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In order to calculate the mean transit time of tissue, such as
brain, from dynamic computed tomography performed after
a bolus injection of intravenous contrast material, the time
dependence of the input of contrast material to the tissue must
be **deconvolved'” from the observed time course of the tissue
contrast enhancement. If the approximate shape of the curve
of the response of the tissue to an instantaneous injection of
contrast material is assumed. the width of this curve that gives
the best fit to the observed tissue response can be used to find
4 value for the tissue mean transit time. Applying this tech-
nique to dynamic CT scans of two normal volunteers yielded
values comparable to those in the literature by other tech-
niques. The method has the advantages of being simple to
implement, relatively insensitive to noise and the details of the
assumed curve shape, and not requiring any curve fitting to
correct for recirculation.

Key words: cerebral biood flow, computed tomography, con-
trast enhancement, dynamic computed tomography, decon-
volution, mean transit time.

YNAMIC, or rapid sequence, computed tomogra-
D phy (CT) performed after a bolus intravenous in-
Jection of intravascular contrast material allows the
observation of the appearance of the bolus of contrast
material in organs such as the brain. its wash-out from
the organ, and its reappearance due to recirculation.
The recirculation will usually be superimposed on the
later portion of the wash-out phase. The time course
of the concentration of contrast material will depend
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both on the time course the tissue concentration would |
have after a hypothetical instantaneous input of con-|

trast material to the tissue and on the actual time
course of the contrast concentration in the arterial in-

put to the tissue (Fig. 1). Specifically, the resulting |
tissue concentrations will be given by a mathematical }

relationship called the convolution of these two time
functions.' as is discussed further below. Since the
change in CT number is proportional to the concen-

tration of contrast, the time course of contrast conf
centration in selected regions of the tissue can bef

found from the sequence of images by suitable analysis

programs. If branches of the artery supplying the tis-
sue are also imaged on the scans. a measure of the

time course of the contrast input to the tissue can also
be found. Then, in principle. the effect of the input

could be separated from the observed contrast time}

course by the process of deconvolution, so as to find
the impulse response of the tissue. that is. the time
course of concentration that an instantaneous input of

contrast material would have yielded. This could then
be used to calculate the mean transit time (MTT) of |

the tissue, which is equal to the ratio of the blood
volume of the tissue to the blood flow through the
tissue. The MTT can be calculated from the impulse
response by dividing the area beneath the curve of
contrast concentration as a function of time by its ini
tial (maximum) value.?

Deconvolution techniques have been applied to sim- §
ilar problems in indicator-dilution analysis.*~7 but they |

generally have the disadvantage of being very sensi

tive to noise from the data®; the results tend to yield :

unrealistic oscillations in the computed impulse re-

ponse unless restrictive assumptions about the nature §

of the impulse response are made. If we are only in-
terested in computing the impulse in order to find the
MTT. a measure of its width, the details of its shape

are unimportant. If we could assume a certain family ,,
of shapes for the impulse response curves, an alter |

native approach would be to try ““convolving™ the ob-
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Fig. 1. Schematic demonstration of how time course of con-
trast concentration in capillaries, [ c|.. is related to contrast con-
centration in arteries supplying tissue, |[c],. The capillary re-
sponse to a hypothetical instantaneous arterial input is the
“impulse response.” If an actual, prolonged, arterial input is
considered as a series of instantaneous inputs, the resulting
capitlary concentrations can be found from the superposition
of the corresponding impulse responses.

served arterial input contrast concentration-time data
with assumed impulse responses of different widths.
The resulting convolution could be compared with the
actually observed tissue contrast concentration-time
data. For a given family of impulse response curve
shapes, the curve width yielding the best fit to the
observed tissue values could then be used to give an
estimate of the MTT.

