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Artificial Intelligence in Diagnostic Radiology: Where Do We
Stand, Challenges, and Opportunities

Ahmed W. Moawad, MD,*† David T. Fuentes, PhD,‡ Mohamed G. ElBanan, MD,§ Ahmed S. Shalaby, MD,*
Jeffrey Guccione, MD,|| Serageldin Kamel, MD,¶ Corey T. Jensen, MD,* and Khaled M. Elsayes, MD*

Abstract: Artificial intelligence (AI) is the most revolutionizing develop-
ment in the health care industry in the current decade, with diagnostic im-
aging having the greatest share in such development.Machine learning and
deep learning (DL) are subclasses of AI that show breakthrough perfor-
mance in image analysis. They have become the state of the art in the field
of image classification and recognition. Machine learning deals with the
extraction of the important characteristic features from images, whereas
DL uses neural networks to solve such problems with better performance.
In this review, we discuss the current applications of machine learning and
DL in the field of diagnostic radiology.

Deep learning applications can be divided into medical imaging anal-
ysis and applications beyond analysis. In the field of medical imaging anal-
ysis, deep convolutional neural networks are used for image classification,
lesion detection, and segmentation. Also used are recurrent neural net-
works when extracting information from electronic medical records and
to augment the use of convolutional neural networks in the field of image
classification. Generative adversarial networks have been explicitly used in
generating high-resolution computed tomography and magnetic resonance
images and to map computed tomography images from the corresponding
magnetic resonance imaging. Beyond image analysis, DL can be used for
quality control, workflow organization, and reporting.

In this article, we review the most current AI models used in med-
ical imaging research, providing a brief explanation of the various
models described in the literature within the past 5 years. Emphasis is
placed on the various DL models, as they are the most state-of-art in
imaging analysis.

Key Words: artificial intelligence, machine learning, neural networks,
convolutional neural network, recurrent neural network, generative
adversarial networks, quality control, workflow organization

(J Comput Assist Tomogr 2022;46: 78–90)

T he rapid evolution of artificial intelligence (AI) is one of the
most important technological developments of the current de-

cade, affecting nearly all aspects of life. In health care, and in par-
ticular medical imaging, a large number of AI applications have
been proposed, studied, and implemented. Computer-aided diag-
nosis (CAD), for example, represents the most widely known ap-
plication of AI in the medical imaging domain. Implementation of
clinical applications of CAD in medical imaging dates back to the
early 1960s, primarily in the field of breast imaging. Nonetheless,
its roles have been limited to the detection of lesions and
supporting the interpretations of radiologists.1,2 Currently, however,
we are witnessing a shift in this paradigm with the development of
new and robust algorithms for AI and machine learning (ML).

Artificial intelligence, at its core, can be defined simply as
the field of sciences that investigates methods to “make machines
intelligent,” with the goal of developing machines that can per-
form tasks that historically need human intelligence.3 This in-
cludes learning from data and human language as well as emo-
tions. Machine learning is a subdomain of the vast reach of AI that
deals with “learning from data without being explicitly pro-
grammed.”4 A widely accepted definition proposed by Mitchell5

in 1997 describes ML as the field in which “a computer program
is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in
T, as measured by P, improves with experience E.”

Deep learning (DL) is a subclass of ML that has demonstrated
breakthrough performance in fields of image classification and ob-
ject recognition as well as natural language processing. Its robust
applications in medical imaging have largely been aided by the de-
velopment of supercomputers and leaps in data availability. The re-
lationships between AI, ML, and DL are summarized in Figure 1.

DL, A NEW PARADIGM IN AI
Machine learning is the category of computer learning from

data without explicitly being programmed. This learning ulti-
mately leads to the creation of predictive models that can be used
to make decisions on new data that the model has not encountered
before. Traditional ML starts with the identification of important
characteristic features that are believed to be helpful in solving
the problem of interest, a process called “feature engineering.”
These features are built into a predictive model that uses the given
data to try to solve the problem. Two popular predictive models
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are support-vector machines and random decision forests. One
problem with the ML approach is that the characteristic features
might not bewell known beforehand, or at least not comprehensively
understood. This is particularly applicable in medical imaging.

Predictive models in DL are based on building blocks called
“perceptrons” or artificial neurons, which are interconnected, to-
gether with “activation functions,” to create what is known as a
neural network (Fig. 2). Multiple hidden layers of these neural net-
works comprise the architecture of DL. With the vast computa-
tional power enabled by modern graphical processing units and
the readily available digital data ready for analysis, DL algorithms
learn directly from data to automatically extract important charac-
teristic features and use this information to solve a problem.

Differentiating benign from malignant tumors is an example
of an object classification task that demonstrates the difference be-
tween the traditional ML approach and current DL. If there is a
training set of benign tumors and malignant tumors, each of them
has specific feature vectors. For example, benign tumors are usu-
ally smaller and homogenous with well-defined borders, whereas
malignant tumors are usually larger with a heterogeneous appear-
ance and ill-defined borders that often invade the surrounding tis-
sue. The traditional ML approach extracts these feature vectors
from the image and selects the optimal features as input to the
learning algorithm to train the statistical model. The computer
then uses this trained model to classify masses on new images
as either benign or malignant. This contrasts with DL where the
neural network is trained with labeled images (either benign or
malignant) as an input; through multiple intermediate layers, the
neural network extracts the features learned from the images dur-
ing the training process then predicts the outcome via a fully auto-
mated algorithm6 (Fig. 3).

