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The enhancement of the spin-lattice relaxation rate for nuclear spins in a ligand bound to a
paramagnetic metal ion �known as the paramagnetic relaxation enhancement �PRE�� arises primarily
through the dipole-dipole �DD� interaction between the nuclear spins and the electron spins. In
solution, the DD interaction is modulated mostly by reorientation of the nuclear spin-electron spin
axis and by electron spin relaxation. Calculations of the PRE are in general complicated, mainly
because the electron spin interacts so strongly with the other degrees of freedom that its relaxation
cannot be described by second-order perturbation theory or the Redfield theory. Three approaches to
resolve this problem exist in the literature: The so-called slow-motion theory, originating from
Swedish groups �Benetis et al., Mol. Phys. 48, 329 �1983�; Kowalewski et al., Adv. Inorg. Chem.
57, �2005�; Larsson et al., J. Chem. Phys. 101, 1116 �1994�; T. Nilsson et al., J. Magn. Reson. 154,
269 �2002�� and two different methods based on simulations of the dynamics of electron spin in time
domain, developed in Grenoble �Fries and Belorizky, J. Chem. Phys. 126, 204503 �2007�; Rast et
al., ibid. 115, 7554 �2001�� and Ann Arbor �Abernathy and Sharp, J. Chem. Phys. 106, 9032 �1997�;
Schaefle and Sharp, ibid. 121, 5387 �2004�; Schaefle and Sharp, J. Magn. Reson. 176, 160 �2005��,
respectively. In this paper, we report a numerical comparison of the three methods for a large variety
of parameter sets, meant to correspond to large and small complexes of gadolinium�III� and of
nickel�II�. It is found that the agreement between the Swedish and the Grenoble approaches is very
good for practically all parameter sets, while the predictions of the Ann Arbor model are similar in
a number of the calculations but deviate significantly in others, reflecting in part differences in the
treatment of electron spin relaxation. The origins of the discrepancies are discussed briefly. © 2008
American Institute of Physics.
�DOI: 10.1063/1.2833957�

I. INTRODUCTION

Measurements of the enhancement of the solvent proton
spin-lattice relaxation rate caused by paramagnetic ions or
complexes are important sources of structural and dynamic
information on the species present in solution. The enhance-
ment is commonly called paramagnetic relaxation enhance-
ment �PRE�. At not too high concentration of the paramag-
netic species, the PRE is proportional to the concentration. A
common concept in the context is relaxivity, referring to the
PRE normalized to 1 mM concentration of the paramagnetic

species. Measurements of the nuclear relaxation rate over a
broad range of magnetic fields are referred to as relaxometry,
and the resulting curve is denoted as a nuclear magnetic
relaxation dispersion �NMRD� profile. The measurements
and interpretation of the NMRD profiles in a variety of sys-
tems containing paramagnetic metal ions was the subject of
Ref. 1.

On the experimental side, the NMRD profiles are usually
measured by the field-cycling technique �where the magnetic
field is rapidly switched between different values�,1,2 by shut-
tling the sample between a high field of a superconducting
magnet and a lower field outside,3 by measurements at sev-
eral different “conventional” spectrometers, by a broadband
spectrometer, or by a combination of the aforementioned

a�Author to whom correspondence should be addressed. Electronic mail:
jk@physc.su.se.
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methods. The interpretation of the NMRD profiles amounts
to formulating an appropriate model and fitting the param-
eters of the model to the experimental data. The theory of
nuclear spin relaxation in paramagnetic systems with elec-
tron spins S�1 /2 is complicated for several reasons. First,
we have the fact that the electronic spin motion is driven by
two noncommuting Hamiltonians, namely, the time indepen-
dent Zeeman Hamiltonian �HZeem� arising from the interac-
tion of the electronic spin with the laboratory magnetic field
and the zero-field splitting �ZFS� Hamiltonian �HZFS�, which
arises from the spin-orbit coupling for a S�1 ion. The
former Hamiltonian is diagonal in the laboratory coordinate
frame �z �B0�, the latter in the molecule-fixed ZFS principal
axis system. The two Hamiltonians are generally of compa-
rable magnitude for most d-block S�1 /2 ions, so that over
the range of field strengths of a NMRD experiment, it is
common to pass from the ZFS limit �HZFS�HZeem� at low
field strengths to the Zeeman limit �HZeem�HZFS� at high
fields. In passing through the intermediate regime of field
strengths �HZFS�HZeem�, the electron spin motion changes
from a spatial quantization that is molecule fixed in the ZFS
limit to a spatial quantization that is laboratory fixed in the
Zeeman limit. Both the spin energy level structure and the
zero-order spin wavefunctions change profoundly as a func-
tion of field strength as the system passes between the ZFS
and Zeeman limits.

Further complicating the physical picture is the fact that
HZFS is time dependent due to Brownian reorientation of the
solute. Because of this motion, the electron spin eigenfunc-
tions are stochastic functions of time. In the intermediate
regime, the situation is particularly complex, since the spin
wavefunctions are time-dependent quantities which lack dis-
tinct spatial quantization along either laboratory- or
molecule-fixed axes. Still another source of complexity in-
volves random distortions of the ZFS tensor due to thermal
motions of the metal coordination sphere. ZFS distortion re-
sults both from intermolecular collisions and from thermal
excitation/deexcitation of the normal vibrational modes of
the metal coordination sphere. These processes are stochastic
and provide mechanisms of electron spin relaxation. They
play a fundamental role in the theory of the NMR-PRE.

One difficulty is caused by the fact that the electron spin
relaxation is often beyond the validity range of the second-
order perturbation treatment5,6 or the Redfield theory.7 For
instance, this treatment is not applicable to the following
frequent situation involving the mean ZFS interaction in the
molecular frame bound to the complex, when the product of
the interaction strength �in angular frequency units� and the
characteristic time of the Brownian reorientation �the rota-
tional correlation time �R� is not much smaller than unity
and, simultaneously, �R is not long enough to justify that this
interaction remains static in the laboratory frame, so that its
effects can be calculated by a powder average over all the
orientations of the complex. The three theoretical approaches
described here are valid for the difficult case where molecu-
lar reorientation occurs at a similar rate as the coherent mo-
tions of the electron spin.

A further complication arises in the description of the
dynamics of the process in which the ZFS tensor is distorted

during intermolecular collisions. The resulting stochastic
ZFS tensor fluctuation provides a mechanism of electron
spin relaxation, and in this way it influences the NMR-PRE.
The selection of a dynamical model, which is both realistic
and amenable to theoretical analysis and mathematical solu-
tion is a difficult problem that is discussed further below.

It is only in the Zeeman limit and in the perturbation
regime that the physical picture of the relaxation phenomena
is reasonable simple. It was for the purpose of describing this
limiting case that the classical theory of the NMR-PRE was
developed by Solomon, Bloembergen, and Morgan8–11

�SBM� several decades ago. Since that time, advances in the
theory have been formulated in laboratories in Sweden �S�,
Ann Arbor �AA�, Grenoble �G�, and Florence �F�. The ob-
jective of this paper is to compare the results of these formu-
lations with respect to the description of the effects of a
time-dependent ZFS Hamiltonian. The outline is as follows.
We present some of the current theoretical tools briefly in the
theoretical section. The emphasis of this study is on actual
numerical comparisons for two sets of parameters, presented
in the results and discussion section. The first set has been
chosen to represent systems of interest as gadolinium�III�-
based contrast agents for magnetic resonance imaging.12–15

The second set corresponds to Ni�II� complexes. These sys-
tems are interesting mainly because of the challenge they
represent for various theories. Some concluding remarks are
presented in the final section of the paper.

II. THEORETICAL

A. Formulation of the problem

The magnetic dipole-dipole �DD� interaction has early
been recognized as a source of nuclear spin relaxation. A
very important early formulation of the problem of dipolar
relaxation was presented in the classical paper of Bloember-
gen, Purcell, and Pound �BPP� from 1948,16 who indeed set
the ground for all subsequent development. A few years later,
Solomon considered a system of two nonequivalent spins IS,
both characterized by the spin quantum number of 1 /2, with
the dipole-dipole interaction as the mechanism of spin
relaxation.8 Through this work, some minor mistakes of the
BPP formulation were corrected. Solomon and
Bloembergen9,10 showed also that the scalar interaction be-
tween the I and S spins can act as a relaxation mechanism.
For the cases under consideration in this work, paramagnetic
enhancement of the spin-lattice relaxation, the dipole-dipole
interaction is normally much more important and here we
neglect the scalar contribution.

In order to cause relaxation, the dipole-dipole coupling
has to be modulated by random processes. The next issue to
consider are the processes generating this modulation. In a
simple diamagnetic case, discussed for example in Abrag-
am’s book17 or in the recent book by Kowalewski and
Mäler,18 we need to deal with two such dynamic processes:
Reorientation of the spin-spin vector with respect to the labo-
ratory frame and the mutual translational diffusion of the
species carrying the I and S spins. In the PRE context, these
two dynamic processes are associated with the so-called
inner-sphere and outer-sphere relaxation enhancement. In

052315-2 Belorizky et al. J. Chem. Phys. 128, 052315 �2008�
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this study we treat only the inner-sphere case. In paramag-
netic IS systems, where S denotes the electron spin, or some-
times in diamagnetic systems with a nuclear spin I=1 /2 hav-
ing a DD coupling to another nuclear spin I��1 with a
quadrupolar moment,19 one needs, in addition, to consider
the fact that the relaxation of the spins S and I� can modulate
the DD interaction. This is a major complication in the PRE
theory.