The advantage of such a simplified approach to the
deconvolution is that it is relatively insensitive to the
noise of the data. compared with a direct deconvolu-
tion of the arterial input and tissue concentration-time
curves. In comparison with another approximate de-
convolution method previously proposed.' '' which
fits the observed curves with smooth (gamma variate)

curves and then computes the first moment (center of

gravity) of the impulse response. this approach does
not require any direct curve fitting of the data. The
shape to be assumed for the impulse response curve
depends on the nature of the clearance of contrast
material from the tissue. In all cases. after an initial
maximum value. the concentration will decrease con-
tinuously to zero (assuming all the contrast eventually
exits from the tissue). In one idealized case. the tissue
might act as a single. well-stirred compartment (as for
diffusible contrast agents such as xenon): the contrast
concentration of the tissue will then decrease as a sim-
ple exponential function of time (Fig. 2). In another

Fig. 2. Schematic model of the transit of an arterial instan-
taneous bolus of diffusible contrast material, such as xenon,
through tissue. For a single mixing volume V and flow F, the
tissue and capillary impulse response will be given by a falling
exponential, with constant equal to the mean transit time, t
V/F. (Xe), is the concentration of contrast material in the artery,
and (Xe). and (Xe), are the concentrations in the capillaries and
draining veins, respectively.

idealized case. the tissue might act as a set of tubes
of uniform length (as for nondiffusible contrast agents
confined to an idealized vascular network): in this
cuase, the contrast concentration in the tissue will re-
main constant, while the contrast bolus traverses the
vessel lengths, then it will drop abruptly as the bolus
exits the ends of the tubes. If there is a range of lengths

Capillary net
(lodinated contrast)

[

|

i l '

Fig. 3. Schematic model of the transit of an arterial instan-

taneous bolus of intravascular contrast material, such as iodi-

nated contrast in the brain, through tissue. The bolus travels as

a plug through the capillaries and exits essentially intact from

their ends. If the capillaries are of equal length. the plug flow
yields a square-shaped tissue impulse curve.
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Fig. 4. Comparison of normalized CT numbers of branches of |
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eft middle cerebral artery (solid line) and tissue in corresponding

region of distribution (broken line) with best fit calculated convolution (dot—dash line) for gray matter (a, b, and c) and white matter

(d, e, and f) of arterial input with assumed tissue impulse responses

(dotted line) of exponential (single compartment) (a, d), square

(plug flow) (b, e), and intermediate (Fermi function) (c, f) shapes. The Fermi function shown yields approximately the same mean
transit time as the square impulse response. (The bump in the tail of the white matter curve is due to noise.)

of the tubes, the drop will be less abrupt (Fig. 3). Par-
ticularly in the brain. iodinated contrast material is
largely confined to the intravascular space, especially
during the first pass through the tissue,’? and these

latter models of the impulse reponse (“‘plug flow™)
would be more likely to hold. In this study. a computer
program was written to implement an iterative ap-
proach to deconvolution of contrast concentration-
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time curves, seeking to find what duration of impulse
response for a curve of a given shape would best fit
the data, and its usefulness was tested on dynamic CT
brain scans of normal subjects.

Methods

The concept of a convolution. as expressed in Fig. 1, can
be defined more formally. For an impulse response function
(the tissue contrast concentrations after an instantaneous
nput). f(t). the tissue response to an abitrary input function,
g(). will be given by the convolution of the impulse response
and the input function. fxg. defined by

-t
f fir) gt — 7) dr
(n

-t

= ] fit — 7) g(r) d-

Ja

fit) =g(t) =

For finite time steps At. this can be approximated by a sum

K
frg = N fin = t) g(t)At 2)

i 1
In the situations sketched in Figs 2 and 3. the capillary
concentration after an instantaneous arterial injection would
correspond to an exponential or a square curve: this would
be fit). For an actual prolonged arterial input, g(t), the re-
sulting capillary concentration for a given f(t) (the impulse
response), can be calculated from equations 1 or 2 (the con-
volution of f and g): Fig. 1is a graphic demonstration of the

meaning of this calculation.
A Fortran computer program was written to accept the
sequential CT values of the branches of desired arterial ves-