Although the DL approach is more structurally complex and
computationally demanding, it produces much greater classification
accuracy and better performance than the traditional ML approach.
Thus, DL and its neural network architecture have become the dom-
inant robust approach to AI in medical imaging applications.6,7

Deep learning models differ according to the architecture of
their neural networks, mathematical operations to be performed,
and the task of interest to be solved by the model.

We reviewed these scientific databases (Scopus, Web of Sci-
ence, PubMed, IEEE Xplore, and ScienceDirect) with keywords
including deep learning, neural networks, convolutional neural
networks. We limited our search results to original research per-
formed during the last 5 years to avoid redundancy, then we fil-
tered the search results according to the task (either classification,
segmentation, or object detection) and neural network used. We
selected the most cited articles and neural network used in the
field of diagnostic radiology. There were thousands of published
articles using different technologies in imaging analysis. We se-
lected some of them to ensure a comprehensive overview of all
technologies used.Wewill introduce 3 of the most important neural
network architectures being used in radiology along with examples
of their application in different medical imaging tasks. These in-
clude convolutional neural networks (CNNs), recurrent neural net-
works (RNNs), and generative adversarial networks (GANs).

Convolutional Neural Networks
Convolutional neural networks were famously introduced by

LeCun et al8 in the 1990s and based on the early 1960s works of
Hubel and Wiesel9 on how the visual cortex functions. A basic
CNN consists of 3 main types of layers: convolution, a pooling
layer, and a fully connected network/layer. Convolution is a spe-
cialized pattern of mathematical operation that is used to extract
certain aspects of the picture (eg, detection of vertical lines or en-
hancement of edges). The operation is done using a small array of
numbers, usually a 3 � 3 matrix, called the filter (or kernel), and
results in different feature maps, such as a map for vertical edges
and a map for horizontal edges. This enables the machine to ex-
tract low-level patterns from the image, which is then fed into a
pooling layer to enable down-sampling without loss of the main
feature of the image itself. Variable numbers of convolution and
pooling layers are usually followed by the fully connected layer
where every node is connected to the following layer, which will
be organized according to the architecture used (Fig. 4).10 Further

FIGURE 1. A chart demonstrates the relationship between AI, ML,
and DL. Deep learning is considered a subbranch of ML which
depends on neural networks for implementation, whereas ML is a
branchofAI that enables themachine tomakedecisions. PC, personal
computer. Figure 1 can be viewed online in color at www.jcat.org.

FIGURE 2. Schematic diagram of an artificial neural network, which
shows the components of neural network (input, output, and
hidden layers). Each layer consists of nodes with certain activation
functions. Figure 2 can be viewed online in color at www.jcat.org.
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research into the updating and integration of CNNwith other clas-
sifiers in image analysis has produced deeper, more complex, and
more robust neural networks that have surpassed human perfor-
mance in image classification and object detection tasks.11 This
has been largely aided by the recent advances in parallel computing

and readily available labeled data sets for model training. There
are several architectures of CNNwith different parameters, filters,
and number of layers. They all shared the same idea of convolu-
tion explained previously and are commonly used architectures
in the medical imaging field.

FIGURE 3. Schematic diagram showing the difference between traditional ML and DL approaches for tumor classification. In the ML
approach, imaging features are extracted and selected, and then the features are incorporated into selection algorithms. With the DL
approach, neural networks receive images and automatically classify the tumor as either benign ormalignant. Figure 3 can be viewed online in
color at www.jcat.org.

FIGURE 4. Schematic diagram of the classification task using a CNN. Notice the general components of the CNN: a convolution layer, a
pooling layer, and a fully connected layer. The output of such NN is the classification of the nature of the tumor. Figure 4 can be viewed
online in color at www.jcat.org.
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• LeNet: LeNet, built in 1998, is the oldest CNN, but its architec-
ture became the backbone of the following descendants. LeNet
consists of 2 convolutional layers and 2 average pooling layers
(which select average values of all pixels). The output of these
4 layers serves as an input to 2 successive fully connected layers.
The final layer comprises 10 classifier outputs to determine
hand-written digits from 0 to 9. Notably, LeNet failed in larger
object classes in computational efficiency and accuracy.8

• AlexNet: This follows the same architecture as LeNet but with 5
convolutional layers, instead of 2, and 2 max-pooling layers.
This was followed by 2 fully connected layers. AlexNet has
~60 million parameters to handle, so it is split into 2 pipelines,
which are trained separately yet simultaneously.12

oVisualization of different layers outputs in AlexNet enables
fine-tuning of its hyperparameters to improve the results. This
modified network was called ZFNet, which is the same as
AlexNet with simpler fine-tuning.13