Thus, we consider the relaxation of a nuclear spin I in an
external magnetic field B0, occurring due to the time fluctua-
tions of the Hamiltonian, Hdip�t�, describing its magnetic
dipole-dipole interaction with an electronic spin S. Let �I be
the magnetogyric ratio of I and �I�−�IB0 its angular Lar-
mor frequency. The Hamiltonian of the nuclear �n� spin I is

Hn�t� = ��IIz + Hdip�t� . �1�

It is convenient to express Hdip�t� in the spherical tensor
basis. Let �B be the Bohr magneton and gS the Landé factor
of S. The magnetic moments of the nuclear and electronic
spins are �mI�q

�1�=�I�Iq
�1� and �mS�q

�1�=−gS�BSq
�1�. Let

�rIS ,	 ,
� be the spherical coordinates of the I-S interspin
vector rIS in the laboratory �L� frame. The spherical harmon-
ics Y2q�	 ,
� form a tensor of order 2, Y2��Y2q�	 ,
��
�q=−2, . . . ,2�. The dipolar Hamiltonian Hdip�t� describes the
magnetic energy of the nuclear spin I in the local dipolar
field of S, �BS�q

�1� created by the electronic magnetic moment,
i.e.,

Hdip�t� = − mI�t� · BS�t� = − �I� �
q=−1

+1

�− �q�BS�−q
�1��t��mI�q

�1��t� ,

�2�

where �BS��1� is proportional to the rank-one part of the ten-
sor product6 of Y2 and S,

�BS�q
�1� =

�0

4�
2	2�gS�B

1

rIS
3 �Y2 � S�q

�1�

=
�0

4�
2	6�gS�B �

m,m�

�− �1+q
 2 1 1

m m� − q
�

�
Y2m�	,
�

rIS
3 Sm�

�1�. �3�

Paramagnetic NMR relaxation is driven by the resonant
component of the dipolar interaction between the nuclear
magnetic moment and the local dipolar field of S, BS. Spe-
cifically, the paramagnetic enhancement of the NMR spin-
lattice relaxation rate R1M =T1M

−1 is proportional to the dipolar
power density at the nuclear Larmor frequency �I. Because
of the equality �BS�−1

�1��t�†=−�BS�1
�1��t�, it can be written as

T1M
−1 = − 2�I

2 Re�
0





�BS�+1
�1��t� · �BS�−1

�1��0��e−i�Itdt , �4�

where the brackets indicate a quantum mechanical trace over
the variables of S, and the superscripting line indicates a
thermal average over the spatial molecular degrees of
freedom.

Thus the evaluation of the time correlation functions
�TCF� of the dipolar field,

�B,m = − 
�BS�m
�1��t� · �BS�−m

�1��0�� , �5�

forms the core of the problem. In part, the time dependence
of BS�t� arises from the fluctuations of the lattice functions
Y2m�	 ,�� and rIS in Eq. �3�. For the inner-sphere case con-
sidered here, I and S belong to the same rigid molecule, rIS is
time independent, and Y2m�	 ,�� fluctuate due to Brownian
reorientation.

Furthermore, the time dependence in BS�t� arises from
the electron spin motions as described by the spin TCF’s

�S,m = − 
Sm
�1��t�S−m

�1��0�� , �6a�

=− Tr��
S
°US�t�Sm

�1�US�t�†S−m
�1��S, �6b�

where �
S
° =1 / �2S+1� is the high temperature thermal equilib-

rium density operator of S and US�t� its time evolution op-
erator. The motions of S are driven by the electron spin
Hamiltonian HS, which consists of a sum of two terms �ne-
glecting the effects of nuclear hyperfine interactions�: �1�
The electronic Zeeman interaction �HZeem� and �2� the ZFS
�HZFS�,

HS��,�,�,t� = HZeem + HZFS��,�,�;t� . �7�

The Zeeman and ZFS Hamiltonians do not in general com-
mute; HZeem is diagonal in the L coordinate frame �z �B0�,
while HZFS�� ,� ,� ; t� is diagonal in the molecule-fixed ZFS
principal axis system �P�. Assuming that B0 is constant,
HZeem can be written as

HZeem = gS�BB0 · S = gS�BB0Sz = ��SSz. �8�

The ZFS term is diagonal in the P frame, which fluctuates in
liquids due to Brownian reorientation. HZFS depends on even
powers of the spin components and, written in the �P� frame,
has the general form20

HZFS = D�Sẑ
2 − S�S + 1�/3� + E�Sx̂

2 − Sŷ
2� + 4th O.T.

+ 6th O.T. + ¯ . �9�

The individual terms on the right hand side of Eq. �9� may, in
specific cases, vanish either by reason of the dimension of
the spin space or because of chemical symmetry. For ex-
ample, ZFS terms that are nth order in the spin operators are
present for n�2S �n even�. Hence for S=1 /2, HZFS van-
ishes; for S=1 and S=3 /2, only quadratic ZFS terms are
present; for S=2 and 5 /2, quadratic and fourth order terms
are present, etc. Chemical symmetry can further restrict the
form of Eq. �9�.

Equation �9� is written in the �P� frame, while the Zee-
man and dipolar Hamiltonians �Eqs. �1�–�5�� are written in
the �L� frame. Thus we transform Eq. �9� from �P� to �L� by
first writing HZFS in the spherical basis21 in the P frame
�denoted by superscripts � ˆ ��,

HZFS = 	2/3DŜ0
�2� + E�Ŝ+2

�2� + Ŝ−2
�2�� + h.o.t., �10�

and then transforming the spin tensor operators from �P� to
�L� using Wigner rotation matrices.6 For example,

052315-3 Relaxation enhancement of nuclear spins J. Chem. Phys. 128, 052315 �2008�
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Ŝq
��� = �

q�

Dq�,q
��� ��,�,��Sq�

���, �11�

where �� ,� ,�� are the Euler angles defining the orientation
of �P� with respect to �L�. Details of the calculation are given
elsewhere.6 In liquids, the P frame �and hence HZFS� is time
dependent due to Brownian reorientation. Thus HS and HZFS

are written in Eq. �7� as functions of both molecular orien-
tation and of time.

It is usual to separate HZFS�� ,� ,� , t� into a pair of terms
describing, respectively, the “permanent” �or “static”� and
“collisional” �or “transient”� ZFS interactions,

HZFS��,�,�;t� = HZFS,S��,�,�;t� + HZFS,T�t� . �12�

The permanent ZFS interaction, HZFS,S�� ,� ,� ; t�, is time in-
dependent in the P frame; this quantity is the value of
HZFS�� ,� ,� , t� after averaging over vibrations and other mo-
lecular internal degrees of freedom, as well as over distor-
tions of the ZFS tensor caused by intermolecular collisions.
Thus HZFS,S�� ,� ,� ; t� is permanent in the sense of a perma-
nent electric dipole moment. The collisional term, HZFS,T�t�,
results from thermal modulation of the ZFS tensor by pro-
cesses other than Brownian reorientation. Such processes in-
clude collisionally induced distortions of the ZFS tensor and
thermal modulation due to vibrational relaxation. HZFS,T�t�
fluctuates with zero mean on the time scale of a few pico-
seconds and often provides a mechanism of electron spin
relaxation. The decomposition into the static and transient
ZFS is most useful if the time scales of rotations �on the one
hand� and other motions �on the other hand� are significantly
different.

The effect on the electronic spin motions of
HZFS,S�� ,� ,� ; t� is more complex than that of HZFS,T�t� in
that it depends on the rate of molecular reorientation and on
the value of B0. At sufficiently low field, when reorientation
is slow compared to the inverse transition frequencies,
HZFS,S�� ,� ,� ; t� can be considered stationary, in which case
this term drives coherent oscillations of the matrix elements
of S. When molecular reorientation is fast, HZFS,S�� ,� ,� ; t�
induces stochastic motions in 
S� and thus provides a second
mechanism of electron spin relaxation in addition to that due
to HZFS,T�t�. It is therefore, useful to distinguish “fast” and
“slow” regimes of molecular reorientation with respect to the
role of HZFS,S�� ,� ,� ; t� in the theory. The intermediate re-
gime where the spin oscillations of HZFS,S�� ,� ,� ; t� and mo-
lecular reorientation occur on the same time scale is naturally
more difficult to treat than are the limiting cases.

B. Early theoretical models

An early theory of the PRE phenomenon was given in
the form of modified Solomon-Bloembergen �MSB� equa-
tions, first presented by Connick and Fiat22 and by Reuben
et al.23 and formally derived by Gueron24 and Benetis et al.25

The dipolar part of the MSB equations can be written as

T1M
−1 =

2

15
S�S + 1�CDD

2 � �c2

1 + ��S − �I�2�c2
2 +

3�c1

1 + �I
2�c1

2

+
6�c2

1 + ��S + �I�2�c2
2 � . �13�

Here, CDD���0 /4���I�S� /rIS
3 denotes the dipole-dipole

coupling constant with �S�=−gS�B, and the other symbols
have their usual meaning. The correlation times �ci are de-
fined as

�ci
−1 � �R

−1 + Tie
−1 + �M

−1, i = 1,2. �14�

The symbol �R is the same as introduced above and repre-
sents the rank-two rotational correlation time. The MSB
equations also allow for the chemical exchange of the
I-spin-carrying ligand between the first coordination sphere
of the transition metal and the bulk, characterized by the
exchange lifetime �M. We neglect the chemical exchange as a
modulation mechanism in this study. T1e is the electron spin-
lattice relaxation time and T2e is the corresponding spin-spin
relaxation time.