sels and selected tissue regions supplied by those arteries.
Initial values were taken as a baseline and subtracted from
subsequent values. The values of the change in CT number
as a function of time were normalized by dividing by the
areas beneath the curves for the duration of the scans. Dif-
ferent impulse response curve shapes (with unit area) were
tried. consisting of a falling exponential function, a square
function, and a Fermi function (which is essentially a square-
type function, with rounded corners, which approaches
either a square function or a falling exponential-type func-
tion. depending on the choice of a single parameter). The
width of the impulse response was increased in half-second
steps from 0.5 to a maximum of 6 to 10 seconds. For each
width of the assumed impulse response function. the (nor-
malized) arterial input was “‘convolved™ with the impulse
response function (using linearly interpolated values of the
input), using equation 2, and the sum of the mean square
differences between the resulting convolution and the (nor-
malized) actual tissue response curves was calculated. The
width of the impulse response curve yielding the minimum
mean square deviation was used to calculate the correspond-
ing best estimate of the mean transit time for a hypothetical
impulse response curve of the given assumed shape. The
actual and computed curves were also displayed graphically.

Two normal volunteers were studied at the level of the
cerebral basal ganglia and Sylvian fissure with a modified
GE 7800 CT scanner (13) designed for rapid sequence scan-
ning. Sequential 3.5-second overscans (525°) were recon-
structed into two overlapping 2.4-second full scans (360°):
there was a 1.2-second pause between consecutive scan
pairs. Slice thickness was 1 ¢m. Thirty-five ml of Conray-
400" (Na iothalamate 66.87 . Mallinckrodt) was injected rap-
idly (in less than 5 seconds) into an antecubital vein at the
start of a sequence of eight of the above-described CT scans.
The resulting scans were analyzed with histogram-selectable



98 INVESTIGATIVE RADIOLOGY

region-of-interest programs.'t and the sequence of CT num-
bers was found for branches of the right and left middle
cerebral arteries in the sylvian fissure and for gray and white
matter (identified on early enhanced images by the CT num-
ber values of the pixels) in a roughly 2-¢m elliptical region
centered in their distribution regions. The use of histogram-
based pixel selection tor analysis minimizes problems of vol-
ume averaging with these small and irregular regions. This
is important to avoid mixing gray and white matter curves
and to get the best arterial curves. These data were used
with the program described above to calculate the mean
transit time for different assumed shapes of the tissue im-
pulse response. For comparison. the data were also fit with
gamma variate curves. and the fitted curves were used to
caleulate the first moments (*“*center of gravity™") of the input
and tissue curves and thus the first moment of the impulse
response.” The first moment of the impulse response should
be equal to the MTT for an exponential impulse response
function, equal to 12 the MTT for a square function. and
equal 1o an intermediate value for an intermediate shape.

Results

Typical experimental and computed curves for the
region of the left middle cerebral artery distribution ot
one subject are shown in Fig. 4. The curves were quite
similar for the other subject and for the right side of
this subject. Because there was less contrast enhance-
ment during passage of the bolus. the curves for white
matter are more affected by noise than the curves for
gray matter. The bump in the tail of the white matter
curve in Fig. 4is due to noise: the data were too noisy
1o permit a determination of the MTT of the white
matter in the right middle cerebral artery distribution
of one subject. As expected, the MTTs computed for
a hypothetical square impulse response were approx-
imately twice the values computed for an exponential.
The MTT values computed for the intermediate Fermi
function impulse response were fairly insensitive to
shape: even quite rounded corners yielded values of
the MTT very close to those computed for a square
function. The fits were generally somewhat better with
the square and Fermi function impulse response, as
measured by the squared deviation of the convolutions
from the tissue curves. but the difference was not sig-
nificant for this small series. The mean values for both
subjects of the MTT for right and left middle cerebral
artery distribution gray matter were 2.6 seconds for a
square impulse response and 1.2 seconds for an ex-
ponential impulse response. with standard deviations
of 0.25 and 0.29, respectively. The mean MTT values
of corresponding white matter were 5.6 seconds (SD
0.76) and 4.0 seconds (SD 0.50) for square and expo-
nential impulse responses., respectively. If blood vol-
umes are estimated as 5% for gray matter and 3% for
white matter, these MTTs are equivalent to 115 and
250 ml/minute per 100 cc of gray matter for assumed
square and exponential impulse responses, respec-
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tively, and 32 and 45 mI/minute per 100 ¢cc of white
matter for square and exponential impulse responses.
respectively. Lower values for the blood volumes
would correspond to lower values for the blood flows.