• VGGNet/OxfordNet: There are several configurations of this ar-
chitecture, depending on the number of layers. 11, 13, 16, and
19 layers exist, including 3 fully connected layers. Despite its
simplistic architecture compared with others, VGGNet is very
computationally demanding, requiring 130 to 140 million pa-
rameters to handle. Conversely, it is therefore a good fit for large
classifiers with thousands of output classes.11

• GoogleNet: This is dependent on inception modules, in which
all convolutional layers are implemented simultaneously and the
result of all of themwill be contained in the output layer. Building
multiple blocks of the inceptionmodule results in a very deep net-
work, which retains its accuracy, despite fewer computations.14

• DenseNet: As the name describes, DenseNet is a densely
packed CNN where layers receive information from all the pre-
vious ones while avoiding the presence of redundant layers and
unnecessary calculations. This results in dense blocks, which
form the backbone of DenseNet.15

• ResNet: Residual networks (ResNet) depend on the idea of skip
connections, where the output of the first layers skips over a
couple of layers. This solves the “vanishing gradient” problem,
which is a premature stoppage of model learning after several
computations due to shrinkage of the gradient (loss function)
to zero, preventing weights from being updated.16

oSqueeze-and-excitation (SE) networks were recently devel-
oped to balance the weights of each convolution layer, rather

than constant weight in the previous architectures. Adding SE
network to ResNet (SE-ResNet) has yielded the best-known ar-
chitecture for imaging classification, with a 25% lower error
rate than ResNet and a very low computational cost.17

Recurrent Neural Networks
Recurrent neural networks are a type of neural network that

is organized into successive self-looping nodes. The sequential
nodes are identical but executed at different time points; thus, they
can be used as a sort of memory.18 This type of neural network has
been investigated in various tasks in radiology report processing,
which depends on sentence context and sequential information.19

Recurrent neural networks are characterized by the “recur-
rent” state in which the output from a layer will be an input to
the following one, resulting in a final output that is dependent
on all the previous inputs. This contrasts with a traditional neural
network where all the inputs and outputs are independent of each
other and are dependent on the weight of each layer. The hidden
layer(s) in RNNs are responsible for this dependence, which acts
as “memory” to remember all inputs that were previously calcu-
lated. Training of an RNN is complex, yet the proposed output
by the network will be compared with the actual output, and the
difference is propagated backward to learn the network in a back-
propagationmanner. In addition, RNN requires fewer computations
and complex calculations as parameters because each input is the
same along the whole process. Recurrent neural network has been
applied in the field of radiology mainly in information extraction
from electronic medical records and narrative radiology reports.
There are 3 variants of RNNs, described hereinafter.

• Long short-termmemory (LSTM): This is considered the most
significant variant, as it solves the problem of long-term depen-
dencies. Traditional RNNs cannot efficiently handle large
amounts of inputs, such as predicting the last word in a long
sentence. LSTM can handle this efficiently using the cell state,
which is gated units that can control which information can be
kept and what to discard.20

• Bidirectional RNNs: These not only learn from the past to pre-
dict the future but can adjust and update the past based on the
future. For example, in a speech recognition task, usually, the
network will depend on the following words to fix the first
one according to the context. This bidirectional learning usually
occurred using hidden layers of opposite directions.21

FIGURE 5. Schematic diagram of a GAN, showing the generator and discriminator divisions of the NN. Figure 5 can be viewed online in color
at www.jcat.org.
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• Deep RNNs: These contain multiple hidden layers, which were
found to explore more details than shallow RNNs, but ulti-
mately require more training data.

Generative Adversarial Networks
TheGAN has been described as the most interesting achieve-

ment in ML algorithms in the last decade. Generative adversarial
networks, first introduced by Goodfellow and colleagues22 in
2014, have come to be regarded as the most robust generative al-

gorithm for generating images from random noise, closely
mimicking real images. A classic GAN is composed of 2 sepa-
rate networks: (a) a generative network, which converts noise
vectors into an image, and (b) a discriminator, which compares
the produced image (fake) with the original image one to clas-
sify it as fake or not. Figure 5 shows a simplified demonstration
of GAN networks.

This is a dynamic process, as both networks improve their
performance until the generated image is nearly identical to the
original one.22 An important application of GAN is the generation

TABLE 1. Summary of Studies Using DL Classifiers in Diagnostic Radiology

Author (Year) Training Set Architecture Classification Task
Performance
(ROC/AUC) Comments

Ma et al
(2017)36

4782 cases
(15,000 images)

VGG Thyroid nodules classified into
benign or malignant
using ultrasonography

0.89 Two CNNs were used to
extract both low- and
high-level features.

KV et al
(2019)37

389 images,
augmentation

VGG-19 Grading of the glioma
(grades I–IV) in T2WI

0.982

Song et al
(2018)38

444 images,
augmentation

Modified VGG Classification of prostate MRI
lesions to either benign
or malignant

0.944 Layer numbers were reduced
because of simpler task
than ILSCV.

Prevedello et al
(2017)39

385 cases
(2006 images)