A simple theory of electron spin relaxation for S�1
metal ions in aqueous solution was already formulated in the
early sixties by Bloembergen and Morgan.11 They considered
the theory of the electron spin Hamiltonian dominated by the
Zeeman interaction �the high field limit� and the static ZFS
vanishing because of high �average� symmetry of the hy-
drated metal ions �HZFS,S�� ,� ,� ; t�=0�. The transient ZFS
was assumed to have its origin in collisions of the hydrated
ion with the surrounding solvent molecules, to be limited to
the quadratic terms in Eq. �9� and to undergo rapid fluctua-
tions. Using the second order perturbation theory and simpli-
fying the problem a bit, they obtained that the longitudinal
and transverse electron spin relaxation processes were simple
exponential with the field-dependence of relaxation times ac-
cording to

T1e
−1 =

1

5
�S0

−1� 1

1 + ��
2�S

2 +
4

1 + 4��
2�S

2� , �15�

T2e
−1 =

1

10
�S0

−1�3 +
5

1 + ��
2�S

2 +
2

1 + 4��
2�S

2� , �16�

where �� is the distortional or vibrational ��� correlation time
and �S0 denotes the electron spin relaxation time at the limit
��

2�S
2�1, where T1e=T2e.
The modified Solomon-Bloembergen equations can be

combined with the Bloembergen-Morgan expressions for the
electron spin relaxation rates, yielding a self-contained
theory known as the SBM theory. The SBM theory has been
extensively used over the years, in spite of the problems with
its validity range.1,4 As discussed in a recent review,26 the
main limitations of the SBM theory are threefold. First, it is
based on the assumption that the electron spin relaxation and
the molecular reorientation are uncorrelated. This decompo-
sition approximation is the essence of Eq. �14� and becomes
problematic if the ZFS interaction has a nonvanishing aver-
age value in the molecular frame, which is modulated by the
complex reorientation. Second, the unperturbed stationary
Hamiltonian of the electron spin system is chosen to be the
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Zeeman interaction, which corresponds to the high-field or
Zeeman limit treatment of Eq. �7�. Third, other interactions,
such as the ZFS, are included by means of time-dependent
second-order perturbation theory �the Redfield theory�, yield-
ing simple exponential relaxation processes characterized by
a longitudinal and a transverse relaxation time. This set of
assumptions can be violated in many ways: �1� At low mag-
netic field, the ZFS interaction can dominate over Zeeman
�in fact the “low field” condition holds at all attainable labo-
ratory magnetic field strengths for a number of important
transition ions, e.g., high-spin Co�II� �Ref. 27��; �2� the ZFS
interaction may be too strong for the perturbation approach;
and �3� even if the Zeeman and Redfield limits apply, the
electron spin relaxation in high-spin systems �S�1� is ex-
pected to be multiexponential. Besides these main assump-
tions, the SBM theory contains several other approximations,
such as the point-dipole approximation and the assumptions
that both the electronic g tensor and the reorientational mo-
tion are isotropic.4

In the Zeeman limit, the issue of the multiexponentiality
of the electron spin relaxation can be resolved fairly easily,
as discussed by Hudson and Luckhurst,28 Rubinstein et al.,29

and Westlund and Strandberg.30,31 There are also ways
around the high-field limit assumption, at least under condi-
tion of very slow rotation of the complex.32–37 The problems
with the decomposition approximation and with the Redfield
limit are very fundamental and difficult to circumvent.

C. Assumptions and parameters

There are three approaches in the literature which claim
to have solved these problems in rather different ways, and
we have undertaken this study in order to obtain numerical
comparisons of the NMRD profiles predicted by the three
methods for some typical parameter sets. The assumptions of
the three approaches differ, but there is a certain basic and
common set that we follow.

(1) The ZFS Hamiltonian. The systems under consider-
ation are characterized by S�1 and a nonvanishing perma-
nent �averaged over fast motions� quadratic ZFS. We assume
that it is cylindrically symmetric in the molecular frame, i.e.,
two of its principal elements are equal. Combined with the
traceless nature of the ZFS, this leads to a single parameter
description of the mean ZFS, called the permanent or static
ZFS and denoted by �S�	2 /3DS. The spin Hamiltonian for
the static ZFS is written as

HZFS,S
�PS� = DS�Sẑ

2 − S�S + 1�/3� . �17�

The superscript �Ps� indicates explicitly that the Hamiltonian
is formulated in the principal frame of the static ZFS, fixed
in the molecule. In addition to the permanent value, the ZFS
is characterized by spread, called transient �or “collisionally
modulated”� ZFS and denoted by �T�	2 /3DT. The corre-
sponding Hamiltonian is expressed as

HZFS,T
�PT� = DT�Sẑ

2 − S�S + 1�/3� . �18�

The superscript �PT� means that the transient ZFS Hamil-
tonian is formulated in its own principal frame, which does

not coincide with the PS frame. These concepts are illus-
trated in Fig. 1.

(2) Reorientational dynamics. There are two relevant dy-
namic processes. First, the molecular frame changes its ori-
entation in the laboratory frame by means of isotropic rota-
tional diffusion in small steps. The nature of this process is
rather obvious and its role was discussed already in the BPP
paper. For the motion of this kind, the time-correlation func-
tion of the rank-two spherical harmonics decays exponen-
tially with a time constant called rotational correlation time
�R, the quantity occurring in Eq. �14�. The complex reorien-
tation modulates the intramolecular �intracomplex� dipole-
dipole interaction as well as the static ZFS interaction. The
former modulation is a source of dipole-dipole relaxation,
while the latter can yield electron spin relaxation.

(3) Collisional dynamics. The second dynamic process
involves distortions of the complex caused by collisions with
the surrounding solvent molecules and is more complicated.
Rubinstein et al.29 proposed a description of the process by a
rotational diffusion equation and called it “pseudorotation.”
The characteristic time constant for this motion is called dis-
tortional correlation time or pseudorotation correlation time.
It can be identified with the parameter �� in the
Bloembergen-Morgan expressions �Eqs. �15� and �16��. The
pseudorotation time describes the reorientation of the tran-
sient ZFS of a constant magnitude �T with respect to an
arbitrary molecule fixed frame. In a system with vanishing
static ZFS, the zero-field limit electron spin-relaxation time
of the Bloembergen-Morgan expressions can be related to �T

and ��,

�S0
−1 = 1

5 �4S�S + 1� − 3��T
2��. �19�

In a system where �S is nonzero, �� has a similar meaning,
i.e., the correlation time for the part of the ZFS, which is
averaged out on a time scale shorter than rotation. In the
interpretation of Larsson et al.,38 the intracomplex motion

FIG. 1. �Color� Orientations of the principal axis systems for the static ZFS
interaction �PS� and the transient ZFS interaction �PT� with respect to the
laboratory frame �L� for a given orientation of the molecule. The red arrow
represents the static ZFS, the blue arrows indicate the transient ZFS at two
different times t1 and t2, and the black arrows show the combined ZFS
Hamiltonian HZFS at these times; the interspin vector rIS linking the elec-
tronic spin S and the nuclear spin I is shown in green together with the polar
angle 	.
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described by �� is called anisotropic pseudorotation, indicat-
ing that it affects the spread of the ZFS and leads to a non-
zero mean. In the terminology of the group of Grenoble,20,39

this second dynamic process is simply referred to as tran-
sient fluctuation. It should be stressed that the ZFS distor-
tional motions that are parametrized by the quantities �T and
�� are in reality very complex. The pseudorotation model
treats the collisional ZFS distortion as a classical diffusion
over the surface of a sphere by a transient ZFS tensor of
constant amplitude. The ZFS motions resulting from inter-
molecular collisions are physically rather different from this
picture, however, in that a random sequence of molecular
collisions produces a sequence of ZFS fluctuations with ran-
dom amplitude and random orientation. The motion is intrin-
sically large step rather than diffusive in character. Thus the
physical significance of the parameters ��T and ��� of the
model is not entirely clear. Furthermore, in any real system
the motion is complicated by the presence of several in-
equivalent degrees of freedom of the metal coordination
sphere, and these degrees of freedom in general possess dis-
tinct compliance constants �i.e., there are several values of
�T and ���. At present, the only analysis which takes these
complexities into consideration in a realistic way is that of
Odelius et al.,40,41 who analyzed collisional ZFS distortions
in the S=1 Ni�II� hexaquacation using a combination of MD
simulation and ab initio quantum calculation. The present
calculations employ motional models that are highly simpli-
fied compared to the more detailed analysis of these studies.

The Ann Arbor approach does not use the pseudorotation
model to describe collisional dynamics, but rather the Red-
field theory of Ref. 42. In its most general form, this theory
calculates a set of eigenstate-specific electron spin relaxation
rates in a manner which accounts �at least formally� for the
five distortional modes of a quadratic ZFS tensor. The sim-
plified form of the theory43 used in this study averages the
calculation over spin eigenstates and with respect to the
modes of ZFS distortion. Thus the level of theoretical de-
scription parallels that of Bloembergen-Morgan theory with
respect to the complexity of the physical parametrization and
the calculated results �i.e., a single set of parameters, �T and
��, is used to calculate two eigenstate-averaged relaxation
rates, �S1

−1 and �S2
−1, along the z and x laboratory axes�, but it

generalizes the Bloembergen-Morgan theory by incorporat-
ing the effects of the permanent ZFS Hamiltonian. Since this
theory �like Bloembergen-Morgan theory� invokes the Red-
field assumption ��T�v�1�, it fails when �T is large �see
further below�.