The values computed from the gamma variate curve
fitting routine for the first moment of the impulse re-
sponse were quite comparable with those computed
for the MTT for a hypothetical exponential impulse
response: 1.4 seconds for gray matter and 3.4 seconds
for white matter. There seemed to be slightly more
scatter in the values computed using the gamma var-
iate curve fitting, but the difference is probably not?
significant.

Discussion

Deconvolution techniques have been applied to
tracer studies in organs such as the lungs and heart,
usually in order to compute the full distribution of
transit times. If we only need the mean transit time !
{which in conjuction with the blood volume yields |
blood flow), and if a reasonable assumption can be
made about the shape of the impuise response of the
tissue, the technique described above provides s
stable method to estimate the width of the impulse|
response and thus the MTT. For the normal brain.
iodinated contrast material acts like an intravascular|
tracer. For most organs, the impulse response for in
travascular tracers (equal to 1 minus the integral of
the distribution of transit times?) is close to a square
function with rounded corners. Although comparable,
data for brain gray and white matter are not available,
a similar shape is likely. We have found that a square(
shape for the impulse response yields values for the
mean transit time that are closer to those expected
from other techniques than do exponential-type im
pulse responses. The values computed for blood flow
in the gray matter are still somewhat higher than those?
usually found with external counting of xenon-13
wash-out from the brain (generally on the order of §
ml/minute/100 g of brain): the discrepancy may b
slightly greater since the red cell flow velocity i
slightly faster than the plasma flow." The reason for
this overestimation of flow is uncertain, but it ma
simply be a consequence of the relatively long scar
ning times employed: as faster CT scanners are de
veloped. this will become clearer.

The method was quite insensitive to the precise
shape assumed for the impulse response: as long asi
approached a square curve, even with appreciable
rounding of the corners, the calculated MTT was sim
ilar. This suggests that the calculation of the convo
lution can be quite efficient, as the convolution with
a square impulse response becomes simply a linex
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average of the values of the input over a duration equal
to the width of the assumed impulse response.

The major limitation of this technique. as in any
method that seeks to find the tissue mean transit time.
is that the time course of the input of the tracer (here.
contrast material) must be well characterized. In order
to derive these data from the CT scans themselves.,
we must be able to identify the images of arteries and
assign them to corresponding regions of distribution.
For axial slices through the Sylvian fissure, as in this
study, the branches of the middle cerebral arteries in
the Sylvian fissure can usually be seen well and much
of the corresponding regions of distribution confi-
dently identified. The anterior cerebral arteries also
usually are seen well at this level. Difficulty can be
found in identifying the posterior cerebral arteries and
in defining the precise boundaries between vascular
distributions. which are subject to some individual
variation. At other levels in the brain. the arteries are
smaller and less advantageously oriented. making
identification more difficult. Even though the lumen of
the arteries cannot be separately imaged. the use of
histogram-based pixel analysis minimizes problems of
volume averaging, particularly at the level of the Syl-
vian fissure, where many branch arterial vessels pass
through axial slices at nearly right angles. The ambi-
guity in defining the precise boundaries between vas-
cular distributions will limit the applicability of this
method to the creation of functional images of MTT.
Although a slowly changing arterial input could be dif-
ficult to “*deconvolve™ in practice, in principle, this
iterative technique should work regardless of the par-
ticular shape of the arterial input.

A great advantage of this approach is that it is quite
stable in the presence of noise. in comparison to most
explicit deconvolution techniques, such as those in-
volving transform methods.® No curve fits are neces-
sary to correct for recirculation in this technique. since
the recirculation is automatically included in the input.
However, the curve fitting techniques may still be nec-
essary in order to find a value for the blood volume of
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the tissue for the calculation of blood flow. Since CT
scanning involves ionizing radiation. it is likely that
future scanners will remain somewhat noise-limited in
order to minimize radiation-doses to patients; thus.
relatively noise-insensitive deconvolutions will remain
important. This approach to MTT determinations al-
ready allows a fairly reliable measurement of times not
much greater than the time between scans: faster scan-
ners with more rapid scan sequences should improve
the reliability of the determination of MTT.
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