GoogleNet Classification of hemorrhage, mass
effect, hydrocephalus, and acute
infarct in noncontrast CT

0.81–0.91

Kim et al
(2018)40

1.389 image,
augmentation

GoogleNet Classification of fractures in lateral
plain wrist radiographs

0.95

Taylor et al
(2018)41

1990 images VGG-19, GoogleNet Classification of plain AP chest
radiographs as either containing
a moderate/large pneumothorax
or as normal

0.96 Testing of this model was done
on ChestX-ray NIH data set.

Chung et al
(2018)42

1702 images,
augmentation

ResNet Classification of fracture types in
the proximal humerus using
AP shoulder plain radiographs

0.96 CNNs outperform general
physicians and
specialized orthopedists.

Schwyzer et al
(2018)43

100 patient
(3543 images)

ResNet Classification of lung nodules in
PET-CT into benign or malignant

0.989 They used activation heat
maps for detection
of nodules.

Lee et al
(2019)44

160 case
(786 images)

ResNet, GoogleNet Cervical lymph node classification
in neck CT scans as either
metastatic or benign, in patients
with thyroid cancer

0.90–0.95 They used class activation
maps for lymph
node detection.

Lakhani et al
(2017)45

857 image,
augmentation

Ensemble of AlexNet
and GoogleNet

Classification of plain AP
chest radiograph as either
TB or not

0.99

Dalmis et al
(2019)46

576 lesion DenseNet Breast lesion classification into
benign or malignant in breast
MRI (DWI, T2WI, ultrafast
dynamic phase)

0.852 They combined traditional
ML classifiers with CNN.

Corrhea et al
(2018)47

60 patients
(1611 images)

Fully connected
neural neurons
(100 hidden layers)

Lung lesion classification in
children to either pneumonia
or normal in
lung ultrasonography

The ultrasound images are
divided into multiple vectors
after image processing.

Rodriguez-Ruiz
et al (2019)48

>9000 image Assisting radiologists in breast
lesion classification into benign
and malignant using
mammography

0.89 The system used is Transpara,
which is trained on
>9000 mammograms.

Hamm et al
(2019)49

434 cases,
augmentation

Hepatic lesion classification into
simple cyst, cavernous
hemangioma, FNH, HCC, ICC,
or CRC metastasis
using MRI

0.91 They also used this model to
classify these lesions into
their LI-RADS categories.

AP indicates anteroposterior; CRC, colorectal carcinoma; DWI, diffusion-weighted images; FNH, focal nodular hyperplasia; HCC, hepatocellular car-
cinoma; ICC, intrahepatic cholangiocarcinoma; LI-RADS, Liver Imaging Reporting and Data System; PET, positron emission tomography; ROC/AUC,
receiver operator characteristic curve/area under the curve; T2WI, T2-weighted images; TB, tuberculosis.
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of high-resolution images from lower-resolution images, known
as superresolution GAN.23

Generative adversarial network is used in the field of radiol-
ogy to enhance image resolution without upgrading machines or
increasing the radiation dose of computed tomography (CT).
Low-dose CT is usually used for high-radiation-dose imaging pro-
tocols, such as coronary CTangiography, for patients who undergo
multiple follow-up CT scans, and for children and neonates. Image
noise is inherent to that approach, with resultant reductions of spa-
tial and temporal resolution, which negatively affect image interpre-
tation.Many studies have examined the use of GAN to generate im-
ages with higher resolution from noisy image inputs, supporting its
usefulness.24,25 Another strategy for lowering the radiation dose, es-
pecially for patients who must undergo multiple follow-up studies,
is to generate CT images from corresponding magnetic resonance
images by nonlinear mapping models using GAN algorithms.26

Generative adversarial network research is also being carried
out with magnetic resonance imaging (MRI) because improve-
ments in MRI resolution require longer scan time and increased
costs, as well as reductions in spatial coverage and signal-to-
noise ratio. Recent studies have used GAN to generate MRI with
superresolution, with 4� better resolution and 6� faster algo-
rithms than other DL models.27

Combining a GANwith a CNN has been used to improve the
accuracy of classification and segmentation models by the gener-
ation of nonrealistic, yet very similar, images for training sets and
manual segmentation.28–30

USES OF AI IN MEDICAL IMAGES ANALYSIS

Image Classification
Image classification is the assignment of an image into a cer-

tain category, for example, to classify a lung nodule as benign or
malignant.31 Artificial intelligence has been used to perform this
task efficiently owing to its ability to extract relevant features
and perform as needed for the task of image classification using
a large preclassified (ie, labeled) training data set. Neural net-
works, especially CNNs, have demonstrated tremendous potential
in image analysis because it outperformed all other image classifi-
cation algorithms in the ImageNet Large Scale Visual Recognition
Challenge since 2012.12

Some challenges in applying CNN in medical image classifica-
tion is the huge amount of data required to train the network. Because
of regulations regarding institutional rules and copyright, high-quality
radiological images are often not available for public use.32 In addi-
tion, manual image classification (labeling) is a time-consuming
process requiring a dedicated, experienced radiologist.