(4) Orientation of the nuclear spin in the molecular
frame. The orientation of the permanent ZFS principal axis
does not need to coincide with the dipole-dipole principal
axis. Thus the polar angle 	 between the interspin vector rIS

and the ZFS principal axis may be different from zero. The
calculations assume limiting values of 	=0 and � /2.

These five parameters, �R, �T, �R, ��, and 	, are used by
all the three models to be compared with each other. Besides
these quantities, the inner-sphere, dipole-dipole relaxivity at
a given magnetic field depends on the dipole-dipole coupling
constant �which in turn depends on the electron gS factor, the
magnetogyric ratio of the nuclear spin and the distance be-

tween the spins� and the chemical exchange lifetime �M. The
chemical exchange lifetime is, throughout this study, as-
sumed infinite �no exchange�. The dipole-dipole coupling
constant acts as a scaling factor.

D. The Swedish slow motion theory „the S method…

The approach developed by the Swedish groups25,26,38,44

uses the concept of a nuclear spin interacting with a compos-
ite lattice, containing the quantized electron spin degrees of
freedom as well as classical molecular degrees of freedom.
The composite lattice of this kind can be dealt with using a
formulation based on the Liouville superoperators. The cou-
pling between the nuclear spin and the lattice is through the
dipole-dipole interaction between the nuclear and the elec-
tron spin �a scalar term can also be included, if required�.
The formulation of the dipole-dipole Hamiltonian is analo-
gous to Eqs. �2� and �3�,

HIL
DD = �

n=−1

1

�− �nIn
�1�T−n

�1�. �20�

The operators In
1 are simply nuclear spin operators in irreduc-

ible spherical form, while the lattice operators T−n
1 are rank-

one contractions of the electron spin operators �rank-one�
and the rank-two Wigner rotation matrices.25,26 The PRE is
obtained by taking the real part of a complex spectral density
function at the nuclear Larmor frequency,

T1M
−1 = 2 Re K1,1

DD�− �I�

= 2 Re�
0




TrL�T1
�1�+ exp�− iL̂

ˆ
L��T1

�1��T�

�exp�− i�I��d� . �21�

The expression under the integral sign, TrL �T1
�1�+ exp

�−iL̂
ˆ

L��T1
�1��T�, is a time-correlation function for the lattice

operators; �T is the equilibrium density operator for the lat-

tice �subject to high-temperature approximation� and L̂
ˆ

L is
the Liouville superoperator �Liouvillean� describing the lat-
tice. Equation �21� is essentially identical to Eq. �4�. Under
the set of common assumptions described above, the lattice
Liouville superoperator is a sum of “quantum” terms for the
electron Zeeman and the ZFS �static and transient� interac-
tions and classical Markov operators for the rotation of the
complex as well as the pseudorotation. The calculations ac-
cording to Eq. �21� are carried out using expansion of the
lattice operators in a basis set, constructed as a direct product
of Wigner rotation matrices �in two sets of Euler angles,
corresponding to the rotational and distortional motions� and
appropriate spin �super� operators. It should be stressed that
the electron spin dynamics is never separated from the clas-
sical motions; thus, Eqs. �6� are never used. The nuclear
spin-lattice relaxation rate, caused by the interaction with the
electron spin �the PRE�, is given by

T1M
−1 = 4

3 �CDD�2S�S + 1�Re�c1
*�i�LL + �I1��−1c1�

= 4
3 �CDD�2S�S + 1�Re�c1

*M−1c1� , �22�

where LL is the matrix representation of the lattice Liouvil-
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lean obtained using the basis set mentioned above and c1 is a
projection vector representing the lattice operators in the
same basis. The projection vector reduces greatly the number
of elements of the M−1= �i�LL+�I1��−1 matrix needed. The
vector contains only three nonzero elements and a 3�3 frag-
ment of the inverted matrix is required. Numerically, the cal-
culations imply setting up a �very large� matrix and finding a
fragment of the inverse matrix. Typically, the basis set size
will be determined by the prespecified electron spin quantum
number S and the L quantum numbers of the Wigner rotation
matrices included in the basis set. In practice, the L quantum
numbers are increased step by step, until convergence is
reached. The matrix inversion is carried out using the Lanc-
zos algorithm.

It should be mentioned that Åman and Westlund have
reformulated the S theory in time domain.45,46 That time do-
main formulation is made in the Liouville space. For a
simple example,45 it has been shown that the S theory as
presented above �called the Fokker-Planck approach by
Åman and Westlund� gives results that are identical to this
time domain method, called the Langevin approach. One
could mention the advantage with a time domain approach,
namely, that it is more flexible towards different dynamic
models. The eigenfunction expansion of the diffusion propa-
gator is in the time-domain approach replaced by calculation
of trajectories.

E. The Grenoble approach „the G method…

The Grenoble approach starts with Eqs. �1�–�3�. The
time fluctuations of Hdip�t� are due to both the random dis-
placements of the interspin vector rIS and the random dy-
namics of the electronic spin states caused by the rotational
and vibrational/collisional motion of the metal complex.21,47

The effects of the time fluctuations of Hdip�t� on the nuclear
relaxation are handled in a statistical way as follows. Con-
sider a large number Nsys�2000–50 000 of random realiza-
tions j of the I-S spin system. Each realization j consists in a
spatial trajectory rIS,j�t���rIS,jt ,	 jt ,
 jt� of the interspin vec-
tor and in rotational and vibrational trajectories of the metal
complex inducing random fluctuations of the Hamiltonian
H1j

�L��t� acting on the electronic spin S and expressed in the L
frame. The total Hamiltonian of the electronic spin of the
realization j is

He,j
�L��t� = He0 + H1j

�L��t� , �23�

where He0��SSz is the time-independent Zeeman Hamil-
tonian of the electronic spin. The operator Uej�t� giving the
evolution of the electronic spin states of the realization j is
the solution of the Schrödinger equation,6

idUej/dt = He,j
�L��t�Uej with Uej�0� = 1 . �24�

We introduce the time-dependent electronic spin component
operators,

Sjd�t� � Uej�t�†SjdUej�t� �d = z, + ,− � . �25�

The TCF of the component �BS�−1
�1� of the local dipolar field

BS is defined as

k−1�t� = − �B,1�t� �
1

Nsys
�
j=1

Nsys 1

2S + 1

�TrS���BS�−1,j
�1� �t��†�BS�−1,j

�1� �0�� , �26�

where, according to Eq. �3� and using the abbreviation r̂ jt

��	 jt ,
 jt�, �BS�−1,j
�1� �t� is

�BS�−1,j
�1� �t� =

�0

4�
	12�

5
gs�B�Y2,−2�r̂ jt�

rIS,jt
3 Sj+�t�

+
Y2,−1�r̂ jt�

rIS,jt
3 Sjz�t� −

	6

6

Y2,0�r̂ jt�
rIS,jt

3 Sj−�t�� . �27�

The longitudinal PRE, T1M
−1, i.e., the increase of longitudinal

relaxation rate of the nuclear spin I due to the electronic
spins S, is given by

T1M
−1 = 2�I

2 Re�
0




k−1�t�exp�− i�It�dt . �28�

As stated above, we are concerned with a perturbing Hamil-
tonian in the laboratory frame, H1j

�L��t�, arising from the time
modulation of both the static and transient ZFS Hamilto-
nians. For the realization j of the spin system, let Rjt and Rjt

ps

be the actual and pseudorotation which, at time t, transform
the �L� frame into the molecular �PS� and �PT� frames, re-
spectively. In the �L� frame, the total ZFS Hamiltonian is
given by

H1j
�L��t� = HZFS,j

�L� �t� = �S �
q=−2

2

Dq0
�2��Rjt�Sq

�2�

+ �T �
q=−2

2

Dq0
�2��Rjt

ps�Sq
�2�, �29�

where the operators Sq
�2� are the components of an irreducible

tensor of order 2 and are called T2
q in Refs. 20 and 21.

The practical evaluation of Eq. �28� is detailed in the
Appendix. For an arbitrary field value, the above expression
is computed by the trapezoidal rule, Eq. �A4�, applied over a
finite time interval �0, tmax� with nt equally spaced integration
points separated by the time step �t. At high field B0, i.e., for
�S��S and �S��T, k−1�t� tends to the real analytical ap-
proximation,

k−1
high field�t� = 3

10k−1�0�exp�− t/�R�exp�− t/T1e� , �30�

where the longitudinal electronic relaxation is just given by
the Bloembergen and Morgan equations ��15� and �19��, and
is also named McLachlan expression in Ref. 21. This simpli-
fication results from the relative weights of the terms enter-
ing the expression �in Eq. �26�� of the TCF, k−1�t�, of the
local dipolar field component, �BS�−1j

�1� �t�, given by Eq. �27�.
Indeed, as B0 increases, the phase factors of the operators
Sj��t� of �BS�−1j

�1� �t� have faster and faster oscillations which
average out their contributions to k−1�t�. The only remaining
term involves the product Sjz�t�Sjz�0�, the “longitudinal”
TCF which is still given at sufficiently high field by the
standard Redfield relaxation theory,21 even beyond its ex-
pected validity range. This decay is due to the fluctuations of
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the static and transient ZFS Hamiltonians, which according
to the Redfield theory have high-field contributions to the
decay rate proportional to 1 / ��S

2�R� and 1 / ��S
2���, respec-

tively. Since we have ����R, the high-field decay rate is
driven by the transient ZFS, so that the decomposition ap-
proximation applies. Finally, the decay of the longitudinal
TCF is monoexponential with a rate 1 /T1e defined above by
the Bloembergen and Morgan expression, which is valid for
S=1, but also for S=7 /2.48,49 These properties are illustrated
in Fig. 10 in the Appendix.

