV-SNR. We used the standard deviation of 
CBV within white and gray matter ROIs to estimate the 
noise in CBV maps constructed from actual patient data. 
Our analytic model accounts for roughly 70% of the mea- 
sured variability of CBV within white matter ROIs, and 
the residual noise probably is attributed to biologic het- 
erogeneity, sampling effects, and physiologic noise not in- 
cluded in the model. 

Appendix 
This appendix derives the scaling factors that account 

for the correlation introduced by spatial filtering in the 2- 
and 4-pixel sub-ROIs used to estimate the experimental 
variance of V. We relate crz, the experimental estimate of 
the variance of V, to a;, the analytic estimate of the var- 
iance of V: a$ = ku:,. We do this by deriving u:, = m2 and 
03 = b a 2 ,  where u2 is the baseline variance of the unfil- 
tered image data, and solving k = a/b. As an example, 
we derive k for the 2-pixel sub-ROI. 

Q: Accounting for Spatial Correlation from the 
Hanning Filter 

Because Hanning-filtered data are a linear combination 
of the original data, it follows that: 

where c, are the (normalized) coefficients for the 3 X 3 
Hanning filter: "":I. 

l6 1 2 1  

Therefore, cr$ = 9/64 u2, and a = 9/64. 

b Accounting for Spatial Correlation from Sub-ROI 
Averaging 

We consider a 2 X 1 sub-ROI in a CBV map, with a 
corresponding 4 X 3 grid of pixels A ... L: 

A B  C D 
E F (VJ G [Vz) H 
I J  K L 

for which: 

1 1 
2 u$ = - I(v,  - v)2 + (V, - 7421 = 4 (v, - V J Z ,  [A2) 

where V, and V. are the estimated CBVs in the sub-ROI 
and v is their mean. Because V, and V, are linear com- 
binations of the unfiltered data (pixels A ... L) with base- 
line noise u2, the expectation of a?, E{u$), can be 
expressed in terms of F, G, and u2: 

E{ug = E{& 4 

with 

F = 1 / 1 6 { A + 2 B +  C 

G=1/16{ B + 2 C  

and 

V, - VJ2}  = E { i  (F - G).}, (A3) 

~ E + ~ F + z G +  1 + 2 5 +  K 1 (A4) 

D +  2 F + 4 G + 2 H -  J + Z K - L )  (A5) 

F - G = ~ / I ~ ( A +  B -  c - D + ~ E + ~ F - ~ G - ~ H + I -  J -2x-u .  (A6) 

Assuming that the unfiltered data (A ... L) are uncorre- 
lated, E{(F - G),} is simply the sum of the expectation of 
the square of each term in Equation [A6], because the 
expectation of the product of cross-terms is equal to zero. 
Neglecting the mean, the expectation of the square of 
each term in Equation [A61 is proportional to uz, and 
therefore, E{az} = 3/128 02, and b = 3/128. 

Dividing a by b yields k = 6. and therefore, I:'& = 2.45 
is used to scale the experimental estimate of uv for com- 
parison with the analytic estimate of uv 

An analogous procedure was used to derive k for the 2 
X 2 sub-ROI. 
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