This scarcity of labeled medical image data has the potential
to halt the progression of DL algorithms in medical image analy-
sis. However, one approach that has been used to overcome this
limitation is “transfer learning.”33 Transfer learning uses a
pretrained neural network that was trained for image classification
on, for example, nonmedical images, modifying certain layers of
the neural network architecture to fit medical images and the ob-
jects of interest. The concept behind the use of transfer learning in
image classification is that different visual tasks—whether natural
or medical images—share similar levels of processing, such as
edge detection and capturing lines. Data augmentation is another
approach to expand a limited data set while maintaining a high
classification performance. Image processing tools like flipping,
rotation, and reorientation can be used to enlarge imaging sets.34

Applying the same algorithms that were pretrained in huge
nonmedical classification databases, like ImageNet, has been crit-
icized by many investigators, given differences in data set size and

class number (which is much larger in ImageNet than for available
medical imaging data).35 The outstanding performance of CNNs
in ImageNet Large Scale Visual Recognition Challenge, a former
classification competition led by ImageNet, prompted the scien-
tific community to use their architectures in the classification of
medical images. Table 1 summarizes the most recent and impor-
tant studies for the use of DL in medical image classification.

The problem of radiological images scarcity has led to the
initiation of development of a large-scale radiological imaging da-
tabase imitating ImageNet, with highly labeled radiological im-
ages (either 2D or 3D) that can be used to develop better algo-
rithms for detection, segmentation, and classification. Examples
include MR-Net for magnetic resonance images of the knee,
MURA for musculoskeletal radiographs, and ChestX-ray for
chest radiographs.

Anomaly/Lesion Detection
Object detection means identification of the presence or ab-

sence of an object of interest as well as its localization within an
image. Unlike classification tasks, object detection is at its early
stages and computer vision cannot yet compete with the perfor-
mance of an actual human. Common objects in context are a
large-scale challenge for object detection and segmentation, and
it was developed by Microsoft to enhance and motivate contribu-
tors for object detection algorithms innovation. The challenge
aims to develop faster and more robust neural networks to super-
sede human performance in the next few years for real-time object
detection.50 The output of these algorithms is traditionally the
original image with a localization object (eg, bounding box sur-
rounding the identified object, or heat maps poorly delineate it;
Fig. 6). Themore recent algorithms that have been used inmedical
imaging are further discussed hereinafter.

• Region-based algorithms: Regional proposed networks (RPNs)
are the backbone of these algorithms, which proposes regions in
an input image to feed to the classifier network.

FIGURE 6. Chest x-ray showing bilateral patchy opacities. A CNN is
used to detect such lesions in bounding box and then classify
these lesions as either pneumonia or others with the probability of
each class.
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oFaster Regional–CNN (R-CNN): This is the strongest update
of R-CNN, which uses CNNs for classification. In Faster R-
CNN, the input image is converted into a feature map by using
CNNs, based on the various architectures discussed previously.
The feature map used by RPNs is to propose different bounding
boxes, which then are classified by a classification R-CNN. This
functions to label that bounding box into its proper class by
using, and adjusting, the coordinates of the bounding box to bet-
ter fit the object. The main advantage of faster R-CNN is its test-
time speed, which is far less thanwith R-CNN, hence the name.51

oMask R-CNN: This is an extension of faster R-CNN with the
same architecture, but an additional binary mask classifier used
to classify each pixel in the bounding box as related to the ob-

ject or not. Therefore, Mask R-CNN segments the object at
the pixel level. The binary classifier input is the proposed re-
gions suggested by RPN.52

• Single-shot detectors: Regional based algorithms work on 2
levels, first to propose regions and then classify them. This
makes this method a little bit slower. Single-shot detectors are
much different from the previous ones because they look at
the whole input image at once. Using CNNs, it then divides
the image into grids and draws appropriate bounding boxes with
the probability of an object within the bounding. The final output
layer then selects the highest probability bounding box to report.
The problem in these algorithms is the imbalance between the

TABLE 2. Summary of Studies Using DL for Object Detection in Diagnostic Radiology

Author (Year) Training Set Architecture Object Detection Task
Performance
(ROC/AUC)

Gan et al
(2019)60

2040 images, augmentation Faster R-CNN for object detection,
then GoogleNet for classification.

Detection of fractures in AP
wrist radiographs

0.96

Tuzoff et al
(2019)61

1352 image Faster R-CNN based on
VGG-16 architecture

Detection and numbering of teeth in
panoramic teeth radiography

0.9945*

Wang et al
(2020)62

192 patients, augmentation
(11,658 images)

Faster C-NN and VGG-16 Detection of circumferential resection
margins in rectal carcinoma MRI (T2WI)

0.953

Liu et al
(2017)63

120 patients Faster R-CNN based on
ZFNet architecture

Localization of colitis using bounding box
and heat map in contrast CT

0.984

Nasrullah et al
(2019)64

1018 images Faster R-CNN and U-net
(LIDC-IDRI data set)

Pulmonary nodule localization and
classification in CT

0.94

Lindsey et al
(2018)65

135,845 image Modified U-net architecture Detection of fractures in plain radiographs
using heat maps