According to Eq. �29�, it is shown in the Appendix that
the high-field PRE can be approximated by the analytical
expression

�T1M
−1 �high field � 
 �0

4�
�22

5
�I

2gS
2�B

2S�S + 1�
1

rIS
6

�c1

1 + �I
2�c1

2 ,

�31�

where the correlation time �c1 has the definition 1 /�c1

�1 /�R+1 /T1e corresponding to Eq. �14� with �M =
. In Sec.
III, it will be shown that at 23.5 T the high-field PRE values
given by Eq. �31� agree to within a few percent with the
Swedish results in the case of S=1 for ZFS parameters up to
10 cm−1. In the case of the Gd�III� complexes with S=7 /2, if
B0�0.705 T, the same accuracy is reached for �S, �T

�0.05 cm−1.
It should be pointed out that the high-field expression,

Eq. �31�, is simply the contribution of the central term in
�I�c1 of the modified SB approximation, Eq. �13�, of the
PRE. Even if the two terms in �S are dominant in the SBM
theory, they have to be dropped. Indeed, when the metal
complex is tumbling slowly ��S�R�1�, the Redfield approxi-
mation should not be applied and leads to an unphysically
too large T2e

−1 value roughly proportional to �S
2�R and conse-

quently to a too short value of �c2 given by Eq. �14�. Then, in
Eq. �13�, �S�c2 is too small, so that the terms in �S are too
large. The same difficulty occurs in the case of a multiexpo-
nential mathematical solution of the Redfield
equations.20,29–31,36 More precisely, when the metal complex
is tumbling slowly, the transverse electronic relaxation times
T2e have particularly short unphysical values. Then, the
transverse correlation time �c2 given by Eq. �14� is also too
short and �S�c2 is too small, so that the terms in �S of Eq.
�13� are unphysically large. The system S=7 /2, �S

=0.01 cm−1, �T=0.05 cm−1, 	=0 or 90°, �R=1 �s, ��=5 ps
provides a typical example of the failure of Eq. �13� at high
field. At 23.5 T, Eq. �13� gives a PRE value twice as large as
that derived from Eq. �31�.

We are now in a position to apply Eqs. �28� and �31� to
calculate the paramagnetic relaxation enhancement, PRE
=T1M

−1, as a function of magnetic field for various sets of
amplitudes �S and �T of the ZFS Hamiltonian, rotational
correlation time �R of its static contribution and pseudorota-
tional correlation time �� of its transient contribution, mod-
eling the vibrations/collisions of the complex. In the present
work, restricted to intramolecular dipolar relaxation, the in-
terspin vector rIS is fixed in the molecular �PS� frame. The
two situations, where rIS is parallel and perpendicular to the
static ZFS symmetry axis Oẑ, will be studied. In the present

simulation, the stochastic dependence between the rotation
of rIS,j�t� and the evolution operator Uej�t� of the electronic
spins states, which both depend on the same actual Brownian
rotation of the metal complex, is fully taken into account.
The so-called decomposition approximation,26 which ne-
glects this dependence to simplify the analytical approach, is
avoided.

F. The Ann Arbor approach „the AA method…

The Ann Arbor theory, which was developed during the
1990s, describes the motion of the electron spin system in
wavefunction space rather than Liouville space.33,34,50–52 In
the present study, the time dependence of the problem is
evaluated by means of spin dynamic �SD� simulation
methods.53–55

The Ann Arbor approach consists of a suite of algo-
rithms which are implemented in the computer program
PARELAX2.55 Two of the algorithms are based on the “con-
stant HS” approximation, which evaluates Eqs. �4�–�6� in ei-
ther the �L� frame or the �P� frame under the assumption that
the HZFS,S�� ,� ,� ; t� in Eq. �12� is constant in time. The
theory is physically transparent when the problem is formu-
lated in the coordinate frame corresponding to the spatial
quantization of the electron spin motion. Thus, the P frame
provides a natural description when the spin motion is in the
vicinity of the ZFS limit and the L frame in the vicinity of
the Zeeman limit. When the formulation is implemented in
the natural frame, it is relatively straightforward to discern
the effects and contributions of specific spin matrix elements
and specific ZFS tensor components to the NMR-PRE. Thus,
the constant HS approach is especially useful for understand-
ing the physics of the relaxation mechanism. It also provides
a suitable platform for a more sophisticated description of
collisional electron spin relaxation �see the discussion be-
low�. The principal limitation is that constant HS ignores the
reorientational mechanism of electron spin relaxation, i.e.,
relaxation resulting from the Brownian motion of
HZFS,S�� ,� ,� ; t�.

The third set of algorithms in PARELAX2, called spin dy-
namic �SD� simulation provides a more general computa-
tional platform which evaluates the TCFs of Eqs. �4�–�6�
driven by the general spin Hamiltonian of Eq. �7�.54 This
approach was used in this study. The SD algorithms are simi-
lar in spirit to molecular dynamics simulation: The molecular
degrees of freedom are simulated as a classical random walk
trajectory through the space of molecular orientations �i.e.,
the space of the Euler angles�, while the electron spin de-
grees of freedom are propagated quantum mechanically. The
reorientational model follows the ideas of Ivanov,56 which
assume that �1� molecular reorientation results from a se-
quence of rotational jumps which occur at randomly spaced
intervals; �2� individual reorientational jumps are sudden,
that is, they are rapid compared to the inverse transition fre-
quencies of the spin system; �3� the rotation axes of indi-
vidual jumps are oriented randomly in space; and �4� the
magnitude of the jump angle is distributed as a Gaussian
deviate of width �
 and zero mean.

The electron spin is propagated quantum mechanically
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using a propagator calculated from the Hamiltonian,
HS

°�� ,� ,� ; t�=HZeem+HZFS,S�� ,� ,� ; t�. This quantity is
time independent in the intervals between jumps and changes
suddenly during jumps. The spin propagator can be decom-
posed as follows:

U�t,t0� = U�n��t,tn� ¯ U��t2�U�1��t2,t1�U��t1�U�0��t1,t0� ,

�32�

where U�n��t , tn� is the propagator in the interval tn→ tn+1,
and U��tn� is the propagator for the jump at time tn. If the
jumps are rapid on the time scale of the spin oscillations
driven by HS

°�� ,� ,� , tn�, the state vector is unaffected by the
jump �this is the “Sudden Approximation” discussed in
Chapter XVII of Ref. 6�:

U��tn� = 1= . �33�

At the beginning of the nth interval, the spin Hamiltonian,
HS

°�� ,� ,� , tn�, is computed, and the propagator U�n��t , tn� is
evaluated from the series definition of the exponential opera-
tor. Then the spin TCF is evaluated at a sequence of time
steps within the interval until the next jump occurs, when
new values of HS

°�� ,� ,� , tn+1� and U�n+1��t , tn+1� are evalu-
ated. SD simulations evaluate �B,m�t� in Eq. �5� as an en-
semble average of, typically, 5000 trajectories constructed in
this way. The algorithms are stable and accurate over �104

time steps when the elementary time steps are small and
when the spin propagation is carried out in double precision.

The treatment of the electron spin relaxation in the AA
approach is an important issue, since it differs from the S and
G methods. As described above, electron spin relaxation for
S�1 in the presence of a permanent ZFS interaction is usu-
ally attributed to two motional processes, namely, �1� reori-
entation of the permanent ZFS tensor and �2� collisional
modulation of the permanent ZFS tensor as described by the
stochastic Hamiltonian, HZFS,T�t�, in Eq. �12�. Spin decay
due to the reorientational process is calculated directly by the
SD algorithms. The collisional contribution is evaluated
separately using the theory of Refs. 42 and 43. The resulting
decay functions, exp�−t /�S1� and exp�−t /�S2�, are then ap-
plied to the spin TCFs of Eq. �6b�.

The molecular dynamics of the collisional process are in
general quite complex. There are, in the simplest case of
uniaxial P-frame symmetry �as assumed in the calculations
of this study�, two distinct modes of ZFS distortion, axial
and equatorial, which are described, in general, by different
values �T and ��; that is, the force constants and thermal
amplitudes of these motions differ. An example is provided
by a planar metalloporphyrin, in which the compliance con-
stants associated with in-plane displacements of the nitrogen
atoms of the porphyrin moiety are much smaller �i.e., the
bonding is tighter� than those describing displacements of
the more loosely coordinated axial ligands. In general, up to
five sets of dynamical parameters are required to describe the
distortions of a quadratic Hamiltonian, HZFS,T�t�, without �P�
frame symmetry, corresponding to the five Cartesian tensor
components �q=1¯5 for z2, x2−y2, xz, yz, and xy�. The
molecular dynamics of collisional distortions are also com-
plex, involving random large step motions rather than the

classical diffusion picture used to describe molecular trans-
lation and reorientation. And finally, for S�1 /2, electron
spin relaxation is in general multiexponential, i.e., the decay
depends on spin eigenstates.

The theory derived in Ref. 42 addresses some of these
concerns. Specifically, the formalism incorporates the five
quadratic degrees of freedom and computes the full set of
eigenstate-dependent relaxation rates using a Redfield theory
�this requires �T���1�. The calculation is valid for a perma-
nent ZFS tensor of any magnitude or symmetry.

In practice, such detailed physical parametrization is sel-
dom justified by the available information. What is needed is
a description of the collisional mechanism that is comparable
to Bloembergen-Morgan theory with respect to the complex-
ity of the physical description �i.e., a single set of param-
eters, �T and ��, is used to calculate two eigenstate-averaged
relaxation rates, �S1

−1 and �S2
−1, along the z and x laboratory

axes� but which accounts for the effects of the permanent
ZFS Hamiltonian in Eq. �12�. The following closed form
expressions for these quantities are derived in Ref. 43:

��S,r�−1 = �S�S + 1�/3�−1�2S + 1�−1��T
2/5�

� �
q=1

5

nq
�r��

�,�
��
��Sq

�2�����2k������ , �34�

k��� = ��/�1 + �2��
2� . �35�

The matrix elements in Eq. �34� are evaluated in the eigen-
basis, �� ,��, of HS

°�� ,� ,� , t�, for which ��� are transition
frequencies. The quantities Sq

�2� are the five quadratic Carte-
sian tensor functions of the spin operators which transform
spatially like the d orbitals �q=1–5 signify z2 ,x2

−y2 ,xz ,yz ,xy�. The quantities nq
�r� are integer coefficients

which arise in the calculation of the double commutators of
the spin operators.43 The curly brackets indicate an average
over molecular orientations.

G. The implementations

To make the section complete, the three methods are
discussed hereafter in terms of easiness of implementation,
computer efficiency, and possible generalization to more
complex systems.

The S method is based on expressing the lattice Liouvil-
lean as a �super�matrix in a vector space defined by a suitable
set of lattice operators. These operators are products of an
electron spin part and Wigner rotation matrices of Euler
angles describing the orientation of the PS and PT frames in
the laboratory frame.38,44 The size of the vector space de-
pends on the maximum L quantum numbers for the Wigner
matrices considered. If the largest L values for rotation and
pseudorotation are set to eight, which is sufficient in most
cases of practical interest, then the dimensionality of the vec-
tor space is about 30 000 for S=1 and about 200 000 for S
=7 /2. The computationally heavy step is finding a small
number of elements of the inverse of the complex matrix
representing the lattice Liouvillean. This is carried out effi-
ciently using the Lanczos algorithm, with a single point cal-
culation for most cases requiring less than a minute on a
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modern single-processor work station. The S method can be
extended to include other terms in the perturbation, the one
that we work on at present is the anisotropy of the gS tensor.
More complex dynamics is in principle possible to handle,
but at the expense of larger matrices representing the lattice
Liouvillean.

The G method is based on the statistics of an ensemble
of spin systems which are submitted to fluctuating Hamilto-
nians and the quantum states of which have an evolution that
is directly obtained by solving the time-dependent
Schrödinger equation numerically. The equations are simple,
but have to be translated into an efficient computer code on a
single processor. Then, parallel programming is rather
straightforward since all the spin systems can be handled on
the same footing. The numerical work just scales with the
size of the Hamiltonian matrices to be diagonalized. On a
fast single-processor personal computer, the calculation of
the PRE at a given field requires typically 3 and 12 min for
S=1 and S=7 /2, respectively, to reach a statistical conver-
gence to within 1%. According to the crudeness of the ZFS
models, an accuracy of 5% is generally sufficient for practi-
cal applications and then, the above times are reduced by a
factor of 25. The computational load comes mainly from the
evaluation of the evolution operator, so that it only slightly
increases with the number of nuclei located on the complex
and corresponding to various 	 values.

For a slow tumbling of the metal complex, it may be
problematic when the relaxation magnetic field increases be-
yond 2.35 T since the dipolar local field TCF to be integrated
shows a slower and slower decay with faster and faster os-
cillations around 0. The numerical work becomes also
heavier for large ZFS parameters �S, �T�10 cm−1 as the
time step of integration �t has to be significantly shorter than
2� /�S and 2� /�T. However, at sufficiently high field, it was
shown recently21 that the longitudinal electronic relaxation
decays monoexponentially at a rate given by the Bloember-
gen and Morgan equation, Eq. �15�. This leads to the simple
and accurate expression of the PRE, Eq. �31�.

The G method can be easily extended to ZFS Hamilto-
nians including second order rhombic terms and contribu-
tions of fourth and sixth order in the case of gadolinium
complexes. It is also suitable to deal with coupled electronic
spins. More complex intramolecular dynamics, such as
Brownian anisotropic rotation and/or constrained reorienta-
tion, can also be modeled.

The AA method is implemented in the computer pro-
gram PARELAX2, which consists of a suite of four formula-
tions of theory.51 One of these, SD simulation, was used in
the present calculations. It is broadly similar to the G method
except with respect to the calculation of electron spin relax-
ation times, for which the Redfield Theory of Ref. 54 is used.
The Redfield description incorporates a more realistic force
field for the ZFS distortional motions than does pseudorota-
tion, but it is limited in its range of validity by the Redfield
criterion, �T���1. However, both of these treatments are
highly simplified, and a realistic, quantitative description of
electron spin relaxation in general physical systems remains
a formidable problem, even given the computational power
that is now available.

The other modules of PARELAX2 are based on the “con-
stant HS” approximation; i.e., they ignore the reorientational
motion of the permanent ZFS Hamiltonian when computing
the electron spin TCF. The principal advantage of constant
HS formulations is that they provide a physically transparent
picture of the relaxation mechanism in terms of the oscilla-
tory motions of specific spin matrix elements. Also, constant
HS provides a suitable platform for the incorporation of
eigenstate-specific electron spin relaxation times while SD
does not. Each approach has advantages and drawbacks,
none providing an entirely satisfactory description of the re-
laxation process. In practice, the four formulations are used
in a complementary manner to provide as full a picture of the
relaxation mechanism as possible.

III. RESULTS AND DISCUSSION

We perform the calculations for two classes of com-
plexes, with two different electron spin quantum numbers.
Besides the parameters discussed in Sec. II C and the spin
quantum number, we also need to specify the dipole-dipole
coupling constant. Since it only acts as a scaling factor for
the profile, the choice of a suitable value is not critically
important for the comparison of methods. We set the dipole-
dipole coupling constant equal to 16.7 MHz, corresponding
to gS=2.0023 and rIS=310 pm.

The case of S=7 /2 is meant to correspond to Gd�III�
complexes. Because of the highly symmetric electronic dis-
tribution, with the �4f�7 configuration of the lanthanide pro-
viding the highly stable 8S ground state term with fully
quenched orbital angular momentum, the ZFS can only reach
very low values.57 We have done the calculations for the
following ZFS parameters,

�S = 0.01,0.03,0.05 cm−1,

�T = 0.01,0.05 cm−1.

Two types of complexes were considered, a very large com-
plex characterized by the rotational correlation time of �R

=1 �s, and a rather small one with �R=100 ps. The distor-
tional correlation time was set to a value of 5 ps. Likewise,
two values were used for the angle, between the principal
axes of the static ZFS and the dipole-dipole interactions, 	
=0° and 90°.

We begin the discussion from the case of the long rota-
tional correlation time �R=1 �s. For slowly rotating molecu-
lar systems, i.e., with electronic relaxation time T1e��R, the
electron spin relaxation is the only source of the modulations
of the I-S dipole-dipole interaction. If the static ZFS domi-
nates over the transient counterpart, the energy level struc-
ture of the electron spin is defined by a superposition of the
static ZFS and the Zeeman interaction.36,37 In this case, if the
transient ZFS fulfills the Redfield condition, �T���1, the
electron spin relaxation rates are well defined within the sec-
ond order perturbation theory. The parameter sets, �T

=0.01 cm−1, �S=0.03 cm−1, and 	=0° or 	=90°, fulfill the
requirements. The relaxation profiles for these parameters are
presented in Figs. 2�a� and 2�b�. The figures present the re-
laxation profiles predicted by the slow motion theory �S�, the
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Grenoble approach �G�, and the Ann Arbor approach �AA�.
We can see that the S and G methods agree with each other
within few percent for all magnetic fields. For 	=0°, the AA
methods agrees with the other two at the high field and the
low field limits, but deviates significantly for intermediate
fields. For 	=90°, the AA method agrees with the other ones
only at high field. In these cases, the physical situation is
rather simple and the differences between the S and G ap-
proaches on the one hand and the AA method on the other
can be traced to differences in the treatment of electron spin
relaxation. Two features of the AA model deviate from the
other two approaches. One is the use of level-specific or
level-averaged relaxation in the thermal ensemble proposed
by Sharp and Lohr42 and Sharp43 and implemented in the AA
approach. Another specific feature of the AA approach is the
use of orientationally averaged electron spin relaxation
times, in the spin relaxation function applied in the SD simu-
lation.