0.99

Chang et al
(2018)66

10,159 case Mask R-CNN Detection of hemorrhage in unenhanced
CT brain using bounding boxes

0.989

Filice et al
(2019)67

10,902 image Mask R-CNN Detection and localization of chest
abnormalities (pneumothorax and
chest tubes) in AP chest radiographs

0.87†

Fritz et al
(2020)68

18,520 studies GoogleNet Localizing the meniscal tear using
heat maps in MRI

0.961

Kooi et al
(2017)56

12,138 patients,
augmentation

OxfordNet Detection of breast lesions in mammography 0.93

Kim et al
(2018)69

26,631 case ResNet Localization of breast lesion using
specific score and heat map
using mammography

0.906

Pan et al
(2019)57

25,684 case Ensemble of RetinaNet and
R-CNN

(RSNA Pneumonia
detection challenge)

Localization of pneumonia in AP chest
plain radiographs

0.254‡

Wang et al
(2019)71

276 patients (5007 images) YOLO v2 integrated with
ResNet and pertained on
VOC data sets)

Detection and localization of thyroid
nodule during ultrasonography

0.90

Cao et a.
(2017)74

515 patients SSMD using either ZFNet
or VGG-16

Localization of breast lesion using
bounding box in US

0.96

Li et al
(2017)72

888 patients SSDM and FPN
(LUNA grand challenge data set)

Localization of lung nodules in
axial CT scans

0.892

*The reported performance metrics is precision for tooth detection.

†The reported performance metrics is sensitivity of pneumothorax detection.

‡The reported performance is the RSNA score metric. This study has the highest ranking until the time of manuscript writing. The score metrics com-
bines true positive, false positive, and false negative and threshold them to obtain intersection over union, which is the agreement between ground truth and
network segmentation.

AP indicates anteroposterior; FPN, feature pyramidal network; R-CNN, regional CNN; ROC/AUC, receiver operator characteristic curve/area under the
curve; RSNA, Radiological Society of North America; SSMD, single-shot multibox detector; T2WI, T2-weighted images; YOLO, You Only Look Once
network.
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background (most of the bounding boxes are negative and do not
contain objects) and the object. This problem is called class im-
balance, and it lowers the performance of these networks.

o You Only Look Once network (YOLO): The architecture of
YOLO is traditionally based on GoogleNet, without the in-
ception module but with just 2 fully connected neurons at the
output layer, making it fast. YOLO has 24 convolutional layers
followed by 2 fully convolutional networks (FCNs) with just
one reduction layer, this makes it far faster than Faster R-
CNN. YOLO can process clips of 91 frames per second with
higher performance than Faster R-CNN, which can only pro-
cess clips of 17 frame per seconds with lower accuracy level.
As a result, when used in medical images, it is commonly used
for the detection of objects in ultrasound. The main drawback
of YOLO is its inability to detect small objects, so it is less com-
monly used in cross-sectional imaging.53

o Single-shot multibox detector (SSMD): Similar to YOLO,
SSMD depends on the whole image and its architecture relies
onVGG-16—which is VGG neural network configuration with
16 layers—with the addition of multiple CNNs instead of the
last layer in VGG.54

• RetinaNet: This algorithm solves the problem of the relative
slowness of regional networks and the class imbalance by using
a feature pyramidal network (FPN). This FPN can predict ob-
jects on multiple resolutions, which extract rich information
from the image at all levels while remaining fast. RetinaNet uses
the ResNet architecture to extract feature maps from the input
image, which then uses FPN to detect objects on multiple reso-

lutions. RetinaNet is one of the most recent advances in object
detection algorithms.55

Automatic detection of breast and pulmonary lesions using
neural networks has been among the most heavily examined. Such
tools will support radiologists with a “second opinion,” replace
and outperform the currently used CAD, and reduce the time
needed scanning millions of screening mammograms and chest
x-rays.45,56–59 Table 2 summarizes the most important recent arti-
cles that have used object detection algorithms in medical imaging.

Image Segmentation
Image segmentation means dividing the image into different

regions, such as organs, lesions, or subvolumes inmedical images.
It is a vital step in quantitative image analysis for either feature ex-
traction or classification.73 Segmentation tasks are usually more
difficult than classification and object detection, as the computer
needs to classify each pixel and label it. There are several algo-
rithms that are important in biomedical image segmentation.
Table 3 summarizes important recent articles using imaging
segmentation with DL.

• U-Net: This is the most famous neural network and has a proven
high level of accuracy in medical image segmentation. U-Net is
a CNN organized in a U-shape and developed by the computer
science department at the University of Freiburg, Germany. This
elegant neural network is composed of 2 parts: an encoding
limb, consisting of different convolution layers leading to fea-
ture extraction, and a decoding limb, consisting of different

TABLE 3. Summary of Studies Using DL for Segmentation Task in Diagnostic Radiology

Author (Year) Training Set Architecture Used Object Segmentation Results (DSC)

Yao et al (2018)74 48 cases, data augmentation Modified U-net with
added dilated CNN

Segmentation of the hematoma region in CT 0.62

Park et al
(2019)75

611 examinations,
data augmentation

Modified U-net
architecture (HeadXNet)

Pixel-level segmentation of brain aneurysm
in CT angiography

0.932*

Blanc-Durand
et al (2018)76

26 patients,
data augmentation

3D U-net architecture Segmentation of gliomas in PET-CT 0.8231

Liu et al (2020)77 590 patients U-Net Segmentation of pulmonary embolism
and calculate its volume in CT
pulmonary angiography

0.926*

Li et al (2018)78 LiTs data set (131 patients) Hybrid Dense U-Net Hepatic tumor segmentation using CT scans 0.72
Milletari
et al (2016)79

50 cases, data augmentation V-Net Segmentation of prostate in prostatic MRI 0.869

*The results in these studies were recorded in the form of accuracy, not DSC.

DSC indicates dice similarity coefficient.

FIGURE 7. A, Contrast-enhanced CT scan of the liver showing hepatic tumor in the right liver. B, U-net was used to segment both the liver
(dotted pattern) and the tumor (linear pattern), which can be further used for volumetric assessment tomonitor treatment. Figure 7 can be
viewed online in color at www.jcat.org.
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layers of reverse-convolution or deconvolution. The U-Net ar-
chitecture implements skip connections at multiple levels be-
tween the encoding and decoding limbs that store the spatial in-
formation of the image parts. This is in addition to the feature
extraction performed using CNNs. The result is a map containing
both features and spatial information (Fig. 7). One advantage of
U-Net is its strong performance in segmentation using relatively
small training data sets. However, one of the current recognized
limitations is its inability to segment 3D medical images.80

oVariants of U-Net were developed to accept 3D images as an
input. This includes V-Net, 3D U-Net, and hybrid Dense U-
Net, which all have the same architecture of U-net (encoding

and decoding limbs) but contain 3D convolutional filters rather
than the 2D filters in U-net. These variants can be used in the
segmentation of MRI/CT volume batches, such as in prostate
MRI or liver CT. However, they are very demanding on compu-
tational and memory resources.78,79

• Fully convolutional network (FCN): This uses the same concept
of U-net but with a different architecture. FCNs depend on
greatly downsizing the input image to produce a very small fea-
ture map at the pixel level. It then uses deconvolution (DeConv,
Dilated CNN) to apply these feature maps on a larger scale be-
fore fusing the product to produce the final output.81

TABLE 4. Summary of Studies Using DL in Diagnostic Radiology Other Than Imaging Analysis

Author (Year) Training Set Architecture Used Outcome

Radiology reports manipulation
Chen et al (2018)82 2500 reports CNN obtained from GloVe* Extracting PE findings from CT chest

free-text reports
Jnawali et al (2019)83 12,852 reports LSTM with one CNN Labeling the radiological reports

that contain either ICH or not
Gale et al (2018)84 41,032 images CNN with DenseNet architecture

and LSTM for reporting
Classifying and generating a report for a
pelvic plain radiograph with hip fracture

Wang et al (2019)85 9240 patients Classifier CNNs for detection and
classification of pulmonary nodules
embedded in intelligent system

Intelligent layout for structured reports,
classified images. The visualized layout
consists of structured reports with
annotated images and classified.

Wang et al (2018)86 15,472 report Ensemble of CNN (ResNet
architecture) and LSTM

Detection and reporting of chest x-ray
findings using specific model

Ben-Cohen et al (2019)87 23 PET scans, augmentation A combination of FCN (U-net
architecture) and GAN

Synthetize metabolic PET image from
FCN contrast CT

Han et al (2017)88 15 patients (2400 training
images), augmentation

3D Deep CNN (pretrained on
VGG) based on U-net architecture

Synthetize MRI (with better soft tissue
delineation) from CT

Xiang et al (2018)89 38 MRI scans, augmentation Deep embedding CNN Synthetize CT from T1WI MRI
Decision support
Sepandi et al (2018)90 599 cases Artificial neural (3 layers) network Predict the risk of breast carcinoma with

ANN using 23 variables
Fischer et al (2020)91 232 scans Ensemble of CNN (for detection

of calcium) and LSTM (to keep
tracking of calcium along
the coronaries)

Prediction of calcium score using CT
coronary angiography

Buda et al (2019)92 1139 patients (1278 images) Faster R-CNN (based on
ResNet architecture)

Deciding whether a thyroid nodule
should be biopsied or not

Spasov et al (2018)93 ADNI database (308 patients) 3D CNN with
GoogleNet architecture

Prediction of Alzheimer disease and
clinical evolution through imaging and
clinical data

Shen et al (2019)94 114 patients, data
augmentation (1562 images)

Deep CNN based on
inception network

Prediction of outcome in patient with
cervical cancer

Morshid et al (2019)95 105 patients Cascaded CNN Prediction of HCC response to TACE
from preprocedural CT scans.