The S theory does not include any explicit description of
the electron spin relaxation and, therefore, one does not
profit here from the fact that the perturbation theory applies

in principle to the electron spin subsystem �this feature is
available in the time-domain version45,46�. The perturbation
description of the electron spin relaxation �i.e., the Redfield
theory� has been incorporated into the so-called “modified
Florence approach” �F�.36,37 This method can deal with
slowly rotating systems at arbitrary magnetic field and static
ZFS, if the transient ZFS is smaller than the static ZFS as
discussed previously58 and if the electron spin relaxation is
within the Redfield limit. This approach, when its validity
conditions are fulfilled, has earlier been shown to agree with
the Swedish slow motion theory.36,37 The results of this treat-
ment are included in Fig. 2 �and its counterpart in the supple-
mentary material59�. As expected, the agreement is good be-
tween the S and the F methods.60

The relaxation profiles obtained when the transient ZFS
is comparable to or larger than its static counterpart are pre-
sented next. Figure 3 shows the proton relaxation rates cal-
culated for the electron spin quantum number S=7 /2 and the
following parameters: �T=0.05 cm−1, �S=0.01 cm−1, 	=0°,
and 	=90°. Here, the S, G, and AA methods agree quite
closely. The close agreement between the three approaches in
this case may perhaps be related to the fact that averaging
over orientations plays a smaller role with the low static

FIG. 2. Proton relaxation profiles for the electron spin quantum number S
=7 /2 and slow molecular tumbling �R=1 �s. The ZFS parameters are �S

=0.03 cm−1 and �T=0.01 cm−1. ��� the Ann Arbor method, ��� the Swed-
ish slow motion method, ��� the Grenoble method, and ��� the Florence
method.

FIG. 3. Proton relaxation profiles for the electron spin quantum number S
=7 /2 and slow molecular tumbling �R=1 �s. The ZFS parameters are �S

=0.01 cm−1 and �T=0.05 cm−1. ��� the Ann Arbor method, ��� the Swed-
ish slow motion method, and ��� the Grenoble method.
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ZFS. The F method was not applied in this case, as one of its
validity conditions is not fulfilled at low field,58 while one
could expect it to work at the high field limit. The remaining
NMRD profiles for slowly rotating S=7 /2 systems are
shown in Ref. 59 �Figs. S1–S4�.

Faster molecular tumbling makes the problem of the
electron spin dynamics �and, in consequence, the nuclear
spin relaxation� more complicated. With �R=100 ps, our
range of parameters �used for S=7 /2� corresponds to the
region of motional collapse of the �static� ZFS level struc-
ture: For �S= �0.01,0.03,0.05�, we have �S�R= �0.2,0.6,1�.
When �S�R�1, the ZFS level structure averages to zero and
the result is equivalent to the Zeeman limit, even at low field.
The relaxation effects of the rotational modulation of the
permanent ZFS can then be taken into account by Redfield-
type approach, along with the collisional mechanism.20 As
�S or �R increases so that the level structure is not motionally
averaged, the situation becomes more complicated and, ex-
cept for few limiting cases,58,61,62 one cannot treat the elec-
tron spin dynamics within the perturbation theory. The relax-
ation profiles obtained for the rotational correlation time �R

=100 ps and the low transient ZFS ��T=0.01 cm−1� and
varying static ZFS are presented in Fig. 4. For 	=0°, there is
an interesting qualitative difference between the predictions
of the S and G models �left panels in Fig. 4�, on the one
hand, and the AA model �right panels in Fig. 4� on the other.
According to the S and G approaches, the PRE at low field is
independent of the magnitude of the static ZFS when the
principal axis of that tensor coincides with the DD principal
axis �	=0� �cf. upper left panel in Fig. 4�. To the contrary,
the AA approach predicts a smooth decrease of the low-field

PRE with increasing �S �upper right panel in Fig. 4�. This
latter trend can be given by the following physical explana-
tion, within the AA way of thinking. In the range of assumed
�S values �0.01–0.05 cm−1�, the ZFS level structure is par-
tially collapsed by molecular reorientation �note that �S�R

=0.2 when �S=0.01 cm−1 and �S�R=1 when �S

=0.05 cm−1�. At �S=0.05 cm−1, the motional averaging of
the level structure is less efficient. The collapse of ZFS level
structure in the low field region is accompanied by a change
in electron spin wavefunction. When �S�R�1, the spin
wavefunctions are Zeeman functions with a laboratory polar-
ization. This is true even at the lowest field strengths where
the ZFS exceeds the Zeeman interaction. With increasing �S,
the low field spin wavefunctions change from Zeeman-limit
functions having a laboratory polarization �at small �S� to
ZFS-limit functions with a molecule-fixed polarization �at
large �S�. This change in spin wavefunction with increasing
�S is accompanied by profound changes in spin physics, in-
volving both a change of spatial quantization of the spin
motion �from laboratory to molecule fixed� and changes in
the spin dynamics �i.e., changes of the spin eigenfrequen-
cies�. The calculated AA profiles result from these changes in
the spin physics.

The lack of the ZFS dependence of the low-field PRE,
obtained in the S and G calculations, has been noticed al-
ready in the early Swedish slow-motion theory papers, not
including the transient ZFS.25,63,64 This observation can be
given the following physical interpretation, within the S way
of thinking. When the static ZFS dominates over the Zeeman
interaction the electron spin becomes locked in the ZFS
frame. When there are no other sources of electron spin re-
laxation, the rotation of this frame with respect to the labo-
ratory is the only source of modulation of the DD interaction
between the electron and nuclear spins. Since the static ZFS
and the dipole-dipole interactions are entirely modulated by
the same stochastic motion �the rotation�, cross-correlation
effects between them becomes relevant. The magnitude of
this cross-correlation effect depends on the relative orienta-
tion of the principal axis system of the ZFS tensor and the
DD axis. For the case of 	=0° the cross correlation exactly
cancels the dependence of the nuclear spin relaxation on the
static ZFS �Refs. 63 and 64� �if there is no transient ZFS�,
while for 	�0° some effects of the static ZFS remain. With
the present parameter values, the electron spin relaxation is
much slower than rotation and the physical description above
remains largely valid. The G method perceives this phenom-
enon, whereas, apparently, the AA approach does not. We
can also see in the lower panels in Fig. 4 that the locking
effect does not occur for 	=90°, where the S, G, and AA
approaches behave very similarly. A reasonable explanation
of this observation is that for 	�0°, the cross correlation of
the static ZFS and the DD interaction is reduced while the
static ZFS effects discussed above remain effective.65

The case of fast rotation and larger transient ZFS ��T

=0.05 and �S=0.01 cm−1� is presented in Fig. 5. Here, the
electron spin relaxation is more efficient and the three meth-
ods follow each other quite closely. The remaining profiles
for fast rotating S=7 /2 systems are collected in the Figs.
S5–S6 in Ref. 59.

FIG. 4. �Color� Proton relaxation profiles for the electron spin quantum
number S=7 /2 and fast molecular tumbling �R=100 ps. The transient ZFS
parameter is �T=0.01 cm−1, each graph shows the profiles for varying �S.
�Left� The Swedish method, black squares: �S=0.01 cm−1, red squares: �s

=0.03 cm−1, green squares: �S=0.05 cm−1, and �—�: �S=0 �the Zeeman
expression� and the Grenoble method, black circles: �s=0.01 cm−1, red
circles: �S=0.03 cm−1, and green circles: �S=0.05 cm−1. �Right� The Ann
Arbor approach, black triangles: �S=0.01 cm−1, red triangles: �S

=0.03 cm−1, green triangles: �S=0.05 cm−1, and �—�: �S=0 �the Zeeman
expression�. Note that the PRE curves decrease with increasing �S for 	
=90° and in case of the Ann Arbor method also for 	=0°.
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The case of S=1 is meant to correspond to Ni�II� com-
plexes. This transition metal ion is characterized by the elec-
tron configuration �3d�8 with the 3F ground state term. Here,
the ZFS is typically much larger,57 which easily brings the
Ni�II� complexes out of the Redfield limit for the electron
spin relaxation. We have here done the calculations for the
following ZFS parameters,

�S = 1,3,10 cm−1,

�T = 1,10 cm−1.

For the dipolar coupling strength, correlation times and the 	
angle, we have used the same values as above for the S
=7 /2 case.

The S=1 systems with �T=1 cm−1 seem near the edge
of the region of validity of the Redfield approximation,
which may be a source, to a greater or lesser degree, of
differences in the calculated results. The calculations with
�T=10 cm−1, i.e., �T���10, are out of the range of validity
of the Redfield theory, and thus of the AA approach, so that
they can be considered more demanding. This will be estab-
lished by comparing the results of the three methods. The
relaxation profiles predicted by the three discussed ap-

proaches �the slow motion theory, the Grenoble approach,
and the Ann Arbor approach� for the parameter values �T

=1.0 cm−1, �S=1,3 ,10 cm−1, and �R=1 �s, are presented in
Fig. 6 for the angles 	=0° and 	=90°. This kind of com-
plexes has been called in Swedish studies slightly deform-
able �relatively small transient ZFS�, with variable asymme-
try �small to large static ZFS�.44 For 	=0°, the three methods
agree quite well at low magnetic fields, up to about 0.5 T
�where the electron Zeeman splitting is less or approaching
to the static ZFS�, for all �S values. At higher magnetic field
strengths, the S and G approaches give similar results, which
differ significantly from those of the AA method. The S and
G profiles remain essentially identical to the Zeeman-limit
profile when �S varies from 0 to 10 cm−1. In contrast, the
AA method predicts that the high-field �1–10 T� relaxivity
depends strongly on the magnitude of �S, decreasing as �S

increases from 1 to 10 cm−1. In this physical regime of field
strengths and ZFS couplings �1–10 T, 1–10 cm−1�, the Zee-
man energy is comparable to the static ZFS energy, and in
consequence, both the electron spin wavefunctions and the
electron spin level structure depend strongly on the relative
magnitudes of the Zeeman and ZFS energies. In the AA cal-
culation, the electron spin dynamics depend profoundly on
the changes in spin physics which occur in this physical
regime, and the altered spin dynamics are reflected in the
behavior of the NMR-PRE.