Quality control
Esses et al (2018)96 351 cases (29,790 images) Deep CNN Classify the MRI images according

to its quality
Lee et al (2018)97 5258 examination s CNN with pretrained word

embedding model (Word2vec)†
Protocol determination of MRI

Gurbani et al (2018)98 6774 images (7 patients) Deep CNN Classification of MR spectroscopy quality
as either good or bad

*GloVe is a type of converting words to mathematical vectors (vectorizations) to be easily used in ML algorithms. The embedding is done using word-
word co-occurrence matrix.99

†Word2vec uses a 2-layer CNN to reconstruct the context of words it used to map each word to other words.100

ANN indicates artificial neural network; GloVe, global vectors for word representation; ICH, intracranial hemorrhage; PE, pulmonary embolism; T1WI,
T1-weighted images.
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AI: BEYOND IMAGE ANALYSIS
Artificial intelligence and DL have applications in radiology

other than image analysis. Many of these are still in the research
phase, and incorporation of these applications into clinical prac-
tice needs extensive validation. The following sections highlight
these applications with Table 4 emphasizing some of these efforts.

Quality Control
Choosing an appropriate imaging study protocol is a com-

mon quality assurance issue. Selecting the appropriate study pro-
tocol based on an individual patient's needs can be a time-
consuming process, requiring an experienced radiologist who is
aware of various protocols and familiarity with the patient's clini-
cal situation through a review of the medical records.101 A combi-
nation of ML, for natural language interface classification, and
DL (eg, CNN)models has been investigated in selecting an appro-
priate study protocol based on the patient's presenting signs and
symptoms and previous imaging reports; the study demonstrated
a 93% to 94% accuracy using both of these models.102

Another aspect of quality assurance, assessing image quality,
is usually performed by the physicist, who checks multiple bench-
marks, including the adequacy of exposure, penetration, and arti-
facts. This quality revision has been explored using CNNs in both
CT and MRI scanning and was found to be able to be performed
instantaneously after completion of the scan, eliminating the need
for patient rescheduling or manual revision by a physician.96,103–105

Workflow Organization
A major potential use for AI algorithms in radiology is the

optimization of workflow and patient scheduling. Missed appoint-
ments can lead to a delay in patient care and increased costs. Cer-
tain factors have been demonstrated to be associated with missed
appointments, including the previous behavior of the patient,
which can be a clue to predict the likelihood of a future missed ap-
pointment. Regression models and other ML algorithms have
been shown to hold the potential for reducing missed appoint-
ments while developing solutions to the problem that can arise
from these missed appointments.106,107

Optimization of staff scheduling is another difficult task, espe-
cially in large radiology practices; multiple factors must be considered
in scheduling, such as examination complexity, day of the week, and
imagingmodality. Inappropriate staff scheduling can lead to radiologist
dissatisfaction. Artificial intelligence can be used to ensure a fair
distribution of work among staff without affecting patient care.101,108

Follow-up of incidental findings on imaging studies is an-
other important potential application of AI. Missing follow-up
studies can lead to poor outcomes, malpractice claims, and in-
creased costs. In 2 studies, follow-up imaging for incidental pul-
monary nodules and indeterminate lesions was not completed
for 71% and 44% of cases, respectively.109,110 Artificial intelli-
gence algorithms can be used to extract information from radiol-
ogy reports that suggest the need for follow-up, which has been
previously investigated in incidental pulmonary nodules.111

Radiology Reporting
There are many other potential applications for DL in radiology

reporting. Besides the speech recognition systems now in use, DL al-
gorithms can provide real-time alerts to radiologists to detect
reporting errors such as lesion laterality and patient sex.106Moreover,
information retrieval from medical records by these algorithms
can be automated, obviating the need for manual searching.112

Using AI can help in the formulation of radiology reports,
making different versions for patients, pharmacists, and insurance

companies that contain the same information but use simpler lan-
guage understandable by patients and professionals who need the
information in the report but do not have the same level of knowl-
edge or training. Another potential use is optimizing the report ac-
cording to the specialty of the clinician who is using the report; for
example, a report could be generated for a surgeon with details on
lesion margins, extensions, and other information specific to sur-
gery. This capability is more efficient for the care team.

CONCLUSIONS
Recent AI techniques and DL act as a breakthrough in the

field of imaging analysis. Artificial intelligence–based ap-
proaches will aid both radiologists and clinicians but will certainly
not replace them. Instead, these approaches will likely be used for
consultation and decision support rather than decision making.
Regardless, radiologists must be aware of these technologies and
their role in the medical field. Although the high accuracy, robust-
ness, speed, and utility of AI algorithms in the field of medical
imaging have been demonstrated in research studies, most of
the algorithms, particularly DL algorithms, are still in the test-
ing phase and have not yet been scaled up or incorporated into
clinical practice. The widespread incorporation of recent AI
technologies into clinical practice faces many challenges. First,
these algorithms must be trained on very large data sets, which in
many cases is not feasible. Moreover, study protocols must be
standardized across all institutions before the incorporation of
DL algorithms. Improving algorithm accuracy and performance
is a complex, difficult problem. Finally, proposedmodels for solv-
ing radiological problems must be externally validated using data
from different vendors and institutions before its incorporation
into clinical practice.
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