This argumentation does not seem to apply to the G and
S results. A possible explanation may again be sought in the
electron spin relaxation effects. As discussed by Bertini
et al.,36 for another set of parameters within the same physi-
cal range, the electron spin relaxation at high field and for
sizable static ZFS becomes quite intricate, with several indi-

FIG. 5. Proton relaxation profiles for the electron spin quantum number S
=7 /2 and fast molecular tumbling �R=100 ps. The ZFS parameters are �S

=0.01 cm−1 and �T=0.05 cm−1 ��� the Ann Arbor method, ��� the Swedish
slow motion method, and ��� the Grenoble method.

FIG. 6. �Color� Proton relaxation profiles for the electron spin quantum
number S=1 and slow molecular tumbling �R=1 �s. The transient ZFS
parameter is �T=1 cm−1; each graph shows the profiles for varying �S.
�Left� The Swedish method, black squares: �S=1 cm−1, red squares: �S

=3 cm−1, green squares: �S=10 cm−1 and the Grenoble method, black
circles: �S=1 cm−1, red circles: �S=3 cm−1, green circles: �S=10 cm−1.
�Right� The Ann Arbor approach, black triangles: �S=1 cm−1, red triangles:
�S=3 cm−1, green triangles: �S=10 cm−1, and �—�: �S=0 �the Zeeman
expression�.
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vidual rate processes contributing to the PRE. It may be so
that these electron spin relaxation effects somehow offset the
AA argumentation above.

For 	=90° �again with �T=1 cm−1 and �R=1 �s�, the
three calculations �S, G, and AA� give very similar results in
the low field region. In the high field region, the S/G profiles
differ greatly from those of AA, reflecting again the differ-
ences discussed in the preceding paragraph. Moreover, the
�S=10 cm−1 case is the only one is this study where the S
and G approaches give results that differ significantly from
each other. The origin of this discrepancy is not quite clear.

Figure 7 shows the nuclear spin relaxation profiles for
slowly rotating S=1 for the case of transient and static ZFS
changing places and becoming: �T=10 cm−1 and �S

=1.0 cm−1 �slightly asymmetric and highly deformable com-
plex�. The large transient ZFS does not allow for a perturba-
tion treatment of the electron spin, as it has been already
pointed out. The S and G approaches agree here very well.
The Ann Arbor approach predicts PRE values �not shown�
which can be more than one order of magnitude too small
and is thus not applicable for �T=10 cm−1 as described

above. It should be kept in mind, however, that the parameter
values in this range are expected to be uncommon. The re-
maining relaxation profiles obtained for slowly rotating, S
=1 systems are collected in Ref. 59 as Figs. S7–S8.

Finally, we present in the last two figures the NMRD
profiles for rapidly rotating S=1 cases. Figure 8 shows the
case of highly asymmetric, slightly deformable complex
��T=1.0 cm−1 and �S=10 cm−1� with �R=100 ps. Also in
this case, the differences between the S and G methods are at
most a few percent, while the AA results deviate. In Fig. 9,
we display the results of calculations for a slightly asymmet-
ric and highly deformable complex ��T=10 cm−1 and �S

=1.0 cm−1� with �R=100 ps. Here again, the results of the S
and G methods are very close to each other. The other relax-
ation profiles for fast rotating S=1 systems are collected in
Ref. 59 as Figs. S9–S12.

IV. CONCLUSIONS

Summarizing the above discussion, it can be stated that
there is an overall very satisfactory agreement between the
results obtained by the apparently very different Swedish and

FIG. 7. Proton relaxation profiles for the electron spin quantum number S
=1 and slow molecular tumbling �R=1 �s. The ZFS parameters are �S

=1.0 cm−1 and �T=10 cm−1. ��� The Swedish slow motion method and ���
the Grenoble method.

FIG. 8. Proton relaxation profiles for the electron spin quantum number S
=1 and fast molecular tumbling �R=100 ps. The ZFS parameters are �S

=10 cm−1 and �T=1.0 cm−1. ��� The Ann Arbor method, ��� the Swedish
slow motion method, and ��� the Grenoble method.

052315-14 Belorizky et al. J. Chem. Phys. 128, 052315 �2008�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  152.11.5.87

On: Mon, 10 Nov 2014 18:26:59



Grenoble techniques, with the exception of the uncommon
situation of a very large static ZFS �S=10 cm−1, a very slow
rotation �R=1 �s, 	=90° �one case among 48 investigated
systems!�

This very satisfactory agreement was expected since the
S and G approaches use the same physical model of molecu-
lar motion and ZFS fluctuations, and compute the PRE due
to the nuclear-electronic dipolar Hamiltonian with the help of
mathematical treatments, which are different, but exact to
within numerical accuracy. The AA approach was designed
to deal with more realistic models of the transient ZFS in-
ducing the electronic spin relaxation, which is described
within the Redfield approximation, whereas the electronic
spin dynamics due to the Zeeman and static ZFS Hamilto-
nians is solved rigorously. When this Redfield approximation
holds, the AA predictions for the simple physical model stud-
ied here are close to the S and G results in many cases, even
if subtle differences are observed.
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APPENDIX: PRACTICAL EVALUATION OF THE
PARAMAGNETIC RELAXATION ENHANCEMENT
WITHIN THE GRENOBLE APPROACH

From Eqs. �26� and �27�, the initial value of the TCF
k−1�t� of the dipolar local field is

k−1�0� = 
 �0

4�
�22

3
gS

2�B
2S�S + 1�

1

rIS
6 . �A1�

We define the normalized TCF of the dipolar local field as

k−1
nor�t� � k−1�t�/k−1�0� . �A2�

In the general case the expression of the PRE in Eq. �28� is
computed by integrating the simulated TCF k−1�t� over a
finite time interval �0, tmax�,

PRE � 1/T1M � 2�I
2 Re�

0




k−1�t�exp�− i�It�dt

� 2�I
2k−1�0��

0

tmax

Re�k−1
nor�t�exp�− i�It��dt ,

�A3�

where the upper bound tmax is chosen such as k−1
nor�tmax�

�0.01 is approximated by 0. The numerical integration is
carried out with the help of the trapezoidal rule with nt

equally spaced integration points tp��p−1��t �1� p�nt�
and tmax= �nt−1��t, so that

PRE � 2�I
2�t�− 0.5k−1�0� + �

p=1

nt

Re�k−1�tp�

�exp�− i�Itp��� . �A4�

According to the discussion after Eq. �28�, the TCF k−1�t�
can be approximated by the high-field expression

k−1
high field�t� = 3

10k−1�0�exp�− t/�R�G�
nor�t� , �A5�

where the normalized �nor� longitudinal TCF of the elec-
tronic spin defined as

G�
nor�t� � 
Sz�t�Sz�0��/
Sz�0�Sz�0�� �A6�

has the monoexponential decay

G�
nor�t� = exp�− t/T1e� , �A7�

with 1 /T1c given by Eqs. �15� and �19�. According to Eqs.
�A2�, �A5�, and �A7�, the high-field normalized TCF of the
dipolar local field is

FIG. 9. Proton relaxation profiles for the electron spin quantum number S
=1 and fast molecular tumbling �R=100 ps. The ZFS parameters are �S

=1.0 cm−1 and �T=10 cm−1. ��� The Swedish slow motion method and ���
the Grenoble method.

052315-15 Relaxation enhancement of nuclear spins J. Chem. Phys. 128, 052315 �2008�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  152.11.5.87

On: Mon, 10 Nov 2014 18:26:59



k−1
high field, nor�t� � k−1

high field�t�/k−1�0�

= 3
10 exp�− t/�R�exp�− t/T1e� . �A8�

Defining the correlation time �c1 by 1 /�c1�1 /�R+1 /T1e, the
high-field PRE is given by

PREhigh field � 1/T1M
high field

� 2�I
2�

0




k−1
high field�t�cos��It�dt

� 2�I
2k−1�0��

0




k−1
high field, nor�t�cos��It�dt

= 
 �0

4�
�22

5
�I

2gS
2�B

2S�S + 1�
1

rIS
6

�c1

1 + �I
2�c1

2 .

�A9�

These high-field properties are illustrated in Fig. 10 for one
representative situation considered in this work, S=1, �S

=�T=1 cm−1, 	=0, �R=1 �s, and �v=5 ps. After a short
transient oscillatory period, the real part Re�k−1

nor� of k−1
nor�t�

tends to the exponential function k−1
high field,nor�t� which decays

slowly with a characteristic time �c1�T1e, while its imagi-
nary part Im�k−1

nor� tends to zero. The transient oscillations of
Re�k−1

nor� and Im�k−1
nor� around the “long”-time limits

k−1
high field,nor�t� and 0 have negligible effects on the value Eq.

�A3� of the PRE, which simplifies to Eq. �A9�. Such a sim-
plification is particularly useful. Indeed, calculating the inte-
gral Eq. �A3� of Re�k−1

nor�t�exp�−i�It�� is computer demand-
ing since it is the sum of the many slowly decaying
contributions of alternate signs, corresponding to the succes-
sive regions of positive and negative values of cos��It�.
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